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I. INTRODUCTION

Let Rng denote the category of rings with identity and let Mon denote the

category of monoids. Let $\mathrm{Z}$ denote the ring of rational integers and define a functor

$F$ : Mon $arrow$ Rng by $F(M)=\mathrm{Z}[M]$ , the integral monoid ring of $M$ . Then $F$ is

a left adjoint functor of the forgetful functor $U$ : Rng $arrow$ Mon. We consider the

functor $FU$ : Rng $arrow$ Rng and we study which properties of rings are preserved

by the functor $FU$ .

2. EXAMPLES

Let $\mathrm{Z}$ denote the ring of rational integers and let $\mathrm{Q}$ denote the field of ratio-

nal numbers. Let $(R, \cdot, +)$ be a ring and consider the monoid rings $\mathrm{Z}[(R, \cdot)]$ and
$\mathrm{Q}[(\mathrm{i}\mathrm{t}, \cdot)]$ . We briefly denote these rings by $\mathrm{Z}[R]$ and $\mathrm{Q}[R1\lrcorner$ . In this section we con-

sider some examples.

Example 1 Consider the polynomial ring $GF(3)[x]$ over the Galois field $GF(3)$

of three elements. We can easily see the monoid $(GF(3)[x], \cdot)$ is isomorphic to the

monoid $(\mathrm{Z}$ , $\cdot$ $)$ . Hence $\mathrm{Z}[(GF(3)[x]]$ is isomorphic to $\mathrm{Z}[\mathrm{Z}]$ .

The monoid ring $\mathrm{Z}[R]$ of a ring $R$ is determined by the monoid structure of the

ring $R$ . So we consider some properties of rings which depend only on the monoid

structure of rings and we ask whether those properties are perserved by the the

functor $FU$ : Rng $arrow$ Rng or not. More generally we can consider the following

problem.
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Problem. Let P be some property on (monoids of) rings. If a ring R has
property P, then what can be said about the structure of $\mathrm{Z}[R]$ and $\mathrm{Q}[R]$ ?

A ring $R$ is said to be prime if $aRb\neq 0$ for all nonzero $a$ , $b\in R$ . The following

example shows that primeness does not preserved by the functor $FU$ .

Example 2 Let $\mathrm{Q}$ denote the field of rational numbers. Then we can easily see
that $\mathrm{Q}$ &z $\mathrm{Z}[(GF(3)]\cong \mathrm{Q}[(GF(3)]$ is isomorphic to $\mathrm{Q}\oplus \mathrm{Q}\oplus$ Q.

A ring $R$ is called a von Neumann regular ring if for each $a\in R$ there exists
$x\in R$ such that $a=axa$ . The following example shows that the von Neumann
regularity does not preserved by the functor Rng $arrow$ Rng; $Rarrow \mathrm{Q}[R]$ .

Example 3 Let $D$ be a division ring. Then $\mathrm{Q}[D]$ is isomorphic to $\mathrm{Q}\oplus \mathrm{Q}[D$
’

$]$ .
It is well-known that, for a group $G$ , the group ring $\mathrm{Q}[G]$ is von Neumann regular
if and only if $G$ is locally finite. Hence $\mathrm{Q}[D^{*}]$ is von Neumann regular if and only
if $D$ is an algebraic extension of a finite field.

When $R$ is a noncommutative ring, it is not easy to see the structure of the ring
$\mathrm{Z}[R]$ .

Example 4 Let M2 $(\mathrm{G}\mathrm{F}\{2))$ denote the ring of $2\mathrm{x}2$ matrices over the field $GF(2)$ .

Then we can prove that $\mathrm{Z}[M_{2}(GF(2))]$ is a semiprime ring. In fact we can see that
$\mathrm{Q}[M_{2}(GF(2))]$ is isomorphic to the semisimple Artinian ring $\mathrm{Q}\oplus \mathrm{Q}\oplus \mathrm{Q}\oplus M_{2}(\mathrm{Q})\oplus$

$M_{3}(\mathrm{Q})$ .

Example 5 Let $T_{2}(GF(2))$ denote the ring of 2 $\mathrm{x}$ $2$ upper triangular matrices
over the field $GF(2)$ . Then we can see that $\mathrm{Q}[T_{2}(GF(2))]$ is isomorphic to the ring
$\mathrm{Q}\oplus \mathrm{Q}\oplus T_{3}(\mathrm{Q})$ .

Conjecture 1. Let K be a finite field and consider the ring $Mn(K)$ of nx $n$

matrices over K. Then $\mathrm{Q}[M_{n}(K)]$ is a semisimple Artinian ring.

3. STRUCTURE OF $\mathrm{Z}[R]$

Let $R$ be a ring. Then every element of the monoid ring $\mathrm{Z}[R]$ can be written
as a finite sum of the form $\sum_{r\in R}a_{r}\hat{r}$ there $a_{r}\in$ Z. In this section we consider
general structure of $\mathrm{Z}[R]$ .
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Proposition 1. Let R be a ring and let I be an ideal of R.

(1) Let A denote the ideal of $Z[R]$ generated by $\{r\mp s-\hat{r}-s\mathrm{A} |r, s\in R\}$ . Then

$Z[R]/A\underline{\simeq}R$ .
(2) Let $B$ denote the ideal of $Z[R]$ generated by $\{\hat{r}-\hat{s}|r-s\in I\}$ . Then

$Z[R]/B\cong Z[R/I]$ .

Consider the following condition on a ring $R$ :

(’) For any $x$ , $y\in R$ , $xy=1$ implies yx $=1$ .

If $R$ is a left (or right) Noetherian ring; $R$ satisfies condition (’).

Proposition 2. Let $R$ be a ring with condition $(^{*})$ and let $R$’ denote the group of
units in R. Let $C$ denote the ideal of $Z[R]$ generated by $\{\hat{r}|r\in R-R^{*}\}$ . Then

$Z[R]/C\cong Z[R^{*}]$ .

4. SEM IPRIMENESS

In this section we consider the semiprimeness of $\mathrm{Z}[R]$ .

Assume that a ring $R$ has a nonzero ideal I with $I^{2}=0$ . Let $\overline{I}$ denote the ideal

of $\mathrm{Z}[R]$ generated by $\{\hat{r}-\hat{0}|r\in I\}$ . Then we can easily see that $\overline{I}^{2}=0$ . Therefore

we have the following.

Proposition 3. Let R be a ring. If $\mathrm{Z}[R]$ is semiprime then R is semiprime.

A commutative ring $R$ is semiprime if and only if it has no nonzero nilpotent

elements.

Theorem 1. Let R be a commutative ring. Then $\mathrm{Z}[R]$ is semiprime if and only if
R is semiprime.

Corollary 1. Let S be a subsemigroup of a commutative semiprime ring R. Then

the integral monoid ring $\mathrm{Z}[S]$ is semiprime.

Proposition 4. Let R be a PI domain. Then $\mathrm{Z}[R]$ is a semiprime ring.

Conjecture 2. Let R be a ring. Then $\mathrm{Z}[R]$ is semiprime if and only if R is

semiprime.


