Cospectral graphs of the Grassmann graphs

Jack Koolen Dept Math. POSTECH Pohang, South Korea koolen@postech.ac.kr (joint work with Edwin van Dam) Let q be a prime power, and V be a n-dimensional space over the GF(q) the field with q elements. Let $1 \le e \le n-1$ be an integer.

The **Grassmann Graph** $G_q(n, e)$ has as vertices the *e*-dimensional subspaces and $S \sim T$ iff their intersection is (e - 1)-dimensional.

To construct graphs with the same spectrum as $G_q(n, e)$ we first will look at a partial linear space.

Let n, e be positive integers such that $4 \leq 2e \leq n$.

Let V be a n-dimensional vector space over GF(q)and

let H be a 2e-dimensional subspace of V. We first construct the partial linear space

 $\mathcal{LG}_q(n, e, e+1).$

Its points are the e-dimensional subspaces of V.

There are two kinds of lines:

Lines of the first kind: (e+1)-dimensional subspaces L of V which are not a subspace of H. A line L as points the e-dimensional subspaces contained in L.

b Lines of the second kind: (e-1)-dimensional spaces M contained in H. A line M has as points the e-dimensional spaces contained in H which contain M as a subspace.

Now
$$\mathcal{LG}_q(n, e, e + 1)$$
 has
 $\binom{n}{e}$ points,
 $\binom{n}{e+1}$ lines,
each point is incident with $\binom{n-e}{1}$ lines
and each line is incident with $\binom{e+1}{1}$ points.

Through any pair of points there is at most one line. If P and Q are points then they are on a line iff $P \cap Q$ is (e-1)-dimensional. Define $P_q(n, e+1)$ as the line graph of $\mathcal{LG}_q(n, e, e+1)$, that is its vertices are the lines of $\mathcal{LG}_q(n, e, e+1)$ and two lines are adjacent iff they have exactly one point in common.

Theorem 1 (i) $P_q(n, e+1)$ is cospectral with $G_q(n, e+1)$, (ii) $P_q(n, e+1)$ is distance-regular iff n = 2e + 1. (iii) $P_q(2e+1, e+1)$ is not isomorphic to the Grassmann graph $G_q(2e+1, e+1)$. (i) Let N be the point-line incidence matrix. Then $NN^T - [{n-e \atop 1}]I$ is the adjacency matrix of the point graph. As the point graph is clearly $G_q(n, e)$, we know the spectrum of NN^T . Now except for the zero eigenvalue the spectrum of NN^T is the same as the N^TN . This implies that $P_q(n, e + 1)$ is cospectral with $G_q(n, e + 1)$ as $NN^T - [{e+1 \atop 1}]I$ is the adjacency matrix for $P_q(n, e + 1)$.

(ii) If n < 2e + 1, then there is e + 1-dimensional space L which intersects H in a (e - 1)-dimensional space M Now in $P_q(n, e+1)$ the distance between L and M is 2 and it easy to see that they have $\begin{bmatrix} 2\\1 \end{bmatrix} \begin{bmatrix} e+1\\1 \end{bmatrix}$ common neighbours where in the Grassmann graph $c_2 = \begin{bmatrix} 2\\1 \end{bmatrix}^2$.

If n = 2e + 1, then it is possible to check that it is distance-regular. An easy way to see this is true we use a result by Fiol and Garriga which states that if a graph has the same spectrum as a distance-regular graph Γ with diameter d is distance-regular iff for all vertices x we have $k_d(x) = k_d(\Gamma)$. And this is easily checked.

(iii) Let n = 2e + 1. Let K be an (e+2)-dimensional space which intersects H in e + 1 dimensions. Now the (e + 1)-dimensional subsapces of K which are not contained in H forms a maximal clique of size $\begin{bmatrix} e+2\\1 \end{bmatrix} - 1$ in $P_q(2e + 1, e + 1)$, whereas the Grassmann graph $G_q(2e + 1, e + 1)$ has maximal cliques of sizes $\begin{bmatrix} e+2\\1 \end{bmatrix}$ and $\begin{bmatrix} e+1\\1 \end{bmatrix}$.

This shows the theorem.

(i) By looking at maximal cliques in $P_q(2e+1, e+1)$, it is easy to see that it is not vertex-transitive. The group $P \Gamma L(2e+1)_{2e}$ is an automorphism group of the graph. It was shown by M. Tagami that this is the full automorphism group.

(ii) For large q and e we were able to show that the local graph of a line of type 1 is not cospectral to the local graph of a line of type 2. We suspect that this is always the case. This implies, for example, that the the Terwilliger Algebra depends on the base vertex for $P_q(2e+1, e+1)$.