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1 Introduction
Duursma defined zata function of code first in 1999. After that, the defini-
tion of it was expanded even general linear code. Furtheremore, a Riemann
hypothesis analogue for self-dual linear code was formulated. In this paper,
we introduce Duursma’s theory.

2 Preliminaries
Let $C$ be a linear code of length $n$ and minimum distance $d$ over the finite
field of $q$ elements. Let $\mathrm{A}_{i}$ be the number of words of weight $\mathrm{i}$ in $C$ . The
weight distribution may be represented by a polynomial

$W_{\mathrm{C}}(x, y)= \sum_{i}^{n}\mathrm{A}_{i}x^{n-i}y^{i}$

called the weight enumerator.

Difinition 2.1 The zeta polynomial $P(\eta$ of $C$ is the unique polynomial of
degree at most $n-d$ such that generating function

$\frac{P(\mathrm{I}?}{(1-T)(1-qT)}(y(1-T)+xT)^{n}$

has expansion

. $..+ \frac{W_{C}(x,y)-x^{n}}{q-1}T^{\iota-d}+\cdot$ . .

The quotient $Z(T)=P(T)/((1-T)(1-qT))$ is called the zeta function of
the $l\mathrm{i}n$ ear code.
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Difinition 2.2 Let $C$ be a linear code over the field $F_{q}$ of $q$ elements has as
main parameters its length $n$ , dimension $k$ , and minimum distance $d$ . Then
dual code of $C$ is defined by

$C^{[perp]}=\{u\in F_{q}|u\cdot v =0\forall v\in C\}$ ,

where for all $u=$ $(u_{1}$ , . . . , $u_{n})$ and $v=(v_{1}, \ldots, v_{n})$ in $F_{q}$ , inner product $u\cdot$ $v$

is defined by
$u\cdot v=u_{1}v_{1}+\cdot$ . . $+u_{n}v_{n}$ .

Dimension and minimum distance of $C^{[perp]}$ is denoted by $k^{[perp]}and$ $d^{[perp]}$ respec-
tively.

Difinition 2.3 If C is equal to its dual code $C_{f}^{[perp]}$ then the code is called
self-dual code.

Theorem 2.1 For zeta polynomial $P(T)$ , the following holds.

(i) $\deg P(T)$ $=n+2-d-d^{[perp]}$

(ii) Let zeta polynomial and zeta function of $C^{[perp]}be$ $P^{[perp]}(T)$ and $Z^{[perp]}(T)$ re-
spectively. Then

$P^{[perp]}(T)=P( \frac{1}{qT})q^{g}T^{g+g^{[perp]}}$ ,

$Z^{[perp]}(T)=Z( \frac{1}{qT})q^{g-1}T^{g+g^{[perp]}-2}$ ,

where $g=n+1-k-d$, $g^{[perp]}=n+1$ $-k^{[perp]}-d^{[perp]}$ .

In particular, if $C$ is self-dual code, since $P(T)=P^{[perp]}(T)$ , the following
hold.

(i)’ $\deg P(T)=2g$

$(\tau \mathrm{i}\mathrm{i})$

’

$P(T)=P( \frac{1}{qT})q^{g}T^{2g}$

$Z(T)=Z( \frac{1}{qT})q^{g-1}T^{2g-2}$



$\mathfrak{g}\mathfrak{g}$

Proof. $[2, \mathrm{p}59]$ .

By the way, like these equations, there are some equations for weight
enumerator.

Theorem 2.2 For weight enumerator of $C$ , the following hold.

(i) $\overline{W}_{C}(x,y):=W_{C}(x+y, y)\Rightarrow\overline{W}_{C^{[perp]}}(x, y)=\frac{1}{|C|}\overline{W}_{C}(qy,x)$

(ii) $\overline{W}_{C}(z):=\overline{W}_{C}(1, z)\Rightarrow\overline{W}_{C^{[perp]}}(z)=\frac{(qz)^{n}}{|C|}\overline{W}_{C}(\frac{1}{qz})$

(iii) $W_{C}^{\dim}(x,y):= \sum_{R\subseteq N}\dim C(R)x^{n-|R\{}y^{|R|}$

$\Rightarrow W_{C^{1}}^{\dim}(x,y)=(x+y)^{n-1}\{(n-k)y-kx\}+W_{C}^{\dim}(y, x)$

3 A Riemann hypothesis analogue for self-
dual codes

Difinition 3.1 [3, p119 Def4.1] Let $C$ be self-dual code , $P(T)$ be its zeta
polynomial, $C$ is called that $C$ has the Riemann hypothesis prperty, when

for all zeros a of $P(T)$ , $| \alpha|=\frac{1}{\sqrt{q}}$ .

Difinition 3.2 Let $C$ be a self-dual code. $C$ is called extremal when equality
holds inihe following upper bounds.

(Type I) $d\leq 2\lfloor n/8\rfloor+2$

(Type $\mathrm{I}\mathrm{I}$ ) $d\leq 4\lfloor n/24\rfloor+4$

(Type III) $d\leq 3[n/12\rfloor+3$

(Type $\mathrm{I}\mathrm{V}$) $d\leq 2\lfloor n/6\rfloor+2$
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Four type is a classification of a non-trivial divisible self-dual code defined
over $F_{q}$ . A code is said to be divisible when all weights are divisible by an
integer $c$ greater than one. Type $\mathrm{I}$ , $\mathrm{I}\mathrm{I}$ , III and IV means $(q, c)=(2,2)$ , $(2, 4)$ ,
$(3, 3)$ and $(4, 2)$ respectively.

Problem [3, p119 open problem4,2] Do all extremal weight enumerators
hane the Riemann hypothesis property7

Example 3.1 [8,4,4] extended hamming code $C_{8}$ is a self-dual binary ex-
tremal doubly even code. It’s weight enumerators is

$W_{C\epsilon}(x, y)=x^{8}+14x^{4}y^{4}+y^{8}$ .

Hence, it’s zeta polynomial is

$P(T)= \frac{1}{5}(1+2T+2T^{2})$ .

Since $\alpha=\frac{1\pm \mathrm{i}}{2}$ , so $| \alpha|=\frac{1}{\sqrt{2}}=\frac{1}{\sqrt{q}}$ . So $C_{8}$ has the Riemann hypothesis

prope $rty$ .

Example 3.2 [72,36,16] code
If such a code exists, then the zeros all have same absolete value $\tau_{\dot{2}}^{1}$ .

Example 3.3 $C_{8}\oplus C_{8}\oplus C_{8}$ is the set of words $(a|b|c)$ where $a$ , $b$ , $c$ are
arbitrary words of $C_{8}$ . This code is type $II$ and not extremal This code is
not satisfy the Riemann hypothesis property.

Theorem 3.1 Extremal self-dual code of type IV has the Riemann hypothesis
property.

In [4], Duursma obtained this theorem. But, it seems that it can’t be
proved as for three other types yet. Like this, the necessary and sufficient
condition for zeta function of code to satisfy Riemann hypothesis property
doesn’$\mathrm{t}$ get clear yet
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