Some remarks on ordered *-groupoids

島根大学総合理工学部 今岡 輝男 (Teruo Imaoka) 磯辺 剛司 (Tsuyoshi Isobe) Department of Mathematics, Shimane University Matsue, Shimane 690-8504, Japan

A non-empty set G with a partial product, a unary operation * and a partial order \leq is called an *ordered* *-groupoid if it satisfies the following axioms:

- (A1) a(bc) exists if and only if (ab)c exists, in which case they are equal.
- (A2) a(bc) exists if and only if ab and bc exist.
- (A3) $(a^*)^* = a$.
- (A4) If ab exists, then b^*a^* exists and $(ab)^* = b^*a^*$.
- (A5) For any $a \in G$, a^*a exists and a^*a is the unique projection of G such that there exists $a(a^*a)$ and $a(a^*a) = a$. We denote a^*a by d(a).
- (A6) $a \leq b$ implies $a^* \leq b^*$.
- (A7) For $a, b, c, d \in G$, if $a \leq b, c \leq d$ and there exist ac and bd, then $ac \leq bd$.
- (A8) Let $a \in G$ and $e (= e^2 = e^*)$ a projection such that $e \leq d(a)$. Then there exists a unique element (a|e), say, such that $(a|e) \leq a$ and d(a|e) = e.
- (A9) E(G) is an order ideal.

Lemma 1. [3] Let G be an ordered *-groupoid.

- (1) For any $a \in G$, aa^* exists and aa^* is the unique element of P(G), the set of all projections of G, such that there exists $(aa^*)a$ and $(aa^*)a = a$. We denote aa^* by r(a).
- (2) Let $a \in G$ and $e \in P(G)$ such that $e \leq r(a)$. Then there exists a unique element (e|a), say, such that $(e|a) \leq a$ and r(e|a) = e.

An ordered \ast -groupoid G is called a *locally inductive* \ast -groupoid if it satisfies

(LG) For any $e, f \in P(G)$, the set of projections of G, there exists the maximum element in $\langle e, f \rangle = \{(g, h) \in P(G) \times P(G) : g \leq e, h \leq f \text{ and } \exists gh\}.$

A regular *-semigroup S is called a locally inverse *-semigroup if eSe is an inverse subsemigroup of S for any projection e in S. Let S be a locally inverse *-semigroup. The representation in [4] raise us a new partial product \cdot on S, which is called a *restricted product*, as follows:

$$a \cdot b = \begin{cases} ab & ab \in R_a \cap L_b \\ \text{undefined} & \text{otherwise} \end{cases}$$

where R_a and L_a denote the \mathcal{R} -class and the \mathcal{L} -class containing a, respectively.

Lemma 2. [3] Let S be a locally inverse *-semigroup with the natural order \leq . Then $S(\cdot, *, \leq)$ is a locally inductive *-groupoid, which is denoted by $\mathbf{G}(S)$.

Conversely, let $G(\circ, *, \leq)$ be a locally inductive *-groupoid. For any $a, b \in G$, there exists the maximum element (e, f) in $\langle d(a), r(b) \rangle = \{(g, h) \in P(S) \times P(S) : g \leq d(a), h \leq r(b), \exists g \circ h\}$. We define a new product \otimes on G as follows:

$$a \otimes b = (a|e) \circ (f|b),$$

and we call it a *pseudoproduct* of a and b.

Lemma 3. [3] Let $G(\circ, *, \leq)$ be a locally inductive *-groupoid. The $G(\otimes, *)$ is a locally inverse *-semigroup, which is denoted by S(G).

Lemma 4. [3] (1) For a locally inverse *-semigroup S, we have S(G(S)) = S.

(2) For a locally inductive *-groupoid $G(\circ, *, \leq)$, we have $\mathbf{G}(\mathbf{G}(\circ, *, \leq)) = G(\circ, *, \leq)$.

Let S and T be regular *-semigroups. A mapping $\phi : S \to T$ is called a *prehomomorphism* if it satisfies that $(ab)\phi \leq (a\phi)(b\phi)$ and $(a\phi)^* = a^*\phi$ for all $a, b \in S$.

Lemma 5. [2] Let S and T be locally inverse *-semigroups and $\phi: S \to T$ a mapping.

- (1) ϕ is a prehomomorphism if and only if it preserves the restricted product and the natural order.
- (2) ϕ is a homomorphism if and only if it is a prehomomorphism which satisfies $(ef)\phi = (e\phi)(f\phi)$ for all $e, f \in E(S)$.
- (3) The product of prehomomorphisms between locally inverse *-semigroups is also a prehomomorphism.

A functor between two ordered *-groupoids is said to be *ordered* if it is order-preserving. An ordered functor between two locally inductive *-groupoids is said to be *inductive* if it preserves the pseudoproduct.

Now, we have the main result.

Theorem 6. (Compare with Theorem 4.1.8 [5]) The category of locally inverse *-semigroups and prehomomorphisms is isomorphic to the category of locally inductive *-groupoids and ordered functors. Moreover, the category of locally inverse *-semigroups and homomorphisms is isomorphic to the category of locally inductive *-groupoids and inductive functors. *Proof.* Let **G** be a function of the category of locally inverse *-semigroups and prehomomorphisms to the category of locally inductive *-groupoids and ordered functors as follows: for any locally inverse *-semigroups S, T and any prehomomorphism $\theta : S \to T$,

(1)
$$\mathbf{G}(S) = S(\cdot, *, \leq),$$

(2) $\mathbf{G}(\theta) : \mathbf{G}(S) \to \mathbf{G}(T) \ (s \mapsto \theta(s)).$

Then it follows from Lemma 2 and Lemma 5 (1) that G is a functor.

Conversely, define a function S from the category of locally inductive *-groupoids and ordered functors to the category of locally inverse *-semigroups and prehomomorphisms as follws: for any locally inductive *-groupoids G, H and any ordered functor $\theta: G \to H$,

(1)
$$\mathbf{S}(G) = G(\otimes, *),$$

(2) $\mathbf{S}(\theta) : \mathbf{S}(G) \to \mathbf{S}(H) \ (g \mapsto \theta(g)).$

By Lemma 3 and Lemma 5 (1), **S** is a functor. Moreover, it follows from Lemma 4 that $\mathbf{G}(\mathbf{S}(G)) = G$ and $\mathbf{S}(\mathbf{G}(S)) = S$. Thus we have that the category of locally inverse *-semigroups and prehomomorphisms is isomorphic to the category of locally inductive *-groupoids and ordered functors.

By Lemma 5 (2), we can easily obtain the second statement.

References

- Imaoka, T., Prehomomorphisms on regular *-semigroups, Mem. Fc. Sci. Shimane Univ. 15 (1981), 23-27.
- [2] Imaoka, T., Prehomomorphisms on locally inverse *-semigroups, in: Words, Semigroups and transductions, edited by M. Ito, G. Paun and S. Yu, world Scientific, Singapore, 2001, 203-210.
- [3] Imaoka, T. and K. Fujiwara, *Characterization of locally inverse *-semigroups*, Sci. Math. Japon., to appear.
- [4] Imaoka, T. and M. Katsura, Representations of locally inverse *-semigroups II, Semigroup Forum 55 (1997), 247-255.
- [5] Lawson, M. V., Inverse semigroups, World Scientific, Singapre, 1998.