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Homomorphic encryption functions and
cryptographic protocols

Akihiro Yamamura* Tatiana Jajcayova \dagger Takashi Kurokawa*

1 Introduction

We propose efficient oblivious transfers and private information retrieval
schemes using a homomorphic encryption. Our private information retrieval
enables the user to retrieve block data from the database consisting of several
binary strings without iteration. This paper is an extended abstract and the
detailed version will be published elsewhere.

A mapping between algebraic systems is called a homomorphism if it

preserves the algebraic structures. In cryptography, trapdoor one-way ho-

momorphism between cyclic groups have been proposed and applied to

numerous secure protocols, for example, secret ballot elections schemes.

Such encryptions include ElGamal, Goldwasser-M icali, Benaloh, Okamoto-
Uchiyama, Paillier cryptosystems and so on,

Oblivious Transfer (OT) refers to several types of two party protocols,

where one party, the sender, transm its part of its input to another party,

the chooser, in a way that protects both parties: the sender is assured that

the chooser does not get more information than it is entitled, and chooser is

assured that the sender does not learn which part of the inputs it received.
The notion of l-out-of-2 oblivious transfer ( $\mathrm{O}\mathrm{T}_{1}^{2}$ for short) was introduced
in [4], as generalization of Rabin’s concept of OT [10].

Private Information Retrieval (PIR) schemes [2] allow a user to access a
database consisting of $N$ data $m_{1}$ , $m_{2}$ , . . . , $mN$ (usually data are just a bit)

and read any elements without a database manager learning which element

was accessed. PIR schemes do not protect the owner of the database, be-

cause they do not prevent the user from lear ing more than a single element.

Currently, the question of protecting the database was addressed as well. A
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PIR scheme where a user does not learn more than a single data is called a
Symmetric PIR (SPIR) [5].

An oblivious transfer can be implemented under different assumptions.
In this paper, we construct an efficient $\mathrm{O}\mathrm{T}_{1}^{N}$ based on the $p$-subgroup as-
sumption and a PIR in which database consists of block data based on
the subgroup membership problem. These are constructed under Okamoto-
Uchiyama encryption [9]. Unifying these constructions, a new efficient SPIR
based on the $p$-subgroup assumption. Okamoto-Uchiyama encryption is a
public key cryptosystem whose security us based on the so-called p-subgroup
assumption.

2 Okamoto and Uchiyama’s encryption scheme

2,1 Preliminaries

Okamoto and Uchiyama [9] introduces a new trapdoor one-way function
based on the hardness of factorization of composites of the form $p^{2}q$ . Their
scheme has many interesting properties.

Suppose that $p$ is a prime number of size $k$ . Let $\Gamma$ be the p-Sylow
subgroup of $(\mathbb{Z}/(p^{2}))^{*}$ , that is, $\Gamma$ is the maximal subgroup whose order is a
power of $p$ . The group $(\mathbb{Z}/(p^{2}))^{*}$ has order $\phi(p^{2})=p(p-1)$ . Thus $(\mathbb{Z}/(p^{2}))^{*}$

is an internal direct product of $\Gamma$ and the subgroup of order $p-1$ . It is easy
to see that the subgroup of order p-l is isomorphic to $(\mathbb{Z}/(p))$

’ and so it is
cyclic. On the other hand, $\Gamma$ has order $p$ and so it is cyclic. It follows that
$(\mathbb{Z}/(p))^{*}$ is cyclic because $p$ and $p$ –1 are coprime.

We next show that if $x\equiv 1(\mathrm{m}\mathrm{o}\phi)$ , then we have $x^{p}\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})$ .
Suppose $x\equiv 1$ (modp). Then $x=cp+$ $1$ for some $c$ in Z. We have

$x^{p}=(cp+1)^{p}= \sum_{i=0}^{p}$ $(\begin{array}{l}pi\end{array})$ $(cp)^{p-i}$ . Hence, $x^{p}=dp^{2}+1$ for some $d$

in $\mathbb{Z}$ . It follows that $x^{p}\equiv 1(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})$ . It follows that $\Gamma$ $=\{x\in(\mathbb{Z}/(n))^{*}|x\equiv$

$1$ (modp) $\}$ .
A homomorphism $L$ of $\Gamma$ into the additive group $(\mathbb{Z}/(p), +)$ is defined by

$L(x)= \frac{x-1}{p}$ for every $x$ in F. Then $L$ is an isomorphism of $\Gamma$ onto $\mathbb{Z}/(p)$ , that
is, we have $L(ab)\equiv L(a)+L(b)$ (modp) for $a$ , $b$ in $\Gamma$ (see [9]). In particular,
we have $L(y)=mL(x)$ for every $x$ , $y$ in $\Gamma$ with $y=x^{m}(m\in \mathbb{Z})$ . Hence,
$m= \frac{L(y)}{L(x)}$ unless $L(x)=0$ . Note that $L(x)=0$ if and only if $x$ is the identity
element of $\Gamma$ .

Suppose that $n=p^{2}q$ , where $p$ and $q$ are primes of same $k$ . Recall
that $\Gamma$ is the $p$-Sylow subgroup of $(\mathbb{Z}/(p^{2}))^{*}$ . In fact we can consider that
$\Gamma$ is the $p$-Sylow subgroup of $(\mathbb{Z}/(n))^{*}$ . The group $(\mathbb{Z}/(p^{2}))^{*}$ is abelian
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and so it is a direct product of its Sylow subgroups. Note that Sylow
subgroups are uniquely determined in an abelian group. By the chinese
remainder theorem, we have $(\mathbb{Z}/(n))^{*}=(\mathbb{Z}/(p^{2}))^{*}\cross$ $(\mathbb{Z}/(q))^{*}$ . Let $\pi 1$

be the projection into the first component, that is, $\pi_{1}$ is the mapping of
$(\mathbb{Z}/(n))^{*}$ into $(\mathbb{Z}/(p^{2}))^{*}$ defined by $\pi_{1}$ ( $x$ (modn)) $=x(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})$ . We define
$\psi_{p-1}$ : $(\mathbb{Z}/(n))^{*}arrow(\mathbb{Z}/(n))^{*}$ by $\psi_{p-1}$ ( $x$ (modn)) $=x^{p-1}$ (modn). We define
a subgroup $U$ to be the complement of $\Gamma$ in $(\mathbb{Z}/(p^{2}))^{*}$ , that is, $U$ is a sub-
group of $(\mathbb{Z}/(p^{2}))^{*}$ such that $(\mathbb{Z}/(p^{2}))^{*}\cong\Gamma \mathrm{x}U$. The order of $U$ is $p-1$ .
Then we have $(\mathbb{Z}/(n))^{*}=\Gamma\cross$ $U\mathrm{x}$ $(\mathbb{Z}/(q))^{*}$

2.2 Okamoto-Uchiyama encryption

Let $p$ , $q$ be primes such that $|p|=|q|=k$ . Set $n=p^{2}q$ . We should note that
$|n|=3k$ . Take an element $g$ randomly and uniformly from $(\mathbb{Z}/(n))^{*}$ so that
the order of $g_{p}=\pi_{1}(\psi_{p-1})(g)$ ( $=g^{p-1}$ mod $p^{2}$ ) is $p$ . Let $h=g^{n}(\mathrm{m}\mathrm{o}\mathrm{d} n)$ .

Public key The public key is $(n, k, g, h)$ .

Secret key The secret key is $(p, q)$ .

Encryption Suppose $m$ is a plaintext with $0<m<2^{k-1}$ . Hence, the
length of plaintexts is bounded by $k$ . Choose $r$ randomly and uniformly
from $\mathbb{Z}/(n)$ . Then the plaintext is encrypted by $C=g^{m}h^{r}(\mathrm{m}\mathrm{o}\mathrm{d} n)$

Decryption Bob computes $m=\underline{L(C^{p-1}\mathrm{m}\mathrm{o}\mathrm{d} \underline{p^{2})}}L(g^{p-1}\mathrm{r}\mathrm{n}\mathrm{o}\mathrm{d}p^{2})(\mathrm{m}\mathrm{o}\mathrm{d} p)$ . Note $\pi_{1}(\psi_{p-1}(C))$

belongs to $\Gamma$ .

It is shown in [9] that the hardness of inverting the encryption function
is equivalent to the hardness of factoring the composites of the tyPe $p^{2}q$

and the encryption scheme is semantic secure if and only if the p-subgroup
problem is intractable.

2.3 $p$-subgroup assumption

Let $\mathcal{G}$ be an instance generator for the Okamoto-Uchiyama encryption scheme;
$\mathcal{G}$ is a probabilistic algorithm that outputs $(n, g, C)$ for the input $1^{k}$ and

then $(n,g, k)$ is a public key and $C$ is a ciphertext of the message 0 or 1
(say 6), taht is, $C=g^{m}h^{r}$ . The $p$ -subgroup problem is intractable if for any
( $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}/\mathrm{n}\mathrm{o}\mathrm{n}$-uniform) probabilistic algorithm $A$ , any constant $c_{7}$ we have

Prob(A$( \mathrm{I}^{k}, n, g, m_{0}, m_{1}, C)=b<\frac{1}{2}+\frac{1}{k^{c}}$

for sufficiently large $k$ . The $p$ -subgroup assumption is to assume that the
$p$-subgroup problem is intractable.
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3 Subgroup membership problem

Let $G$ be a group, and let $H$ be its subgroup. The subgroup membership
problem is to decide whether or not a given element $g\in G$ belongs to $H$ (see
$[12, 13])$ . We suppose that every element in $G$ has a binary representation
of size $k$ , where $k$ is the security parameter.

The predicate for the membership of a subgroup is denoted by Mem,
that is, Mem(G, $H$, $x$ ) $=1$ if $x\in H$ and Mem$(G, H, x)=0$ if $x\in S=G\backslash H$ .
The subgroup membership problem is to compute Mem in polynomial time
in $k$ when we inputs $1^{k}$ to an instance generator $\mathrm{I}\mathcal{G}$ and obtain a pair of
groups $(G, H)$ and an element $g$ in $G$ , which is uniformly and randomly

chosen from $H$ or $G$ according to the coin toss $b\vdash R\{0,1\}$ . If there does not
exist a probabilistic polynomial time algorithm that computes Mem with a
probability substantially larger than $\frac{1}{2}$ , then we say that the membership
problem is intractable.

Examples Some cryptographic assumptions are characterized as a sub-
group membership problem. Let $G$ be the subgroup of $(\mathbb{Z}/(N))^{*}$ consisting
of the elements whose Jacobi symbol is 1. Then QR is the membership
problem of $H=$ {$x\in G|x=y^{2}$ mod $N$ for $y\in(\mathbb{Z}/(N))^{*}$ } in the group $G$ .

Suppose $G$ is a cyclic group generated by $x$ . The DDH is the problem
that given $[x, x^{a}, x^{b}, x^{\mathrm{c}}]$ decides whether $x^{ab}=x^{c}$ or not. Then DDH is the
membership problem of the subgroup $<(x, x^{a})>$ in the group $C\rangle\langle C=$

$\{(x^{e}, x^{f})|0\leq e, f<|x|\}$ . For other examples, see [8, 12, 13].

Theorem 3.1 (1) The $p$ -subgroep assumption is stronger than the subgroup
membership assumption of $U\mathrm{x}$ $(\mathbb{Z}/(q))^{*}$ in $(\mathbb{Z}/(n))^{*}$ , that is, the p-subgroup
problem is reduced to the subgroup membership problem.
(2) The subgroup membership assumption for $U\rangle\langle$ $(\mathbb{Z}/(q))^{*}$ in $(\mathbb{Z}/(n))^{*}$ is
stronger than assuming intractability of factorization of composites of the
form $p^{2}q$ , that is, the subgroup membership problem can be reduced to the
factorization of $p^{2}q$ .

4 Oblivious transfer

The sender $S$ has the secret data $m_{1}$ , $m_{2}$ , $\ldots$ , $m_{N}$ . Set $X=$ $(m_{1}$ , $m_{2}$ , . . . , $m_{N})$ .
The receiver $R$ wishes to obtain one of the data (say $m_{\alpha}$ ) and send a query
to $S$ so that $S$ cannot obtain any information on $\alpha$ while $\prime \mathcal{R}$ gets only $m_{\alpha}$ .
Thus 72 does not obtain any information on the other data. This require-
ment makes the difference from private information
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4.1 Computationally secure $\mathrm{O}\mathrm{T}_{1}^{N}$

A general one round oblivious transfer protocol runs as follows:

Step 17? generates the system parameters. 7? computes a query Query $(\alpha)$

using his random tape (coin toss), which 7? keeps secret. Then $\mathcal{R}$ sends
Query(a) to $S$ .

Step 2 $S$ receives Query $(\alpha)$ . He performs a polynomial-time computation
for the input $X$ , Query(a) and his random tape. The computation yields
the answer Answer(Query(o)). $S$ sends Answer(Query(a)) back to 7%.

Step 3 $\mathcal{R}$ receives Answer(Query(c$\alpha$)). He performs a polynomial-time
computation using Answer(Query(a)) and his private information. The
computation yields the oth data $m_{\alpha}$ of $X$ .

Correctness
If both party play honestly (no cheating), 7? obtains $m_{a}$ for any sequence
$X$ of data and any query Query

Privacy for $\mathcal{R}$

$S$ cannot distinguish a query for the ath and the $\beta \mathrm{t}\mathrm{h}$ data for all $\alpha$ and $\beta$ .

In our scheme, the privacy for 7% is computational; $S$ cannot distinguish two

queries from 7? by a polynomial time (probabilistic) computation with non-
negligible probability. Formally, for all constants $c$ , for all data ase of length
$n$ , for any two $1\leq\alpha$ , $\beta\leq N$ , and any ( $\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}/\mathrm{n}\mathrm{o}\mathrm{n}$-uniform) probabilistic
algorithm $A$, there exists an integer $K$ such that for all $k>K$ we have

$|\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}$ ( $A$(Query (o)) $=1$ ) $-\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}$ ( $A$ (Query $(\beta))=1$ ) $|<\sigma$ ,

$\backslash t\mathrm{v}$here k is the security parameter of the protocol and $\sigma=\frac{1}{({\rm Max}(k,n))^{c}}$ .

Privacy for $S$

$\mathcal{R}$ cannot obtain any information on the other data. I $\mathrm{n}$ our scheme, the pri-

vacy for $S$ is unconditional, that is, 7? cannot obtain any partial information
of $m_{\beta}$ for all $\beta\neq\alpha$ even with unlimited computing power.

We do not take into consideration active attacks of 7? or $S$ in this paper.
So we suppose that both party 72 and $S$ are honest and follow the protocol.

Computation
Computations of both 72 and $S$ are bounded above by a polynomial in the

size $N$ of the database and the security parameter A.
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4.2 Proposed scheme

We construct a l-out-bf-N one round oblivious transfer $\mathrm{O}\mathrm{T}_{1}^{N}$ using Okamoto-
Uchiyama encryption scheme. Suppose that the sender $S$ has $N$ data $m_{1}$ ,
$m_{2}$ , . . ., my and the receiver 7? wishes to know the ath data $m_{\alpha}$ . The
security parameter $k$ is taken large enough; we take $k$ so that $0\leq m_{i}<2^{k-1}$

for every $\mathrm{i}$ .
Step 172 generates primes $p$ and $q$ with $|p|=|q|=k$ . We may assume
$N\leq 2^{k-1}$ , otherwise any computation related transaction with $\prime \mathcal{R}$ takes more
than polynomial time. Set $n=p^{2}q$ . We use the same notation as Section
2. 7? takes an elements $g_{1}$ randomly and uniformly from $(\mathbb{Z}/(n))^{*}$ so that
$|g_{1}^{p-1}(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})|=p$ . Let $g_{2}$ to be $g_{1}^{d}$ , where $d$ is randomly and uniformly
chosen from $\{1, 2, \ldots,p-1\}$ . 7% also chooses $u$ randomly and uniformly. Set
$f=g_{2}^{n(u+1)-\alpha}$ The query for the ath data (Query(a) for short) is defined
to be $(n, k, g_{1}, g_{2}, f)$ . $R$ sends Query(a) to S.

Step 2 $S$ chooses randomly and uniformly $r_{i}$ and $s_{i}$ from $\mathbb{Z}/(n)$ for
every $\mathrm{i}=1,2$ , $\ldots,$

$N$ . Then $S$ computes $c_{i}=g_{1}^{m_{\mathrm{t}}+ns_{i}}$
.

$(fg_{2}^{i})^{r_{i}}$ for every
$\mathrm{i}=1$ , 2, $\ldots$ , $N$ . The answer (denoted by Answer(Query(o))) consists of
$(c_{1}, c_{2}, \ldots, c_{N})$ . $S$ sends Answer(Query(a)) to 72.

Step 3 $\prime \mathcal{R}$ computes

$\frac{L(\pi_{1}(\psi_{p-1}(c_{\alpha})))}{L(\pi_{1}(\psi_{p-1}(g_{1})))}\mathrm{m}\mathrm{o}\mathrm{d} p=\frac{L(c_{\alpha}^{p-1})}{L(g_{1}^{p-1})}$(modp)

and obtain $m_{\alpha}$ .

Correctness We have $c_{\alpha}=g_{1}^{m_{\alpha}+ns_{\alpha}}(fg_{2}^{\alpha})^{r_{\alpha}}=g_{1}^{m_{\alpha}+ns_{\alpha}}(g_{2}^{n-\alpha}g_{2}^{nu}g_{2}^{\alpha})^{r_{\alpha}}=$

$g_{1}^{m_{\alpha}+ns_{\alpha}}(g_{2}^{n(u+1)})^{r_{\alpha}}=g_{1}^{m_{\alpha}+ns_{\alpha}}g_{2}^{nr_{\alpha}(u+1)}$ . Since the order of $(\mathbb{Z}/(p^{2}))^{*}$ is
$p(p-1)$ , $g_{1}^{n(p-1)}(=(g_{1}^{pq})^{p(p-1)})$ is the identity element in $(\mathbb{Z}/(p^{2}))^{*}$ . Hence,

we have $(g_{2}^{nr_{\alpha}(u+1)})^{p-1}\equiv 1$ (madp 2) and $(g_{1}^{ns_{\alpha}})^{p-1}\equiv 1$ $(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})$ . Then it

follows that $\frac{L(c_{\alpha}^{\mathrm{p}-1})}{L(g_{1}^{p-1})}=\frac{L\langle(g_{1}^{p-1})^{m_{\alpha}})}{L(g_{1}^{p-1})}=m_{\alpha}$ . Hence, 7! can correctly obtain $m_{\alpha}$ .

Privacy We shall show that the $\mathrm{O}\mathrm{T}_{1}^{N}$ has computational security for 7?’
privacy and unconditional security for $S’ \mathrm{s}$ privacy against passive attacks.
For active attacks, it is necessary to integrate zero-knowledge proof or so.

Theorem 4.1 The privacy for $\prime \mathcal{R}$ ’s choice $\alpha$ is equivalent to the p-subgroup
assumption
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Theorem 4.2 The privacy for $S$ is unconditionally secure against passive
attacks, that is, an honest 7? cannot get any information on $mi$ for arry $\mathrm{i}$

$(\mathrm{i}\neq\alpha)$ .

5 Private information retrieval

5.1 Computationally secure PIR with a single database server

We review the general scheme of a computational one-server private infor-
mation retrieval (PIR for short) scheme. A computational PIR scheme [3]

is a protocol for two players, a user & and a database manager $VB$ . Both

are able to perform only probabilistic polynomial time computation. $DB$

maintains a database, which is a sequence $X=m_{1}$ , $m_{2)}$ . . . , $mN$ of binary

string of the same size. We note that each data has usually length 1 for a
PIR scheme, that is, $\mathrm{m}\mathrm{i}$ , $m_{2}$ , $\ldots$ , $m_{N}\in\{0,1\}$ and that if $\mathcal{U}$ wants to obtain
more than one bit, he needs to iterate the PIR protocol. The goal of the

protocol is to allow $\mathcal{U}$ to obtain the ath bit string $m_{\alpha}$ without leaking any
information on $m_{\alpha}$ to $\prime DB$ . We here construct a PIR scheme that allows $\mathcal{U}$

to get a bit string of fixed size by only one procedure. The protocol runs as
follows:

Step 1 The user $\mathcal{U}$ generates the system parameters and computes a query
Query(a) using his random tape (coin toss), which $\mathcal{U}$ keeps secret. Then he

sends Query (o) to $D\mathrm{I}3$ .

Step 2 $\prime DB$ receives Query(oj. He performs a polynomial-time com pu-

tation for the input $X$ , Query(o) and his random tape. The computation
yields the answer Answer(Query(a) ). He sends Answ er(Query(o) ) back to

$\mathcal{U}$ .

Step 3 & receives Answer(Query(o)). He performs a polynomial-time
computation using the answer Answer(Query(o)) and his private informa-

tion (his random tape). The computation yields the ath bit $m_{\alpha}$ of the

database.

Correctness
For any database sequence $X$ and for any query Query $(\alpha)$ for ath informa-

than of $X$ , $\mathcal{U}$ obtains $m_{\alpha}$ at the end.

Privacy for $\mathcal{U}$

$VB$ cannot distinguish a query for the czth and the $\beta \mathrm{t}\mathrm{h}$ data for all a and $\beta$

by a polynomial-time (probabilistic) computation with non-n egligible prob-

ability. Formally, for all constants $c$ , for all database sequences $X$ of length
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$n$ , for any two $1\leq\alpha$ , $\beta\leq n$ , and any ($\mathrm{u}\mathrm{n}\mathrm{i}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{m}/\mathrm{n}\mathrm{o}\mathrm{n}$-uniform) probabilistic
algorithm $A$ there exists an integer $K$ such that for all $k>K$ we have

$|\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{b}(A(\mathrm{Q}\mathrm{u}\mathrm{e}\mathrm{r}\mathrm{y}(\alpha))=1)-$ Prob $(A(\mathrm{Q}\mathrm{u}\mathrm{e}\mathrm{r}\mathrm{y}(\beta))=1)|<\sigma$ ,

where k is the security parameter of the protocol and $\sigma=\frac{1}{({\rm Max}(k,n))^{c}}$ .
Computation
Computations of both $DB$ and $\mathcal{U}$ are bounded above by a polynomial in the
size $N$ of the database and the security parameter $k$ .

5.2 Proposed scheme

Step 1 Suppose that & wants to obtain the ath information $m_{\alpha}$ . $\mathcal{U}$

generates the query consisting of $g_{1}$ , $g_{2},g_{3}$ , . . . , $g_{N}$ , where $g_{i}$ are elements of
$(\mathbb{Z}/(n))^{*}$ such that $g_{\alpha}\not\in U\cross$ $(\mathbb{Z}/(q))^{*}$ and $g_{i}\in U\cross$ $(\mathbb{Z}/(q))^{*}$ unless $\mathrm{i}=\alpha$

for every $i=1$ , $\ldots$ , $N$ .
Step 2 The an swer Answer(Query(a) ) is defined to be $h_{0}^{r}g_{1}^{m_{1}}g_{2}^{m_{2}}g_{3}^{m_{3}}\cdots$ $g_{N}^{m_{N}}$ ,
where $h_{0}=g_{j}^{n}(\mathrm{m}\mathrm{o}\mathrm{d}n)$ with DB’s choice of $j$ and $r$ is randomly and uni-
formly chosen from $\mathbb{Z}/(n)$ . D13 sends Answer(Query(o)) to the user.

Step 3 $\mathcal{U}$ retrieves $m_{\alpha}$ by computing $\frac{L((\mathrm{A}\mathrm{n}\mathrm{s}\mathrm{w}\mathrm{e}\mathrm{r}(\mathrm{Q}\mathrm{u}\mathrm{e}\mathrm{r}\mathrm{y}(\alpha)))^{p-1}\mathrm{m}\mathrm{o}\mathrm{d} p^{2})}{L(g_{\alpha}^{p-1}\mathrm{m}\mathrm{o}\mathrm{d} p^{2})}\mathrm{m}\mathrm{o}\mathrm{d} p$ .

Correctness We note that $(g_{j}^{m_{\mathrm{i}}})^{p-1}\equiv 1(\mathrm{m}o\mathrm{d}p^{2})$ unless $\mathrm{i}=\alpha$ and $h_{0}^{r}\equiv$

1 $(\mathrm{m}\mathrm{o}\mathrm{d}p^{2})$ . Thus we have

$\frac{L(\mathrm{A}\mathrm{n}\mathrm{s}\mathrm{w}\mathrm{e}\mathrm{r}(\mathrm{Q}\mathrm{u}\mathrm{e}\mathrm{r}\mathrm{y}(\alpha)))}{L(g_{\alpha}^{p-1})}=\frac{L(h_{0}^{r}g_{1}^{m_{1}}g_{2}^{m_{2}}g_{3}^{m_{3}}\cdots g_{N}^{m_{N}})}{L(g_{\alpha}^{p-1})}=\frac{L((g_{\alpha}^{m_{\alpha}})^{p-1})}{L(g_{\alpha}^{p-1})}=m_{\alpha}$.

Privacy The privacy is guaranteed if the subgroup membership problem
of $U\cross$ $(\mathbb{Z}/(q))^{*}$ in $(\mathbb{Z}/(n))^{*}$ is intractable. The proof is almost same as
the security proof of the PIR scheme based on the subgroup membership
problem in $[12, 13]$ and so we omit the proof.

6 Discussion

Such encryptions include ElGamal, Goldwasser-Micali, Benaloh, Okamoto-
Uchiyama and Paillier cryptosystems share many similarities, no satisfacto-
rily uniform mechanism of homomorphic encryptions has been explained so
far. It is quite interesting to study homomorphic encryptions in terms of
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group theory. Our future work is to study mechanisms, constructions and se-
mantic security of homomorphic encryptions and to construct homomorphic
encryptions on non-cyclic abelian groups.
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