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PERSPECTIVES OF ALGEBRAIC GAME THEORY
(AN INFORMAL REPORT)
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1. GAMES AND MATHEMATICS

Up to the present, we have several mathematical theories on games. Below we
list some of them in chronological order of birth:

(i) “Probability Theory” originated by P. de Fermat and B. Pascal in the 17th
century, a theory of gambling having applications to statistical physics,
finance and pure mathematics (e.g. number th eory) ,

(ii) “Game Theory” originated by J. von Neumann and O. Morgenstern in
1944 ( “Theory of Games and Economic Behavior” ), a th eory of equilibrium
(such as Nash equilibrium) in a game-like situation among (more than two)
players, having applications to economics and evolutional biology,

(iii) “Combinatorial Game Theory” originated by J. H. Conway in 1976 ( Games
and Numbers” [5] $)$ , a theory of 2-person games with “no chance moves” hav-
ing applications to the analysis of end-games of Go and chess, code theory
and to pure mathematics (surreal numbers).

To this honorable list, we dare to add another one:

(iv) “Algebraic Game Theory” which is a theory of algorithms $=\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}$

algorithms $=$ impartial two-person games with representation-theoretic
flavour.

Each of $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ (and perhaps (iv)) is not merely an application of mathemathics
to games, but an application of (the notion of) games to mathematics.

2. A GAME AS AN ABSTRACT ALGEBRAIC SYSTEM

2.1. $(P, \varphi)$ : a $game\Leftrightarrow P$ : a non-empty set, $\varphi:Parrow 2^{P}$

$\not\in$ infinite sequence $Po,P1,P2,p3$ , $\ldots$ , $p_{i}\in P$

satisfying $pi\in\varphi(p_{i-1})$ , $\mathrm{i}=1,2,3$ , $\ldots$

$(P, \varphi)$ : a finitary game $\Leftarrow\neq$ a game such that $|\varphi(p)|<\infty$ for any $p\in P$

$p(\in P)$ : an ending position $\subset\neq\varphi(p)=\emptyset$

A game is a non-deterministic discrete dynamical system which comes to an end
after a finite number of steps. A game can also be considered as an algebraic system
with a non-deterministic unary operation $\varphi$ .
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2.2. A game models:
(I) a one-person game $=$ an algorithm,

(ii) a probabilistic one-person game $=$ a probabilistic algorithm, after assigning
a suitable probabilistic measure on each set $\varphi(p)$ , $p\in P$ ,

(iii) a two-person $(” \mathrm{i}\mathrm{m}\mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{a}\mathrm{l}" [5])$ game, in which a player who reaches an
ending position wins.

2.3. Let $(P, \varphi)$ , $(Q, \psi)$ be games. A map $f$ : $Parrow Q$ lifts to $\overline{f}$ : $2^{P}arrow 2^{Q}$ .
$f$ : $Parrow Q$ is a homomorphism $\prec\Rightarrow\tilde{f}(\varphi(p))\subset\psi(f(p))$ for any $p\in P$

$f$ : $Parrow Q$ is a full homomorphism $\Leftrightarrow\tilde{f}(\varphi(p))=\psi(f(p))$ for any $p\in P$

$f$ : $Parrow Q$ is an isomomorphism $\Leftrightarrow f$ is a bijective full homomorphism

2.4. Let $(P, \varphi)$ be a game, and $\emptyset\neq Q\subset P$ . Let $\varphi Q$ : $Qarrow 2^{Q}$ be defined by

$\varphi_{Q}(q)=\varphi(q)\cap Q$ , $(q\in Q)$ .

Then $(Q, \varphi_{Q})$ is a game, and is called a subgame of $(P, \varphi)$ . If $\varphi(q)\subset Q$ for any
$q\in Q$ , then $\varphi Q=\varphi|_{Q}$ , and $(Q, \varphi Q)$ is called a full subgame of $($?, $\varphi)$ . Since the
intersection of full subgames is again a full subgame if it is non-empty, we have the
notion of the full sugame $\langle A\rangle$ of $P$ generated by a non-empty subset $A\subset P$ .

2.5. Let $\varphi:Parrow 2^{P}$ . For $\mathrm{i}\in \mathrm{Z}$ , we define $\varphi^{\mathrm{i}}$ : $Parrow 2^{P}$ by:

$\varphi^{0}(p)=\{p\}$ , $\varphi^{i}(p)=\varphi(\varphi^{i-1}(p)(\mathrm{i}\geq 1)_{7}$

$\varphi^{-1}(p)=\{q\in P|p\in\varphi(q)\}$ , $\varphi^{-i}=(\varphi^{-1})^{i}(\mathrm{i}\geq 2)$ .

2.6. Back to the situation in 2.4, we have

$\langle A\rangle=\mathrm{U}i=0\infty\varphi^{i}(A)$ ,

for any non-empty subset $A$ of $P$ .
The set $P$ has the structure of a partially ordered set defined by

$q\leq p\Leftrightarrow q\in\langle p\rangle\Leftarrow>\langle q\rangle\subset\langle p\rangle$.

2.7. Let $(P, \varphi)$ and $(Q, \psi)$ be games. We put

$P+Q=\{(p, q)|p\in P, q\in Q\}$ .

We also put
$(\varphi+\psi)(p, q)=(\varphi(p), q)\cup(p, \psi(q))$ ,

where
$(\varphi(p), q)=\{(p’, q)|p’\in\varphi(p)\}$

and
$(p, \psi(q))=\{(p, q’)|q’\in\psi(q)\}$ .

Then$\mathrm{n}(P+Q, \varphi+\psi)$ is a game, and is called the sum $(P, \varphi)+(Q, \psi)$ of the games
$(P, \varphi)$ and $(Q, \psi)$ . (This notion is classical; see e.g. [1, p. 23],[5, p. 78].
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2.8. Let $(P, \varphi)$ be a game. For $p$ , $q,p0$ , $P1$ , $\ldots$ , $p_{n}\in P$ ,
$(q, p)$ : a transition $q\in\varphi(p)$

$(q,p)$ : a simple $\mathrm{t}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\Leftrightarrow$ a transition such that

$\varphi(p)\cap\varphi^{-k}(q)=\emptyset$ for any $k=1,2,3$ , ...
$(p_{0},p_{1}, \ldots ,p_{n})$ : a (simple) $path<\Rightarrow$ $\varphi(p_{0})=\emptyset$ , $(p_{i},p_{i+1})$ : a (simple) transition

If $(P, \varphi)$ is finitary, then any path has a (not necessarily unique) “simple refine-
ment”.

If $(P, \varphi)$ is finitary, then its simplification $(P, \varphi_{simp})$ is a game defined by

$\varphi_{s\mathrm{i}mp}(p)=$ { $q\in\varphi(p)|(q,p)$ simple }.

2.9. Let $(P, \varphi)$ be a finitary game.
$(P, \varphi)$ : a ranked game $\Leftarrow\Rightarrow$ Er : $Parrow \mathrm{N}_{0}=\{0,1,2, \ldots\}$ such that, for $p\in P$

$r(p)=n$ if $\exists$ a simple path $(p_{0},p_{1}, \ldots,p_{n}=p)$ of length $n$

For a ranked game, we are interested in knowing the number of simple paths
($\mathrm{p}\mathrm{o}$ ,Pi, $\ldots$ , $p_{n}=p$) for each $p\in P$ .

2.10. Let $(P, \varphi)$ be a game.
$(P, \varphi)$ : a triangular $\mathrm{g}\mathrm{a}\mathrm{m}\mathrm{e}\Leftrightarrow\varphi(p)$ fi $\varphi^{-- 1}(q)\neq\emptyset$ if $(q, p)$ : non-simple transition

2.11. Let $(P, \varphi)$ be a finitary triangular game.
Then one can naturally construct a probabilistic version $(P, \varphi_{simp})_{prob}$ of the sim-
plification $(P, \varphi_{s\mathrm{i}mp})$ of $(P, \varphi)$ .
For that purpose we need to define a probabilistic measure on each $\varphi_{simp}(p)(p\in P)$

whenever $\varphi_{simp}(p)\neq\emptyset$ . This is done as follows using an auxiliary game.
Assume

$\varphi_{simp}(p)\neq\emptyset(\Leftrightarrow\varphi(p)\neq\emptyset)$ .
The purpose of this game is to select an element $q\in\varphi_{s\iota mp}(p)$ .

(1) Select $q_{1}\in\varphi(p)$ with uniform probability $\frac{1}{|\varphi(p)|}$ .
(2) If ( $q_{1}$ , p) is simple, then we put $q=q_{1}$ . The game is over.
(3) If $(q_{1},p)$ is not simple, then by the triangularity condition, we have

$\varphi(p)\cap\varphi^{-1}(q_{1})\neq\emptyset$ .

(4)
(5)

(6) $\ldots$

(7) Finally one selects an element $q_{n}\in P$ such that $(q_{n},p)$ is a simple transition.
We put $q=q_{n}$ . The game is over.

Note that the game $(P, \varphi_{simp})_{prob}$ can be considered as a probanilistic machine
selecting a simple path in $(P, \varphi)$ . We are interested in knowing the probability in
which the machine selects a given simple path.

2.12. A finitary ranked triangular game is particulary interesting. This class of
games is closed under the addition defined in 2.7



106

NORIAKI KAWANAKA

2.13. We define an addition $\oplus$ in No, which is called the $N\mathrm{i}m$ addition by game
theorists, and the $xor$ (exclusive-or) addition by computer scientists. We understand
that the set $\mathrm{N}_{0}$ is well-ordered in the usual (and canonical) way. For $a$ , $b\in \mathrm{N}0$ , we
define $a\oplus b$ recursively by

$a\oplus b$ $= \min[\mathrm{N}_{0}\backslash \{a’\oplus b, a\oplus b’|a’, b’\in \mathrm{N}_{0}, a’<a, b’<b\}]$ .

Then $(\mathrm{N}_{0}, \oplus)$ is an additive group.
A more practical (rather than aesthetic) definition of $\oplus$ is as follows. (In fact, this
latter definition is also of theoretical importance, because it enables us to extend
the addition $\oplus$ to Z.) We shall write the binary expression of an element $a$ of $\mathrm{Z}$ as

(2.1) $a=[a_{i}]=[ai]_{i\in \mathrm{N}_{0}}=[\ldots, a_{i}, \ldots, a_{3}, a_{2},a_{1}, a_{0}]$ .

For example,
$11=1+2+0+2^{3}+0+\cdots=[\cdots 00001011]$ ,

$-1=1+2+2^{2}+2^{3}+2^{4}+\cdots=[\cdots 11111111]$ ,

$-2=0+2+2^{2}+2^{3}+2^{4}+\cdots=[\cdots 11111110]$ .

For $a=[a_{i}]$ , $b=[b_{i}]$ , and $c=[c_{\mathrm{i}}]$ in $\mathrm{Z}$ , we write
$a\oplus b$ $=c$

if
$a_{l}+b_{\mathrm{t}}\equiv c_{i}$ $(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ , $\mathrm{i}\in \mathrm{N}_{0}$ .

2.14. Let $(P, \varphi)$ be a finitary game. The Sprague-Grundy function $F_{P}$ : $Parrow \mathrm{N}_{\mathrm{o}}$

is recursively defined by
$F_{P}(p)= \min[\mathrm{N}_{0}\backslash \{SG(q)|q\in\varphi(p)\}]$, $p\in P$.

As is well-known, in the two-person version of the full subgame $\langle p\rangle$ generated by
$p\in P$ , the first (resp. second) player has a winning strategy if and only if $F_{P}(p)\neq 0$

(resp. $F_{P}(p)=0$). Moreover, in the situation of 2.7, the Sprague-Grundy function
$F_{P+Q}$ of $P+Q$ is given by

$F_{P+Q}(p, q)=F_{P}(p)\oplus F_{Q}(q)$ , $p\in P$, $q\in Q$ .
(This is a classical theorem due to R. P. Sprague and P. M. Grundy. See $[1],[5].$ )
A full homomorphism between finitary games preserves Sprague-Grundy functions.

2.15. Let $(P, \varphi)$ be a game such that $P$ is a finite set. Extend $P$ to $\tilde{P}=\{a\}\mathrm{I}\mathrm{I}P$

by adding a new position $a$ . Extend $\varphi$ to $\tilde{\varphi}:\tilde{P}arrow 2^{\tilde{P}}$ by putting $\tilde{\varphi}(a)=P$ . Then
$(\overline{P}$ , ; $)$ is a finitary game. Hence we can extend the Sprague-Grundy function $F_{P}$ of
$(P, \varphi)$ to the one $F_{\tilde{P}}$ of $(\tilde{P},\tilde{\varphi})$ . In that case we denote the value $F_{\tilde{P}}(a)$ by $F_{P}(P)$

and call it the opening value of $F_{P}$ .
2.16. Let $(P, \varphi)$ be a finitary game. Assume that there exists a function $E:Parrow$
$\mathrm{N}_{0}$ satisfying

$\sum_{q\in\varphi(p)}(t|E(q))\oplus=t\oplus(t-E(p))$ , $p\in P$,

and
$E(q)\neq E(p)$ , $q\in\varphi(p)$ .

where $t$ is a variable taking values in $\mathrm{Z}$ , and
$(a|b)=a\oplus b\oplus(a\oplus b-1)$ , $a$ , $b\in \mathrm{Z}$ .
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If such a function $E$ exists, then it coincides with the Sprague-Grundy function of
$(P, \varphi)$ . We call $E$ the energy function of $(P, \varphi)$ . In the situation of 2.15, if the
energy function $E$ of $(P, \varphi)$ can be extended to the one $\tilde{E}$ of $(\tilde{P},\tilde{\varphi})$ , we denote the
value $\tilde{E}(a)$ by $E(P)$ , and call it the opening value of $E$ .
The significance of the energy function lies in the empirical fact that in many known
cases, the energy function, if it exists, can be written down in an explicit formula.
The class of games with energy functions is closed under the addition given in 2.7.

3. EXAMPLES OF GAME$\mathrm{S}$

3.1. Let $Y$ be a (Young or Ferrers) diagram of a partition, and $q$ a natural number.
We call a hook at a node (or a ‘box’) belonging to $Y$ a $q$-hook if its length is a
multiple of $q$ . Nakayama ’s $q$ -hook game is a one-person game in which the player
removes $q$-hooks from a given diagram $Y$ successively as far as possible so as to
obtain finally a diagram possessing no $q$-hook. In the terminology of Section 2, this
game can be described as a pair $(P, \varphi_{q})$ such that

$P=$ the set of diagrams $Y$ of partitions ,

and
$\varphi_{q}(Y)=$ the set of diagrams obtained from $\mathrm{Y}$ by removing a $q$ hook .

Let $Y\in P$ . By a well-known theorem due to T. Nakayama and G. de Robinson (see
e.g. [12, pp. 75-87] $)$ , the full subgame $\langle Y\rangle_{q}$ of $(P, \varphi_{q})$ has the following remarkable
properties :

(i) The ending position $Z$ is uniquely determined by the opening position $Y$ .
(The diagram $Z$ is called the $q$-core of $Y.$ )

(ii) The game $\langle Y\rangle_{q}$ is isomorphic to a sum $\langle W_{1}\rangle_{1}+\langle W_{2}\rangle_{1}+\cdots+\langle W_{q-1}\rangle_{1}$ of
1-hook games whose opening positions are determined by a series

$\mathcal{W}=\{W_{0)}W_{1}$ , . .. , $W_{q-1}\}$

of diagrams, some of which may be empty. (The series $\mathcal{W}$ is called the
$q$-quotient of Y. )

(iii) The diagram $Y$ is uniquely recovered by its $q$-core $Z$ and $q$-quotient $\mathcal{W}$ .

It is also known [13],[16] that an analogous one-person game exists for the shifted
Young diagram $\mathrm{s}$ .
3,2. Nakayama’s 1-hook game $\langle Y\rangle_{1}$ , and hence Nakayama’s $q$ hook game $\langle Y\rangle_{q}$

also, is a finitary ranked triangular game (see 2.1, 2.9 and 2.10). Hence we can
consider the probabilistic version of the simplification of $\langle Y\rangle_{1}$ . Then it can be

shown that the resulting game is isomorphic (as probabilistic games) to the game
invented by C. Greene, A. Nijenhuis and H. S. Wilf [10]. In the terminology of

Section 2, the main result of [10] can be restated as follows:
The probabilistic version of the simplification of $\langle Y\rangle_{1}$ selects a simple path of $\langle Y\rangle_{1}$

(connecting $\emptyset$ and Y) uniform randomly with the probability

$\frac{\prod_{X\in\varphi_{1}(Y)}(|\varphi_{1}(Y)\cap\varphi_{1}^{-1}(X)|+1)}{|\varphi_{1}(Y)|!}$ .

Hence the number of simple paths in ( $Y\rangle_{1}$ is equal to

$\underline{|\varphi_{1}(Y)|!}$
$\prod_{X\in\varphi_{1}(Y)}(|\varphi_{1}(Y)\cap\varphi_{1}^{-1}(X)|+1\rangle$

’
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which is equivalent to the famous hook formula (see e.g. [12]) for the number of
standard tableaux on $Y$ .

3.3. According to [20], the two-person version of Nakayama’s 1-hook game $\langle Y\rangle_{1}$

was invented and analyzed by M. Sato around 1950. His beautiful result with full
proof first appeared in 1970 in an informal Japanese journal [21] published by a
math-student circle. Sato [19] formulated the game in another way, using physical
metaphors such as “fermion” and “energy level”. In this second formulation, the
game is essentially the same as the one generally known as Welter’s game, because
C. P. Welter [26] gave a complete analysis of it in 1954. See also [5]. Sato [19] [21]
formulated his main result in two different ways. In its second formulation, the
result is essentially equivalent to that of Welter [26], though their proofs are quite
different. In its first formulation, the result was stated in terms of hooks of a Young
diagram $Y$ . In the prsent paper, considering the importance of Sato’s point of view
(i.e. the connection with Young diagrams), we decide to call the two-person game
$\langle Y\rangle_{1}$ the Sato-Welter game. In the terminology of Section 2, Sato’s result (in its
first formulation) can be restated as follows:
The game $\langle Y\rangle_{1}$ has the energy function $E(Y)$ given by

$E(Y)= \sum_{X\in\varphi_{1}(Y)}(E(\varphi_{1}(Y)\cap\varphi_{1}^{-1}(X))+1|0)\oplus$
,

where $(a|\mathrm{O})=a\oplus(a$ - 1 $)$ as in 2.16, and $E(\varphi_{1}(Y)\cap\varphi_{1}^{-1}(X))$ is the opening value
of the energy function of the subgame $\varphi_{1}(Y)$ fi $\varphi_{1}^{-1}(X)$ of $\langle Y\rangle_{1}$ .
The close similarity with the result in 3.2 is truely striking, as Sato himself remarked
in [22].

3.4. We can also consider probabilistic version and two-person version of Nakayama’s
$q$-hook game. But by virtue of Nakayama-Robinson Theorem stated in 3.1, the
analysis of such games can easily be reduced to the case of 1-hook game.

4. CONSTRUCTING GAMES

4.1. Let $(W, S, T, P,p_{*})$ be a quintet consisting of:
(i) a group $W$ ,

(ii) a set $S=\{s_{i}|\mathrm{i}\in I\}$ of generators of $W$ ,
(iii) a subset $T$ of $W$ ,
(iv) a set $P$ on which $W$ acts transitively, and
(v) an element $p_{*}$ of P.

For $p$ , $q\in P$ , let $d(p, q)$ be the distance betw een $p\in P$ and $q$ defined by
$d(p, q)=0$ , $d(p, q)= \min\{l|p--s_{\mathrm{i}_{t}}\cdots s_{i_{2}}s_{i_{1}}q\}$ , $p\neq q$ .

We also define a mapping
$\Phi_{T}$ : $Parrow 2^{P}$

by
$\Phi_{T}(p)=\{tp |t\in T, d(tp,p_{*})<d(p,p_{*})\}$ .

Then $(P, \Phi_{T})$ is a game, which we write $\mathcal{G}(W, S, T, P,p_{*})$ . Let $(W’, S’, T’, P’,p_{*}’)$

be another such quintet. The following proposition is obvious.

Proposition 1. We have
$\mathcal{G}$ ( $W$, S. $T$, $P$, $p_{*}$ ) $+\mathcal{G}(W’,S’, T_{7}’P’,p_{*}’)\cong \mathcal{G}(W\mathrm{x} W’, S\mathrm{U} S’,T\mathrm{I}\mathrm{J} T^{l}, P\cross P’,p\mathrm{x} p_{*}’)$.
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Note that the traditional game addition (defined in 2.7) naturally enters into our
picture.

4.2. Basic references for this subsection are [3] and [11]. A Coxeter system $(W, S)$

is a pair of a group $W$ and a set $S=\{s_{\iota}|\mathrm{i}\in I\}$ of generators of $W$ subject to the
defining relations:

(4.1) $(s_{i}s_{j})^{m(i,j)}=1$ , $i,j\in I$ ,

where $m(\mathrm{i}, \mathrm{i})=1$ , and $2\leq m(\mathrm{i}, j)=m(j, \mathrm{i})\leq\infty$ for $\mathrm{i}\neq j$ . If $m(\mathrm{i},j.)=$ oo for
some $(\mathrm{i}, j)$ , then we understand the corresponding relation in (4.1) is vacant. We
assume, for simplicity, $S$ is finite. An element of $S$ is called a simple reflection, and
an element of the set

$T=$ $\{wsw^{-1}|s\in S_{7}w\in W\}$

is called a reflection. A subgroup $W_{J}$ of $W$ generated by a subset $J$ of $S$ is called
a standard parabolic subgroup. A Coxeter system $(W, S)$ is reducibl\^e if there exists
a partition

(4.2) $S=J’$ II $J’$ , $J’$ , $J’\neq\emptyset$ ,

such that

(4.3) $s’s’=s’s’$ , $s’\in J’$ , $s’\in J’$ .

Then we cleary have

(4.4) $W=W_{J’}\cross$ $W_{J’}$ ,

and

(4.3) $T=(T\cap W_{J’})$ II $(T\cap W_{J^{JJ}})$ .

For any $w\in W$ , there exists a sequence

(4.6) $(s_{i_{1}}, s_{i_{2}\prime}\ldots, s_{i}, )$

of elements of $S$ such that

(4.7) $w=s_{i_{1}}s_{i_{2}}\cdots s_{i_{f}}$ .

If a sequence (4.6) is chosen so that 1 is as small as possible, then (4.7) is called
a reduced expression of $w$ , and $l=l(w)$ the length of $w$ . (For the identity element
$e$ , we define its length by $l(e)=0.)$ Let $V$ be a real vector space with basis
II $=\{\alpha_{i}|i\in I\}$ . We define a symmetric bilinear form $(, )$ on $V$ by

$( \alpha_{i}, \alpha_{j})=-\cos\frac{\pi}{m(\mathrm{i},j)}$ , $\mathrm{i},j$ $\in I$ .

Then $W$ can be identified with the subgroup of $GL(V)$ generated by the elem ents
$s_{i}(\mathrm{i}\in I)$ of $GL(V)$ defined by

(4.8) $s_{i}v=v-2(\alpha_{i},v)\alpha_{i}$ , $v\in V$.

The bilinear form $(, )$ is invariant under the action of $W$ . We put
$\Sigma=W\mathrm{I}\mathrm{I}$ $=\{w\alpha_{i}|w\in W, \mathrm{i}\in I\}$ .

Let
$V^{+}= \{v\in V|v=\sum_{i}c_{i}\alpha_{i}, c_{i}\geq 0\}$

.

For $\alpha,$ $\beta\in V$ , we writ
$\alpha$ $\geq\beta$
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if $\alpha-\beta\in V^{+}$ . Then we have
$\Sigma$

$=\Sigma^{+}\mathrm{I}\mathrm{I}$ $\Sigma^{-}$ ,

where
$\Sigma^{+}=\{\alpha\in \mathrm{I}|\alpha>0\}$ and $\Sigma^{-}=-\Sigma^{+}$ .

An element of ) (resp. $\Pi$ , resp. $\Sigma^{+}$ ) is called a root (resp. simple root, resp.

positive root) of the Coxeter system $(W, S)$ . For $w\in W$ , we put

$\Sigma^{+}(w)=\Sigma^{+}\cap w^{-1}(\Sigma^{-})$ .

If $w=s_{i_{1}}s_{i_{2}}\cdots$ Sit is reduced, then $\Sigma^{+}(w)$ consists of the following $l$ distinct roots:

(4.9) $s_{i\prime}s_{i_{1-1}}\cdots$ $s_{i_{k+1}}\alpha_{i_{k}}$ , $1\leq k\leq l$ .

Conversely, an element $w\in W$ is uniquely determined by $\Sigma^{+}(w)$ . For $\alpha\in\Sigma^{+}$ , we
define $t_{\alpha}\in GL(V)$ by

$t_{\alpha}(v)=v-2(\alpha, v)\alpha$ , $v\in V$.

Then
$f_{\alpha}=ws_{\zeta X\mathrm{i}}w^{-1}$ if $\alpha=w\alpha_{\mathrm{i}}$ .

The correspondence $\alpha\mapsto t_{\alpha}$ gives a bijection from $\Sigma^{+}$ to $T$ . For $w\in W$ , we
consider

$N(w)=\{t\in T|l(wt)<l(w)\}$ .
Then we have

$N(w)$ $=$ { $t_{\alpha}|$ ct $\in\Sigma^{+}(w)$ }.
Hence

$l(w)=|N(w)|$ , $w\in W$.

4.3. We keep notation in the previous subsection. A subgroup of $W$ generated by
a subset of $T$ is called a reflection subgroup. Let $W_{1}$ be a reflection subgroup of $W$ .
We put

(4.10) $S_{1}=$ $\{t \in T|N(t)\cap W_{1}= \{?\}\}$ .

Then, by Dyer [8] (see also Deodhar [7]), $(W_{1}, S_{1})$ is a Coxeter system We call $S_{1}$

the canonical set of Coxeter generators of $W_{1}$ . It is also known [8] that $T_{1}=T\cap W_{1}$

is the set of reflections of $(W_{1}, S_{1})$ . Let

$\Sigma_{1}^{+}=\{\alpha\in\Sigma^{+}|t_{\alpha}\in T_{1}\}$ , $\Sigma_{1}=\Sigma_{1}^{+}\mathrm{I}\mathrm{I}(-\Sigma_{1}^{+})$ , $\Pi_{1}=\{\alpha\in\Sigma^{+}|t_{\alpha}\in S_{1}\}$ .

These are the set of positive roots, roots and simple roots of $(W_{1}, S_{1})$ , respectively.
We put

$D_{W_{1}}=\{w\in W|N(w)\cap W_{1}=\emptyset\}$ .

Proposition 2 (Dyer [8]), Let $W_{1}$ be a reflection subgroup of $W$ , and $T_{1}=T\cap W_{1}$ .
We hcvve:

(i) Let $w\in W$ . Then coset $wW_{1}$ contains a unique element $y\in D_{W_{1}}$ .
(ii) Let $y\in D_{W_{1}}$ . Then $y$ is a unique element of minimal length in the coset

$yW_{1}$ .

The following two results are also due to M. Dyer and given in Appendix A of
[23]
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Proposition 3 (Dyer). Let $J\subset S$ . Let $W_{1}$ be a reflection subgroup of W. and
$S_{1}$ the canonical set of Coxeter generators of $W_{1}$ . ij $y\in Dw_{1}t$ then $y^{-1}W_{J}y\cap W_{1}$

is generated by $y^{-1}W_{J}y\cap S_{1}$ , In particular, it is a standard parabolic subgroup of
$(W_{1}, S_{1})$ .

Proposition 4 (Dyer). Let $J\subset S$ and $W_{1}$ a reflection subgroup of W. We have:
(i) Every ut $\in W$ can be factored uniquely in the form:

$w=xyz$ ,

where $y\in D_{W_{J}}^{-1}\cap D_{W_{1}}$ , $x\in W_{J}\cap D_{W_{J}\cap yW_{1}y^{-1}}$ and $z\in W_{1}$ .
(ii) Let $y\in D_{W_{J}}^{-1}\cap D_{W_{1}}$ . Then $y$ is a unique element of minimal length in the

double coset $W_{J}yW_{1}$ .
4.4. We still keep notation in 4.2 and 4.3. Let $J\subset S$ . Let

$S\backslash J=\{s_{01}, s_{02}, \ldots, s_{0p}\}$ $(p=|S\backslash J|)$ .

We extend the Coxeter system $(W, S)$ to $(W_{*}, S_{*})$ by adding a new element $S_{*}=s_{*J}$

to $S$ (hence, $S_{*}=S\mathrm{I}\mathrm{I}\{s_{*}\}$), and adding new relations:

(4.11) $(s_{*}s_{0k})^{m(k\rangle}=1$ , $s_{0k}\in S\backslash J$

and

(4.12) $(s_{*}s)^{2}=1$ , $s\in J$

to (4.1), where $m(k)\geq 3$ . (The exact values of $m(k)$ are irrelevant for us.) The set
$\Pi_{*}$ of simple roots of $(W_{*}, S_{*})$ is given by

$\Pi_{*}=$ II II $\{\alpha_{*}\}$

where $\alpha_{*}=\alpha_{*J}$ is the simple root corresponding to $s_{*}$ . The set of roots (resp.
positive roots) of $(W_{*}, S_{*})$ is denoted by $\Sigma_{*}$ (resp. $\Sigma_{*}^{+}$ ). For each $1\leq k\leq p$ , let
$\alpha_{0k}\in$ II be the simple root corresponding to $s_{0k}$ . Then, by (4.11) and (4.12), we
have

(4.13) $(\alpha_{*}, \alpha_{0k})$ $=- \cos\frac{\pi}{m(k)}\leq-\frac{1}{2}7$ $1\leq k\leq p$ ,

and

(4.14) $(\alpha_{*}, \alpha)=0$ , a6 $\Pi\backslash \{\alpha_{01}, \ldots, \alpha_{0p}\}$ .
A sequence $(s_{i_{1}}, s_{i_{2}}, \ldots, s_{i},)$ of elements of $S$ , or an expression ut $=s_{\mathrm{i}_{1}}$ $s_{i_{\mathit{2}}}\cdots$

$s_{\mathrm{i}_{l}}\in W$

is said to be increasing (resp. weakly increasing), if

$\alpha_{*}<s_{i_{\mathit{1}}}\alpha_{*}<s_{i_{2}}s_{i_{1}}\alpha_{*}<$ . . . $<s_{i_{t}}$ . . .
$s_{\mathrm{i}_{2}}s_{i_{1}}\alpha_{*}$

(resp. $\alpha_{*}\leq s_{i_{1}}\alpha_{*}\leq si_{2}si_{1}\alpha_{*}\leq\cdots\leq s_{i_{l}}\cdots$ $s_{i_{2}}s_{i_{1}}\alpha*$ ).

For an element $w$ of $W$ , $w^{J}$ denotes the element of minimal length in the coset
$W_{J}w$ .

Lemma 5. We have:
(i) Any reduced expression $w=s_{i_{1}}s_{?_{2}}\cdots s_{i_{l}}$ of any element $w\in W$ is weakly

increasing,
(ii) For $w$ , $w’\in W_{f}w^{-1}\alpha_{*}=w^{\prime-1}\alpha_{*}$ if and only if $W_{J}w=W_{J}w’$ .
(iii) For $w\in W$ , we have $w$ $=w^{J}$ if and only if $w$ is the shortest element of

$\{v\in W|v^{-1}.\alpha_{*}=w^{-1}\alpha_{*}\}$ .
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(Iv) If a sequence $(s_{i_{1}}, s_{i_{2}}, \ldots , s_{i_{l}})$ of elements of $S$ is increasing, then the ex-
pression $w=s_{i_{1}}s_{i_{2}}\cdots$ $s_{i_{l}}$ is red $weW$.

(v) Let $\gamma\in W\alpha_{*}$ . Then there exists an element $w\in W$ with an increasing

expression $w=s_{i_{1}}s_{\mathrm{i}_{2}}\cdots$ $s_{i_{l}}$ such that $\gamma=w^{-1}\alpha_{*}$ .

(vi) Assume that $w=s_{i_{1}}s_{\mathrm{i}_{2}}\cdots s_{i_{f}}\in W$ is an increasing expression. Let $\gamma=$

$w^{-1}\alpha_{*}$ . Then
$N(w)=\{t\in T|t\gamma<\gamma\}$ .

Moreover, $w$ is uniquely determined by $\gamma$ .
(vii) For $w\in W$ , we have $w$ $=w^{J}$ if and only if a reduced expression $w=$

$s_{i_{1}}s_{i_{2}}\cdots$ $s_{i}$ , is increasing.
(viii) For $w\in W$ , we have $w$ $=w^{J}$ if cvna only if any reduced expression $w=$

$s_{i_{1}}s_{i_{2}}\cdots s_{i_{l}}$ is increasing.

4.5. Let $(W, S)$ be a Coxeter system, and $T$ the set of reflections of $(W, S)$ . Let
$J\subset S$ . Let $P_{J}=Pjcs$ be the quotient space $W_{J}\backslash W$ . We define a map $\Phi_{J}=$

$\Phi_{J\subset S}$ : $P_{J}arrow 2^{P_{J}}$ by

$\Phi_{J}(W_{J}w)=\{W_{J}wt|t\in N(w^{J})\}=$ { Wjwt $|t\in T$ , $l(w^{J}t)<\iota^{\tau}(w^{J})$ }, $w\in W$.

Then $(P_{J}, \Phi_{J})$ is a game, which is a special case considered in 41, Note that
essentially the same object has been studied [6] [9] from differnt viewpoints. A full
subgame of $(P_{J}, \Phi_{J})$ is called an (unrestrained) reflection game of type $T$ . By (4.4),
(4.5) and Proposition 1, we have

Proposition 6. Assume that $(W, S)$ is reducible as in (4.2). Then we have $a$

natural decomposition

$(P_{J\subset S}, \Phi_{J\subseteq \mathit{3}})\cong(P_{(J’\cap J)\subset J^{f}}, \Phi_{(J’\cap J)\subset J’})+(P_{(J^{\prime/}\cap J)\subset J’},$
$\Phi_{J’\cap J\subset J^{\prime\prime)}}$ .

Lemma 5 implies the following “root description” of an unrestrained reflection
game:

Proposition 7. Let $X_{J}=W\alpha_{*_{f}}$ where $\alpha_{*}=\alpha_{*J}$ be as in Section 2.5. Define
$\mathrm{A}_{J}$ : $X_{J}arrow 2^{X_{J}}$ by

Ay $(\gamma)=\{t\gamma|t\in T, t\gamma<\gamma\}$ , $\gamma\in X_{J}$ .

Then the mapping
$f:P_{J}arrow X_{J}$

defined by
$f(W_{J}w)=w^{-1}\alpha_{*}$ , $w\in W$

gives an isomorphism
$(P_{J}, \Phi_{J})\cong(X_{J}, \Lambda_{J})$

of games.

Let $W_{1}$ be a reflection subgroup of $W$ , and $T_{1}$ the set of reflections of $W_{1}$ . We
define a map $\Phi_{J,W_{1}}$ : $P_{J}arrow 2^{P_{J}}$ by

$\Phi_{J,T_{1}}(W_{J}w)$ $=$ {Wjwt $|t\in N(w^{J})\cap T_{1}$ }, $w\in W$.
Then $(P_{J_{l}}\Phi_{J_{\rangle}T_{1}})$ is a game. A full subgame of $(P_{J}, \Phi_{J,T_{1}})$ is called a $(restra\mathrm{i}ned^{1}$,
reflection game of type T. if $T_{1}=T$ , this reduces to an unrestrained game. By
Proposition 7, we have the following root description of a restrained reflection game:
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Proposition 8. Let $W_{1}$ be a reflection subgroup of $(W, S)$ . Let $X_{J}=W\alpha_{*}$ as in
Proposition 7, Define Ay, $w_{1}$ : $X_{J}arrow 2^{X_{J}}$ by

$\Lambda_{J,W_{1}}(\gamma)=\{t\gamma|t\in T_{1}, t\gamma<\gamma\}$ , $\gamma\in X_{J}$ .

Then the mapping $f$ : $P_{J}arrow X_{J}$ defined in Proposition 7 induces an isomorphism

$(P_{J}, \Phi_{J,W_{1}})\cong(X_{J}, \Lambda_{J,W_{1}})$

of games.

For ut $\in W$ , $\langle W_{J}w\rangle_{T_{1}}$ denotes the full subgame of $(PJ, \Phi J,T_{1})$ generated by $W_{J}w$ .
The following result is an extension of Nakayama-Robinson Theorem mentioned

in 3.1.

Theorem 9. Let $W_{1}$ be a reflection subgroup of W. Let $w$ be an element of W. Let
$y$ be the unique element of minimal length in the double coset $W_{J}wW_{1}$ (see Lemma

&). We have:
(i) The restrained reflection game $W_{J}\backslash W_{J}wW_{1}$ of type $T_{1}$ is naturally isomor-

phic to the unrestrained game $(y^{-1}W_{J}y\cap W_{1})\backslash W_{1}$ of type $T_{1}$ .
(ii) Let

$w=xyz$ , $x\in W_{J}\cap D_{W_{J}\cap yW_{1}y^{-1}}$ , $z\in W_{1}$

be the factorization of $w$ given in Lemma 4. Then the restrained reflection
game $\langle W_{J}w\rangle_{T_{1}}$ is naturally isomorphic to the unrestrained game $\langle(y^{-1}W_{J}y\cap$

$W_{1})z\rangle_{T_{1}}$ .
(ii) The game $\langle W_{J}w\rangle_{W_{1}}$ has a unique ending position $W_{J}y$ . Moreover, the coset

$Wjw$ is uniquely recovered by the cosets

$W_{J}y$ and $(y^{-1}W_{J}y\cap W_{1})z$ .

The positions $W_{J}y(\in W_{J}\backslash W)$ and $(y^{-1}W_{J}y\cap \mathrm{M}_{1}^{r^{\mathit{7}}})z(\in(y^{-1}W_{J}y\cap W_{1})\backslash W_{1})$

described in Theorem 9 are called the $T_{1}$ -core and the $T_{1}$ -quotient of the position
$W_{J}w(\in W_{J}\backslash W)$ , respectively.

4.6. For any $J\subset S$ , and any $w\in W$ , an unrestrained reflection game $\langle W_{J}w\rangle\tau$

(hence a restrained reflection game $\langle W_{J}w\rangle_{T_{1}}$ also) is a finitary ranked game. But

it is not nescessarily a triangular game.

4.7. Here we show how Nakayama’s game can be considered as a reflection game.

Example 1, Let $W$ be the n-th symmetric group acting on the set $\{1, 2, \ldots, n\}$ .
For $1\leq \mathrm{i}\neq j\leq n$ , let $(\mathrm{i}, j)\in W$ be the transposition of $i$ and $j$ . We put
$S=\{s_{i}= (\mathrm{i}, \mathrm{i}+1)|1 \leq \mathrm{i}\leq n-1\}$ and $T=\{(\mathrm{i},j)|1\leq \mathrm{i}<j\leq n\}$ . Then $(W, S)$

is a Coxeter system and $T$ is the set of reflections of $(W, S)$ . For a positive integer

$q$ , let
$T(q)=$ { $(\mathrm{i},j)\in T|j-\mathrm{i}$ is a multiple of $q$ }.

Then $T(q)$ is the set of reflections of the reflection subgroup $\langle T(q)\rangle(\subset W)$ . Fixing
$1\leq k\leq n$ , we put $J=\{s_{i}|1\leq \mathrm{i}\leq n, \mathrm{i}\neq k\}$ . The reflection gama $W_{J}\backslash W$ of type
$T(q)$ is isomorphic to Nakayama’s $q$-hook game whose positions are contained in

the $k\mathrm{x}$ $(n-k+1)$ rectangular diagram. The notion of $T(q)$-core and $T(q)$-quotient

coincides with the classical notion of $q$-core and g-quotient
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5. BASIC REFLECTION GAMES

5.1. In view of examples given in 3.2 and 3.3, it is natural to investigate the class

of reflection games which are triangular in the sense of 2.10. in this section, we
discuss partial results obtained in this direction. By Theorem 9, we can restrict
our attention to unrestrained reflection games.

5.2. Note that the game order $\leq$ of the reflection game $(P_{J}, \Phi_{J})$ is nothing but
the Bruhat order on the quotient space $W_{J}\backslash W$ (see $[6],[9]$ ). Motivated by this
observation, we define $\Omega_{J}$ : $P_{J}arrow 2^{P_{J}}$ by

$\Omega_{J}(1\prime V_{J}w)=\{W_{J}ws |s\in N(w^{J})\cap S\}$ , $w\in W$.
Then $(P_{J}, \Omega_{J})$ is again a game; the corresponding game order coincides with the

weak order on $W_{J}\backslash W$ (see [2]). For $w\in W$ , let $\langle W_{J}w\rangle$ and $\langle W_{J}w\rangle_{\Omega}$ be the full
subgames of $(P_{J}, \Phi_{J})$ and $(P_{J}, \Omega_{J})$ generated by $Wjw\in P_{J}$ , respectively. As
subsets of $P_{J}$ , they can also be defined by

$\langle W_{J}w\rangle=\{W_{J}v\in P_{J}|W_{J}v\leq W_{J}w\}$ ,

and
$\langle W_{J}w\rangle_{\Omega}=\{W_{J}v\in P_{J}|W_{J}v\leq_{\Omega}W_{J}w\}$.

Clearly, we have
$\langle W_{J}w\rangle_{\Omega}\subseteq\langle W_{J}w\rangle$ (as sets).

This suggests studying a game $\langle W_{J}w\rangle$ satisfying the following condition:

(A) { $\mathrm{W}\mathrm{j}\mathrm{w})\mathrm{n}=\langle W_{J}v\rangle$ (as sets) for any $Wjv\in\langle W_{J}w\rangle$ .

A reflection game $\langle W_{J}w\rangle$ satisfying (A) is called a basic reflection game. The
following lemma explains why we are interested in this class of games.

Lemma 10. A basic reflection game is triangular.

Proposition 11. Let w $\in W.$ Assume $\langle W_{J}w\rangle$ satisfies (A). Assume, moreover,
$w^{J}=w^{I}$ for sorne $J\subset I\subset S$ . Then we have a natural isomorphism of games:

$\langle W_{J}w\rangle\cong\langle W_{I}w\rangle$ .

By Proposition 11, in studying a game $\langle W.rw\rangle$ satisfying (A), we may assume
the following condition:

(B) $w^{J}\neq w^{I}$ for any $J_{\neq}\subset I\subset S$ .

Let $Q_{J}=Q_{J\subset S}$ be the set of elements $W_{j}w$ of $P_{J}$ satisfying both (A) and (B).

Proposition 12. Let J $\subset S$ . The set $Q_{J}$ is non-empty if and only if the elements
of $S\backslash J$ are mutually commutative.

Proposition 13. Let $J\subset S$ . Assume that $\{s_{01}, s_{02}, \ldots, s_{0n}\}$ $=S\backslash$. $J$ are mu-
tually commutative with $n=|S\backslash J|$ . Then, for any $Wjw\in Q_{J}$ , there exist
$\{I_{\mathrm{I}}, I_{2}, \ldots, I_{n}\}(I_{i}\subset S)$ and $(w_{1}, w_{2}, \ldots, w_{n})\in W_{I_{1}}\mathrm{x}$ $W_{I_{2}}\mathrm{x}$ $\cdots \mathrm{x}$ WIn such that

(i) $s_{0k}\in I_{k}$ , $k=1$ , 2, $\ldots$ , $n$ .
(ii) $I_{h}\cap I_{k}=\emptyset$ if $h\neq k$ .
(iii) An element of $I_{h}$ and an element of $I_{k}$ commute if A $\neq k$ .
(iv) $W_{J_{k}}w_{k}\in Q_{J_{k}\subset I_{k}}(J_{k}=I_{k}\backslash \{s_{0k}\})$ , $k=1,2$ , . . . , $n$ .
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(v) $W_{J}w=W_{J}w_{1}w_{2}\cdot$ . . $w_{n}$ .
(vi) $\langle W_{J}w\rangle\cong\langle W_{J_{1}}w_{1}\rangle+\langle W_{J_{2}}w_{2}\rangle+$ $\cdot$ . . $+\langle W_{J_{n}}w_{n}\rangle$ .

Conversely, if { $I_{1}$ , I2, $\ldots$ , $I_{n}$ } $(I_{k}\subset S)$ and $(w_{1}, w_{2}, \ldots, w_{n})\in W_{I_{1}}\cross W_{I_{2}}\mathrm{x}$ $\cdots$ $\mathrm{x}$ $W_{I_{n}}$

satisfy $(\mathrm{i})-(\mathrm{i}v)$ above, then we have
$\langle W_{J}w_{1}w_{2}\cdots w_{n}\rangle\cong\langle W_{J_{1}}w_{1}\rangle+\langle W_{J_{2}}w_{2}\rangle+\cdot$ . . $+\langle W_{J_{n}}w_{n}\rangle$ ,

ant
$W_{J}w_{1}w_{2}\cdot$ . . $w_{n}\in Q_{J}$ .

A full subgame $\langle$ $W_{J}w)$ generated by Wow $\in Q_{J}$ is called a basic game of type
$J$ . An element $w\in W$ is called a basic element of type $J$ if the game $\langle W_{J}w\rangle$ is
basic and $w$ $=w^{J}$ . By Propositions 12 and 13, the study of a basic game $\langle W_{J}w\rangle$ is
reduced to the case $|S\backslash J|=1$ .

5.3. We keep the notation in 3.2. Any root $\gamma\in\Sigma_{*}$ can be written uniquely as a
linear combination of the set $\Pi_{*}$ of simple roots; the coefficient of $\alpha\in \mathrm{T}1$ is denoted
by $c(\alpha, \gamma)$ . Let $w=s_{i_{1}}s_{i_{2}}\cdots s_{i_{\mathrm{t}}}$ be a fixed reduced decomposition of an element $w$

of $W$ . For $0\leq k\leq l_{7}$ we put $w(k)=s_{\mathrm{i}_{1}}s_{i_{2}}\cdots$ $s_{i_{k}}$ . For each a $\in\Pi$ , the sequence
$c(\alpha, w(k))=\{c(\alpha, w(h)^{-1}\alpha_{*})\}_{0\leq h\leq k}$

is weakly increasing by Lemma 5(i). We consider the following condition on $w\in W$ .

( $\mathrm{A}_{j}^{J\backslash }$ For any a $\in\Pi$ , any $0\leq k\leq l=l(w)$ and any reduced expression of $w$ , the

coefficients
$c(\alpha, tw(k)^{-1}\alpha_{*})$ , $t\in N(w(k)^{J})$

are always contained in the sequence $\mathrm{c}(\alpha, w(k))$ .

Lemma 14. We put $\gamma=w^{-1}\alpha_{*}$ for an element $w\in W$ satisfying $(\mathrm{A}’)$ . Let
$\delta\in W\alpha_{*}$ . If $\delta$

$\leq\gamma$ , $t/ten$ there exists a reduced expression $w=s_{i_{1}}s_{i_{2}}\cdots$ $s_{i_{l}}$ such
that $\delta=w(k)^{-1}\alpha_{*}$ for game $0\leq k\leq l$ .

Lemma 15. As a condition on $w\in W$ satisfying $w$ $=w^{J}$ , the condition (A) is

equivalent to the condition $(\mathrm{A}’)$ .

Let $w\in \mathrm{V}\mathrm{V}$ be a basic element of type $J$ . By the previous lemma, this is equiva-

lent to say that it satisfies : $(\mathrm{A}’),$ $(\mathrm{B})$ , and $w=w^{J}$ . Let $\gamma=w^{-1}\alpha_{*}\in\Sigma_{*}^{+}$ . A root
obtained in this way is called a basic root of type $J$ . By Lem ma 5, a basic element
$w$ of type $J$ is uniquely determined by the corresponding basic root $\gamma$ .
An element $w\in W$ is called fully commutative [24] if for every pair of non-
commuting generators $s_{i}$ , $s_{j}\in S$ , there is no reduced expression for $w$ containing a

subword of length $m(\mathrm{i},j)$ of the form $s_{i}s_{j}s_{i}s_{j}$ . . . As a consequence of Lemma 15,

we have:

Lemma 16. Let $J\subset S$ . A basic element $w\in W$ of type $J$ is fully commutative.

5.4. According to [4] [17][25], around 1989, D. Peteson introduced the notion of

minuscule elements of Weyl groups of-Kac-Moody Lie algebras. Let $W$ be a Weyl

group, and A a dominant integral weight. An element $w\in W$ is called A-minuscule
if, for any reduced decomposition $w=s_{i_{1}}$ . . . $s_{i_{1}}$ of $w$ , we have

$w_{\mathrm{i}_{k}}$ . . . $w_{i_{1}}\mathrm{A}$ $= \lambda-\sum_{j=1}^{k}\alpha_{i_{i}}$ , $1\leq k\leq l$ .
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An element $w\in W$ is called minuscule if it is A-minuscule for some dom inant
integral weight A. Minuscule elements are classified by $\mathrm{R}.\mathrm{A}$ . Proctor [18] (simPly-

laced case) and $\mathrm{J}.\mathrm{E}$ . Stembridge [25](non-simply-laced case).

Theorem 17. For a simply-laced Coxeter group, the classification of basic elements
coincides with that of minuscule elements. A basic reflection game associated with
a general Coxeter group is isomorphic to a basic reflection game associated with $a$

simply-laced Coxeter gromp.

For some (non-simply-laced) Coxeter groups, the set of basic elements contains
but not coincides with the set of minuscule elements.

5.5. The following theorem, essentially due to S. Okamura [15], generalizes the
result of Greene, Nijenhuis and Wilf mentioned in 3.2.

Theorem 17. Let $\langle W_{J}w\rangle_{T}$ be a basic reflection game. Then the probabilistic $verrightarrow$

sion of the simplification of $\langle W_{J}w\rangle_{T}$ selects a simple path of $\langle W_{J}w\rangle\tau$ (connecting
$W_{J}$ and $W_{J}$ to) unifom randomly with the probability

$\frac{\prod_{X\in\varphi_{J}(W_{J}w)}(|\varphi_{J}(W_{J}w)\cap\varphi_{J}^{-1}(X)|+1)}{l(w^{J})!}$ .

Hence the number of simple paths in $\langle W_{J}w\rangle\tau$ is equal to

$\frac{l(w^{J})!}{\prod_{X\in\varphi_{J}(W_{J}w)}(|\varphi_{J}(W_{J}w)\cap\varphi_{J}^{-1}(X)|+1)}$ .

If $w^{J}$ $is$ minuscule, the last formula is equivalent to the one (due to D. Peterson,

see $e.g$ . [4] $)$ for the number of reduced expressions of $w^{J}$ .

5.6. The following theorem generalizes the result of Sato and Welter mentioned
in 3.3.

Theorem 19. Let $\langle W_{J}w\rangle_{T}$ be a basic reflection game. Then the garne $(W_{J}w\rangle\tau$

has the energy function $E(W_{J}w)$ given by

$E(W_{J}w)= \sum_{X\in\varphi_{J}(W_{J}w)}(E(\varphi_{J}(W_{J}w)\cap\varphi_{J}^{-1}(X))+1|0)\oplus$
,

where $(a|\mathrm{O})=a\oplus(a-1)$ as in 2. i6, and $E(\varphi_{J}(W_{J}w\rangle\cap\varphi_{J}^{-1}(X))$ is the opening

value of the energy function of the subgame $\varphi_{J}(W_{J}w)\cap\varphi_{J}^{-1}(X)$ of $\langle W_{J}w\rangle\tau$ .
5.7. An obvious open problem is the study of a general (not necessarily basic)
triangular reflection game. The author hopes to report on this in a near future.
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