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Longitudinal analysis of Hamilton Depression Rating Scale (HDRS) scores
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ABSTRACT
Antidepressants are generally evaluated on the basis of the Hamilton Depression

Scale Scores of the same patients measured repeatedly over time. The usual analysis of

the scores measured at the end of the treatment period alone is, however, inadequate. To

clarify the characteristic features of the test drugs, it is necessary to analyze the

longitudinal patterns.
In this paper, we have analyzed actual clinical trial data in terms of longitudinal

change of the score of individual subjects classified into three patterns (1. No variation,

2. Linear improvement, and 3. Early improvement). The clinical validity and usefulness

of the analytical method presented are also examined.
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INTRODUCTION

For the treatment of depression, TCAs (tricyclic antidepressants) have been

widely used so far. In 1999, SSRI (Selective Serotonin Reuptake Inhibitor) was put on

Japanese market. After that, other SSRIs and SNRI (Serotonin Noradrenaline Reuptake

Inhibitor) were put on the market. From the many antidepressants, a proper

antidepressant is chosen for each patient. For the proper choice, it is meaningful to

characterize the antidepressants. In actual, a lot of meta-analyses (Examples are [1-81.)

and the comparison examinations (Examples are [9-12].) have been already performed.

The effects of antidepressants are generally evaluated using Hamilton

Depression Rating Scale (HDRS) introduced by ${\rm Max}$ Hamilton in 1960 [13-15]. HDRS

consists of 17 items and the total score of the 17 items is used for the measure of

severity of depression. The maximum and minimum of the total score 48 points and 0
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point, respectively. In clinical trials, HDRS scores are repeatedly measured on each

patient. A decrease in the total indicates the improvement in the symptoms.

The efficacy of antidepressant is evaluated based on the mean of the decrease of

HDRS scores at the final measurement point. In the current evaluation, however, the

longirudinal pattern of HDRS scores of each patient is not considered. From clinical

viewpoints, the evaluation $\mathrm{i}^{\sigma_{\mathrm{i}}}$ not appropriate. Longitudinal patterns of HDRS scores

after the administration of an antidepressant can be grouped into the three patterns

shown in Figure 1. In Pattern-l, pretreatment scores are maintained. This pattern

corresponds to non-responders. Pattem-2 and Pattem-3 correspond to responders. In

Pattern-2, HDRS scores decrease almost Iinearlv. In Pattern-3, the scores decrease more

rapidly. The patient population can be considered as a mixture of patients with the three

patterns. We here suppose two drugs, Drug-l and Drug-2, for which the mixing

proportions of the three pattems are listed in Table 1.

Table 1. Mixing proportions for Drug-l and Drug-2

If the evaluation is made based only on the mean of the decrease at the final

measurement point, the proportion of responders is 80% in either drug. However, 40%

of the patients in Drug-2 show Pattem-3 and respond more rapidly. It is clear that

Drug-2 is clinically more preferable. Such an evaluation can not be made if the

longitudinal patterns of HDRS scores are not considered. The efficacy of

antidepressants should be evaluated based on the longitudinal patterns of HDRS scores.

We apply mixture models to actual clinical data of HDRS scores. We assume the

following three pattem $\mathrm{s}$ for the longitudinal patterns of HDRS scores, 1. No

improvement pattern, 2. Linear improvement pattern, and 3. Early improvement pattem.

In applying mixture models, it is common to assume that longitudinal patterns

can be described by low-degree polynomials of elapsed time after the beginning of

treatment [16-19]. However, the low-degree polynomial models are not necessarily

appropriate for describing the longitudinal patterns of HDRS scores. In Chapter 3 We

propose a model using a monotone decreasing function to describe the early
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improvement pattem. Furthermore, $\mathrm{V}\mathrm{Y}^{7}\mathrm{e}$ investigate variance-covariance structures

within a subject. In Chapter 4, YVe conduct simulation studies to evaluate the

performance of the proposed model in Chapter 3. In the chapter of discussion, YVe

arrange the result in this study. We derive the conclusion by present. And YVe refer the

problem of the proposed method and the view of the future.

MOTIVATING EXAMPLE

The present data are HDRS scores of 84 patients in a randomized, double-blind,

comparative study of antidepressants. The criteria for selecting the subjects are that the

total score for HDRS items 1-17 was 16 or higher and the depressive mood score of was
$\underline{0}$ or higher, before the start of the treatment. The antidepressants were given for 4 weeks,

following a fixed-flexible regimen. The main item of evaluation was the final general

improvement rating (FGIR) $\mathrm{e}\backslash _{t}$ aluated by the physicians, taking into account the

changes in the HDRS scores and the clinical symptoms. FGIR was classified into eight

categories, $\mathrm{i}.\mathrm{e}.$ , significant improvement, moderate improvement, mild improvement, no

change, slight worsening, worsening, serious worsening and impossible to evaluate. The

HDRS scores were evaluated at five measurement points, i.e., before the treatment and

1, 2, 3 and 4 weeks after the beginning of the treatment. The individual and mean

profiles of HDRS scores are shown in Figure 2 and Figure 3, respectively. FGIR

classification for the present data is shown in Table 2.
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Table 2. FGIR classification for the present data

1. Significant improvement, 2. Moderate improvement, 3. Mild improvement, 4, No change,

5. Slight worsening, 6. Worsening, 7 Serious worsening, S. impossible to evaluate

The cumulative percentages are shown in the parentheses.

Figure 2. Individual profiles of HDRS scores

TIrne

Figure 3. Mean profile and Standard Error of HDRS scores

$[mathring]_{\ddagger \mathrm{Z}}\mathrm{a}\mathrm{e}$

Time
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MIXTURE DISTRIBUTION MODEL FOR LONGITUDINAL DATA

Mixture distribution models are often applied to the analysis of longitudinal

pattems of repeated measurements [16-19].

In this chapter, mixture distribution models are applied to HDRS score data

obtained in an actual clinical trial of antidepressants.

(1) The model

As stated in the first chapter, longitudinal patterns of HDRS scores after the

administration of antidepressants are grouped into three patterns. We define the three

patterns as follows.

1. No improvement pattern: the scores show no improvement maintaining the

pretreatment scores.

2. Linear improvement pattern: the scores show almost linear improvem $\mathrm{e}\mathrm{n}\mathrm{t}$ .

3. Early improvement pattern: the scores show rapid improvement.

These th $\mathrm{e}^{\alpha}$. patter $\mathrm{s}$ correspond to the three patterns shown in Figure 1. All of the

subjects xe assumed to belong to one of the $\mathrm{t}\mathrm{h}\mathrm{r}\mathrm{e}^{\Delta}$. patter $\mathrm{s}$ .

Let yij denote the HDRS score of the patient $\mathrm{i}(\mathrm{i}=1,\cdots, \mathrm{n})$ at the measurement

point $\mathrm{t}_{\mathrm{j}}$ $(\mathrm{i}=1,\cdots, 5)$ . In the mixture distribution model, the probability density function

of the observation vector $\mathrm{y}_{\mathrm{i}}=(\mathrm{y}_{\mathrm{i}1},\cdots, \mathrm{y}_{\mathrm{i}5})$ is given by

$g$ ($\mathrm{y}_{\mathrm{i}}$ I $\mathrm{p},8$) $= \sum_{m=1}^{3}p_{m}\cdot f_{m}$ ($\mathrm{y}_{\mathrm{i}}$ I $8_{m}$ ), (1)

where $\mathrm{y}_{i}=(\mathrm{y}_{\mathrm{i}1},\mathrm{y}_{\mathrm{i}2},\mathrm{y}_{13},\mathrm{y}_{\mathrm{i}4},\mathrm{y}_{\mathrm{i}5})^{\mathrm{f}}$ is the measurement vector for the patient $\mathrm{i}$ , $\mathrm{p}=(\mathrm{p}_{1}, \mathrm{p}_{\underline{\gamma}}, \mathrm{p}_{3})$

$(\mathrm{p}_{1}+\mathrm{p}_{-}’\lrcorner_{-}\mathrm{p}_{3}=1)$ is the vector of the mixing proportions of the three patterns, $f_{m}$ ( $\cdot$ ) is the

density function for the m-th pattern $(\mathrm{m}=1,2,3)$ , $\mathrm{e}_{\mathrm{m}}$ is the vector of the parameters that

defme the density function $f_{\mathfrak{l}n}$ $($ . $)$ $(\mathrm{m}=1,2, 3)$ , $\mathrm{e}$ $=(8_{1}^{\mathrm{t}}, 8_{2}, {}^{\mathrm{t}}\mathrm{e}_{3}^{\mathrm{t}})^{\mathrm{t}}$ denotes the vector of

all the parameters in $6_{1},6_{2}$ and 63.
For the three longitudinal pattem $\mathrm{s}$ stated above, We assume the following model.

1. No improvement pattem

$y_{ij}=(\alpha_{1}+\mathrm{b}_{1\mathrm{i}})+\epsilon_{3\mathrm{i}\mathrm{j}}$
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$L’)$ . Linear improvement pattern

$\mathrm{y}_{ij}=(\alpha_{-},+\mathrm{b}_{2\mathrm{i}})+\beta_{2}\cdot \mathrm{t}+\epsilon_{\mathrm{o}_{1}}\mathrm{i}\sim \mathrm{J}$

3. Early improvement pattem
$y_{ij}=\exp(-(\mathrm{t}_{\mathrm{j}}/\alpha_{3})^{\beta_{\mathrm{j}}})\cdot(\gamma_{3}+\mathrm{b}_{3\mathrm{i}})+\epsilon_{3\mathrm{i}\mathrm{j}}$ ,

In this model, it is assumed that the pretreatment scores a 1, a2, and $\mathrm{a}_{3}$ are common to all

the patients , $\mathrm{b}_{1\mathrm{i}}$, $\mathrm{b}\underline{\circ}\mathrm{i}$ and $\mathrm{b}_{3\mathrm{i}}$ are the patient-specific variations of the pretreatment scores

normally distributed as $\mathrm{b}_{1\mathrm{i}}\sim \mathrm{N}(0, \mathrm{s}_{\mathrm{b}12})$ , $\mathrm{b}_{-:},\sim \mathrm{N}(0, \mathrm{s}\mathrm{b}22)$ and $\mathrm{b}_{3\mathrm{i}}\sim \mathrm{N}(0, \mathrm{s}\mathrm{b}22)$ , respectively and

eiij, $\mathrm{e}_{2\mathrm{i}\mathrm{j}}$ and $\mathrm{s}3\mathrm{i}\mathrm{j}$ is the error term normally distributed with mean 0 and

variance-covariance matrix $\Sigma_{\mathrm{s}1},\Sigma_{\epsilon^{\underline{\gamma}}}$ and $\Sigma_{\mathrm{s}3}$ , respectively. The function of early

improvement pattern comes from the following:

1– (the Weibull distribution function) $=1-(1-\exp(-(t/\alpha_{3})^{\beta_{3}}))=\exp(-(t/\alpha_{3})^{\beta_{3}})$ ,

This function is parsimonious and useful for describing monotone decreasing function.

In addition, this function can be used for describing the feature of HDRS pattern that the

variance for the early improvement pattern becomes smaller as the clinical trial

advances. The details are given later.

(2) The variance-covariance within a patient

For the variance-covariance matrices of the error terms, the following three

struc rures are employed: simple variance (SV), first-order autoregressive $(\mathrm{A}\mathrm{R}(1))$ , and

toeplitz (TOEP), which are commonly used in the analysis of clinical longitudinal data

[20].

When SV is assumed, the variance-covariance matrix of the marginal

distribution becomes a compound symmetry type in the no improvement pattern and

linear improvement pattem as follows:

$\ovalbox{\tt\small REJECT}_{1}^{1}1\ovalbox{\tt\small REJECT} 11^{\cdot}[\sigma_{bm}^{2}]\cdot[1 1 1 1 1]+\{$
$\sigma_{\epsilon_{0}0^{m}}^{2}00$

$\sigma_{m}^{2}0000$ $\sigma_{m}^{2}0000$ $\sigma_{m}^{2}0000$
$\sigma_{\epsilon m}000\ovalbox{\tt\small REJECT} 0_{2}$

, $\mathrm{m}=1,2$ .

In the early improvement pattem, the variance-covariance matrix is given by
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$\ovalbox{\tt\small REJECT}_{\exp(}^{\exp(}\exp\{\exp\langle\exp\langle-\langle 4/\alpha_{3})^{\beta_{3}})-(2/\mathrm{a}_{3})^{p_{3}})-(0/\alpha_{3})^{\beta\underline{\tau}})-(3/\alpha_{3}\}^{\beta 3})-(1/\alpha 3)^{\beta 3})\ovalbox{\tt\small REJECT}$ . $[_{\sigma_{b3}}2]\ovalbox{\tt\small REJECT}_{\exp\{}^{\exp(}\mathrm{e}\mathrm{x}.\mathrm{p}(\exp(\exp(-(2/\alpha_{3}\rangle^{\beta 3})\ovalbox{\tt\small REJECT}^{t}\wedge(0/\alpha_{3}\rangle^{\beta 3})-(4/\mathrm{a}_{3}\}^{\beta_{3}})-(3/\alpha_{3})^{\beta_{3}})-(1/\alpha_{3})^{\beta 3})+\ovalbox{\tt\small REJECT}$

a

$\epsilon_{0}30002$
$\sigma_{\mathrm{s}_{0}3}000_{\wedge}$

”

$\sigma_{\epsilon_{0}3}0\mathrm{o}_{\wedge}\mathrm{o}_{9}$
$\sigma_{\epsilon_{0}3}0_{2}00$

$\sigma\epsilon 300\ovalbox{\tt\small REJECT} 002$

From this structure, it is found that the variance becomes smaller as the clinical trial

advances and that the covariance becomes smaller as the interval between the

measurement points becomes longer.

(3) Results

Table 3 shows the number of the parameters, maximum $10^{\sigma}\underline{\sim}$ likelihood and AIC

[21-23] for the three variance-covariance structures, $\mathrm{S}\mathrm{V}$, $\mathrm{A}\mathrm{R}(1)$ , or TOER The AICs

indicate that the variance-covariance structure $\mathrm{A}\mathrm{R}(1)$ is the best among the three

structures.

Table 3. The number of the parameters, maximum $\log$ likelihood and AIC for the

The result when $\mathrm{A}\mathrm{R}(1)$ is assumed is shown as follows. Table 4 lists the

maximum likelihood estimates of the parameters and their standard errors. Figure 4

shows the estimated mean profiles of the HDRS scores
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Table 4. The maximum likelihood estimates (MLE) and their standard errors

Pattem Parameter MLE $\mathrm{S}.\mathrm{E}$ .
$\mathrm{p}1$ 0.298 0.030

$\alpha 1$ 22.4 1.762

1. No improvement pattem $\sigma$

$\mathrm{b}$

$12$ 8.43 2.639

$\sigma$

$p$

$12$ 40.4 2.349

$p1$ 0.875 o.oos
$\mathrm{p}2$ 0.581 0.122

$a\mathrm{z}$ 23.4 0.818

2. Linear improvement pattern
$\mathcal{B}\mathrm{r}$ -4.0 0.285

$\sigma$ $\mathrm{b}2^{2}$ o.oo 3.847

$\sigma$

$\epsilon$

$2^{2}$ 33.6 3893

$\beta 2$ 0.553 0.066

$\mathrm{p}$ a 0.121
$\alpha_{\mathit{3}}$ 0.283 0.053

3. Early improvement pattern

$\beta_{3}$ 0.309 0.070

$\gamma s$ 23.5 3.554

$\sigma$ $\mathrm{b}3^{2}$ 31.9 9 $6\hat{0}6$

$\sigma$

$P$

$3^{2}$ 11.5 0477

$\rho s$ 0.859 0.011

Figure 4. The estimated mean profiles of HDRS scores for the three pattem $\mathrm{s}$

$[mathring]_{\mathrm{x}}\not\in$

Tlme
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Given the estimates for all the parameters, the probabilities that the patient $\mathrm{i}$ with

the data $\mathrm{y}_{\mathrm{i}}$ belongs to each of the three patterns can be estimated by Bayes theorem

[24-26]. By assuming that each patient belongs to the pattern for which the probability

is the largest, the patients can be classified into the three patterns. The proportions of the

patients classified into the three patterns are 27.4%(23/84: No improvement), 60.7%

(51/84: Linear improvement) and 11.9% (10/84: Early improvement). The relationship

between the classification and FGIR measured in the clinical trial is shown in Table 5.

Figure 5 shows the individual profiles of the patients classified into the three patterns.

Table 5. The relationship between the classification and FGIR

4. No change, 5. Slight worsening, 6. Worsening

The percentages to the total in each pattern are shown in the parentheses
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Figure 5. Individual profiles of the patients classified into the three patterns
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From the results assuming the variance-covariance structure $\mathrm{A}\mathrm{R}(1)$ , the follow ing

points can be found

1. The estimated pretreatment scores are 22.4, 23.4 and 23.5 for the no

improvement pattern, linear improvement pattern and early improvement pattem,

respectively. There seems to be no great differences among the three patterns.

$\mathrm{i}\mathrm{i}$ . The estimated mixing proportions are 29.8%, 58.1%, and 12.1% for the no

improvement pattern, linear improvement pattem, and early improvement pattem,

respectively. About 70% of the patients belong to either the linear improvement

pattern or early improvement pattern.

$\ddot{\dot{\mathrm{m}}}$ . The estimated scores at 1 week after the beginning of the treatment are 19.4 and

5.4 in the linear improvement pattern and early improvement pattern,

respectively. The estimated scores at 2 weeks are 15,4 and 3.8 in the linear

improvement pattern and early improvement pattem, respectively. The results

suggest that the HDRS scores had been improved clinically well enough at 1

week in the early improvement pattern.

$\mathrm{i}\mathrm{v}$ . The estimated scores at the final measurement point (4 weeks after the beginning

of the treatment) are 22.4, 7.4 and 2.4 in the no improvement pattern, linear

improvement pattern and early improvement pattern, respectively. The HDRS

scores were improved in both the linear and early improvement patterns.

$\mathrm{v}$ . The estimated probabilities that each patient belong to each of the three patients

range from 0.504 to 1.000 with mean 0.892. 25, 50 and 75 percentiles are 0.836,

0.966 and 0.998, respectively.
$\mathrm{v}\mathrm{i}$ . The proportions of the patients classified into the three patterns are 27,4% (23/84),

60.7% (51/84), and 11.9% (10/84) for the no improvement pattem, linear

improvement pattem, and early improvement pattern, respectively. These are

almost the same as the estimates of the mixing proportion.
$\mathrm{V}\vec{11}$ . The relationship between the results of the classification and FGIR indicates that

all the patients classified into the early improvement pattern showed the

significant improvement in FGIR and that about 85 % of the patients classified

into the linear improvement pattern showed the mild or better improvement in

FGIR. On the other hand, the patients classified into the no improvement pattern
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did not show the moderate or better improvement in FGIR.

SIMULATION STUDY:DETECTION OF TRUE VA RIANCE-COVARIANCE

STRUCTURE

When repeated measurements of HDRS scores are analyzed using the mixture

distribution model consisting of the three patterns (no improvement, linear improvement,

and early improvement) presented in Chapter3, it is important to examine the influence of

the assumption of the within-subject covariance structure on the parameter estimates. In

this chapter, the following two simulation studies are conducted to examine this issue.

In the simulation study, We suppose the situation in which the model with the true

within-subject covariance structure is included in the applied models. Under this situation,

it is examined whether the selected model can detect the true structure of the

within-subject covariance. In addition, We examine the influence of the mis-specified

within-subject covariance structure on the accuracy of the parameter estimates.

In this simulation study, the following three structures, $\mathrm{S}\mathrm{Y}$, $\mathrm{A}\mathrm{R}(1)$, and TOEP are

assumed for the within-subject covariance structure. T.a$\mathrm{b}\mathrm{l}\mathrm{e}$ $6$ shows the true values of the

parameters. These values are determined by referring to the results in Chaper3.

Under the true structure, 100 data sets are simulated. Each data set consists of the

data of 100 subjects. For each data set, the three mixture distribution models with the

within-subject covariance structure $\mathrm{S}\mathrm{V}$, $\mathrm{A}\mathrm{R}(1)$ , and TOEP are applied and the goodness of

each model is evaluated based on the AIC[21-23].

Table 7 shows the proportions that each mixture distribution model is selected

based on AIC. The proportion that the true within-subject covariance structure model is

selected is about 95% for each of the three within-subject covariance structure. This result

suggests that the proposed approach can select the true within-subject covariance structure

under the situation in which the model with the true within-subject covariance structure is

included in the applied models.

The description of the result is omitted, and the following is confirmed. The

accuracy of the estimates is especially worsened for the following cases: SV is assumed

when the true structure is $\mathrm{A}\mathrm{R}$, and SV or $\mathrm{A}\mathrm{R}(1)$ is assumed when the true structure is

TOEP
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Table 7. The proportions that each mixture distribution model is selected by AIC
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DISCUSSION

It is problem from clinical viewpoints that the efficacy of antidepressant is

evaluated based on the mean of the decrease of HDRS scores at the final measurement

point, because the longitudinal $\mathrm{p}\mathrm{a}\mathrm{t}\mathrm{t}\frac{-}{}.\mathrm{m}$ of HDRS scores of each patient is not considered.

In the present study, we have evaluated the results on the basis of $1\mathrm{o}\mathrm{n}_{arrow}\sigma$-itudinal patterns.

By evaluating the average changes in each pattern and the $\mathrm{m}\dot{\mathrm{L}}\mathrm{X}\mathrm{i}\mathrm{n}_{\underline{arrow}}\sigma$ proportions, we could

quantitatively evaluate the early onset of a characteristic feature of the drug. The

analyses at each time point cause the statistical problem of multiplicity, and the results

are difficult to understand. Because the objective of the analyses at each time point is to

evaluate on the longitudinal patterns, the evaluation is possible by this method.

The results of this study and the clinical evaluation (FGIR) of the subjects have

a certain level of agreement. Therefore, we can conclude that this method is appropriate

from the clinical point of view. The results suggest that FGIR is an evaluation in which

longitudinal patterns are taken into account. By classifying the subjects into one of the

three patterns, we can examine the differences in background factors among subjects

having these different pattems.

By applying this method, it is possible to execute comparison between drugs by

the mixture proportions of the drug. The null hypothesis of comparison between Drug-l

and Drug-2 in this case is as follows.

$\mathrm{H}_{0\mathrm{P}\mathrm{m},\mathrm{D}\sigma- 1^{=\mathrm{p}_{\mathrm{m},\mathrm{I}\supset \mathrm{r}\mathrm{u}\mathrm{g}-\underline{0}}}}:\mathrm{r}\mathrm{u}_{\mathrm{s}}$ : $\mathrm{m}=1,2,3$ ,

where $\mathrm{p}_{\mathrm{m}}$ is mixing proportion of m-th pattern.

This part will need examining in the future.

One problem with this method is how to decide on the number of patterns to be

used. This has not been solved in the present study. In this study, the analysis is done

assuming 3 patterns, taking into account the observed data and an easiness of clinical

explanation. When the number of patterns is decided, we should decide it in

consideration of a feature of the drug and a clinical meaning.

In the analysis of this study, we assumed that all the subjects belonged to one of

the three variation pattem $\mathrm{s}$ . It is quite possible that data of some subjects may be

intermediate between two patterns in fact. Areas to be studied in the future include the

problem of how to handle patients who are difficult to belong to any one pattern.
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The variance-covariance structure within a patient is actually unknown. It is

necess ary to investigate the influence of misspecification the variance-covariance

structure within a patient. In actual analyses, it is quite difficult to specify the correct

variance-covariance structure within a subject. It will be desirable to use a robust

estimation method against the $\mathrm{m}\mathrm{i}\mathrm{s}$-specification cf variance-covariance structure within

a subject.
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