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Abstract
In our former works, for a given concept of reduction, we study the follow-

ing hypothesis: “For a random oracle $A$ , with probability one, the degree of
the one-query tautologies with respect to $A$ is strictly higher than the degree
of A.” In our former works, the following three results are shown: (1) the hy-
pothesis for polynomial-time Turing reduction is equivalent to the assertion
that the probabilistic complexity class $\mathrm{R}$ is not equal to $\mathrm{N}\mathrm{P}$ , (2) the hypoth-
esis for polynomial-time truth-table reduction implies that $\mathrm{P}$ is not $\mathrm{N}\mathrm{P}_{;}$ $(3)$

(to appear in Arch. Math. Logic) the hypothesis holds for polynom ial-time
bounded-truth-table reduction. In this note, we show that the hypothesis
holds for $(\log n)^{O(1\rangle}$ -question truth-table-reduction (without polynomial-time
bound). As applications of this result, we show a lower bound and an upper
bound of forcing complexity (i.e. , the minimum size of forcing condition that
forces a given formula) of the one-query tautologies with respect to a random
oracle. We show that if $A$ is a random oracle then with probability one, the
forcing com plexity of the one-query tautology with respect to $A$ is greater
than polynomial of $\log|F|$ , and it is at most $O(|F|^{2})$ , where $|F|$ denotes the
length of a formula.
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1 Preface

In our former works [Su98, $3\mathrm{u}99$ , SuOO, SuOl, Su02, Su05], by extending the work
of Ambos-Spies [Am86] and related works, we consider the relationships with the
canonical product measure of Cantor space and complexity of one-query tautologies.
A form ula $F$ of the relativized propositional calculus is called $a$ one-query forumla
if $F$ has exactly one occurrence of a query symbol. For example,

$(q0 \Leftrightarrow\xi^{3}(q_{1}, q_{2}, q_{3}))\Rightarrow$ (Vt $\Rightarrow$ Vo)

is a one-query formula, where $q_{0}$ , $q_{1}$ , $q_{2}$ , $q_{3}$ are usual propositional variables. We
assume that each propositional variable takes the value 0 or 1 (0 denotes false and
1 denotes true). And, $\xi^{3}$ in the above formula is a query symbol. For a given oracle
$A$ , a function $A^{3}$ is defined as follows, where A is the empty string, and the query

symbol $\xi^{3}$ i $\mathrm{s}$ interpreted as the function $A^{3}$ .

$A^{3}(000)=4(\mathrm{A})$ , $A^{3}(001)=A(0)$ , $A^{3}(010)=A(1)$ , $A^{3}(011)=A(00)$ ,
$A^{3}(100)=A(01)$ , $A^{3}(101)=A(10)$ , $A^{3}(110)=A(11)$ , $A^{3}(111)=A(000)$ .

Thus, more informally, the following holds for each $j=0,1$ , $\cdots$ , $2^{3}-1$ , where the

order of strings is defined as the canonical length-lexicographic order.

$A^{3}$ ( the $(j+1)\mathrm{s}\mathrm{t}$ 3-bit string ) $=A$( the $(j+1)\mathrm{s}\mathrm{t}$ string ).

For each $n$ , an n-ary Boolean function $A^{n}$ is defined in the same way, and an inter-
pretation of the query symbol $\xi^{n}$ is defined in the same way. For an oracle $A$ , the

concept of a tautology tiyith respect to $A$ is defined in a natural way. If a one-query
formula $F$ is a tautology with respect to $A$ , then we say $F$ is a one-query tautology

with respect to A. The set of all one-query tautologies with respect to A is denoted
by $1\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{A}$ .

In [Su02], for a given concept $\leq_{\alpha}$ of reduction, we study the following hypothesis,

where ITAUT denotes the set of all one-query tautologies with respect to an oracle
$X$ .
One-query-jump hypothesis for $\leq_{\alpha}$ : The class $\{X : 1\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{X}\leq_{\alpha}X\}$ has

measure zero.
For a given reduction $\leq_{\alpha}$ , we denote the corresponding one-query-jump hypoth-

esis by $[\leq_{\alpha}]$ .
In [Su98] , it is shown that the one query-jump hypothesis for p-T reduction is

equivalent to “
$\mathrm{R}\neq \mathrm{N}\mathrm{P}$ .”

And, in [Su02] , it is shown that the one query-jump hypothesis for p-tt reduction

implies “
$\mathrm{P}\neq \mathrm{N}$P.”

In [Su05], we show that the one query-jump hypothesis for p-btt reduction

holds, where p-btt denotes polynomial-time bounded-truth-table reduction. The
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anonymous referee of [Su05] noticed that the one query-jump hypothesis holds for
bounded-truth-table reduction without polynomial-time bound, and Kumabe inde-
pendently noticed the same result. The referee ’s proof, which may be found in [Su05] ,
uses some concepts of resource-bounded generic oracles in [$\mathrm{A}\mathrm{M}97\mathrm{J}$ . Kumabe’s proof
is more simple.

In \S 3 of this note, we introduce Kumabe’s proof of the above result. In \S 4, we
extend the result, and show that the one query-jump hypothesis holds for $(\log n)^{O(1)_{-}}$

question $\mathrm{t}\mathrm{t}$-reduction (without polynomial-time bound). In \S 5, as applications of the
result in \S 4, we show a lower bound and an upper bound of forcing complexity (i.e.,
the minimum size of forcing condition that forces a given formula) of the one-query
tautologies with respect to a random oracle. We show that if $A$ is a random oracle
then with probability one, the forcing complexity of the one-query tautologies with
respect to $A$ is greater than $(\log|F|)^{O(1)}$ , and it is at most $O(|F|^{2})$ .

The three of authors had a meeting at July 22023, 2004, at the office of $\mathrm{T}.\mathrm{S}$ . in
Osaka Prefecture University. This note is a research memo on the meeting, and is
an extension of [Su05].

2 Notation
Most of our notation is the same as that of [Su02] and [Su05], and almost all un-
defined notions may be found in these papers. An article by Kawanishi and Suzuki
[KS05] in this volume of Surikaisekikenkyusho Kcikyuroku contains basic definitions
on the relativized propositional calculus and Dowd-type generic oracles. The journal
version of [Su02] may be purchased at Science Direct.

http: $//\mathrm{w}\mathrm{w}\mathrm{w}$ .sciencedirect. $\mathrm{c}\mathrm{o}\mathrm{m}/\mathrm{s}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{n}\mathrm{c}\mathrm{e}/\mathrm{j}$ ournals

$\omega$ stands for $\{0, 1, 2, 3 \cdots\}$ , while $\mathrm{N}$ stands for $\{1, 2, 3 \cdots\}$ . In some textbooks,
the complexity class $\mathrm{R}$ is denoted by $\mathrm{R}\mathrm{P}$ . For the detail of the class $\mathrm{R}$ , see for
example [BDG88].

The definition of polynomial-time truth-table reduction and its variant may be
found in [LLS75].

3 Bounded truth table reduction
In this section, we show the following.

Proposition 1 The Lebesgue measure of the set

{$X$ : ITAUT $\leq_{\mathrm{b}\mathrm{t}\mathrm{t}}X$ }

is zero. In other words, one-query jump hypothesis [Su02, Su05] for bit-reduction
(without polynomial-time bound) holds
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Sketch of proof (due to Kumabe) :
For each oracle $X$ , let $L^{X}.-- \bigcup_{n}\{(u, v, w)\in\{0,1\}^{n}$ : $|u|=|v|=|w|=$

$n$ and $X^{n}(u)=X^{n}(v)=X^{n}(w)\}$ . It is easy to see that $L^{X}\leq_{\mathrm{m}}^{p}1\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{X}$ .
Suppose that $f$ is a recursive function such that for each string $x$ , it holds that

$f(x)$ is of the form $(\varphi_{x}, s_{x,1}, s_{x,2})$ , where $\varphi_{x}$ is a function from $\{0, 1\}^{2}$ t$\mathrm{o}$ $\{0,1\}$ , and
$s_{x,1}$ , $s_{x,2}$ are strings.

It is enough to show the following class has measure zero.

{$X$ : $L^{X}$ i $\mathrm{s}$

$2\mathrm{t}\mathrm{t}$-reducible to $X$ via $f$
.
}

For each forcing condition $S$ , there exists strings $x^{(1\rangle}$ , $x^{(2)},x^{\langle 3)}$ , $x^{(4)}$ , $x^{(5)}$ and a
forcing condition $T$ such that

(1) $\mathrm{d}\mathrm{o}\mathrm{m}T=\mathrm{d}\mathrm{o}\mathrm{m}S\cup\{x_{t}^{\langle 1)}x^{(2)}, x^{(3)}, x^{(4\rangle}, x^{(5)}\}$ , and
(2) for any oracle $X$ extending $T$ , it holds that $L^{X}$ i $\mathrm{s}$ not $2\mathrm{t}\mathrm{t}$-reducible to $X$ via

$f$ .
Therefore, the class {$X$ : $L^{X}$ i $\mathrm{s}$

$2\mathrm{t}\mathrm{t}$-reducible to $X$ via $f$ } has measure zero. $\square$

4 $(\log n)^{O(1)}$-question tt-reduction

Theorem 2 The Lebesgue measure of the following set is zero.

$\{X : \mathrm{I}\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{X}\leq_{\langle\log n)-\mathrm{t}\mathrm{t}}\circ(1\rangle X\}$

In other words, one-query jumP hypothesis for $(\log n)^{O(1)}$ -tt-reduction (without
polynomial-time bound) holds.

5 Lower and upper bounds to forcing complexity

Theorem 3 Let $D_{\log}$ be the class of all oracles $D$ such that there exists a positive
integer $\mathrm{c}$ ($c$ may depend on $D$) of the following property. For any $F\in 1\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{D}$,
there exists a forcing cona ition $S\subseteq D$ such that $S$ forces $F$ to be a tautology and

$|$ dom $S|\leq(\log|F|)^{c}$ .

Then $D_{\log}$ has measure zero.

Question: Is $D_{\log}$ empty ?.

Theorem 4 Let $D_{\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}}$ be the class of all oracles $D$ such that there exists a positive
integer $c$ ($c$ may depend on $D$) of the following property. For any $F\in 1\mathrm{T}\mathrm{A}\mathrm{U}\mathrm{T}^{D}$,

there exists a forcing condition $S\subseteq D$ such that $S$ forces $F$ to be a tautology and

$|$ dom $S|\leq c|F|^{2}+c$ ,

where $|F|$ denotes the length of the binary code of $F$ .
Then $D_{\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}}$ has measure one.
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Question: Let $D_{1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}}$ be the class defined similarly to $\mathcal{D}_{\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{d}}$ by using a linear
formula $c|F|+c$ instead of a quadratic $c|F|^{2}+c$ . Then, is $D_{1\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{a}\mathrm{r}}$ empty? If non-
empty, does it have positive measure?
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