obooo0oooOoooO 14420 20050 48-67

48

DENOTATIONAL SEMANTICS EXCLUDING
WEAK-EXTENSIONALITY IN SIMPLE TYPES

HEHIRERFRBFFEARFEER FBARZ (TOSHIHIKO KURATA)

Department of Mathematics, Tokyo Metropolitan University
Minami-Osawa, Hachioji-shi, Tokyo 192-0397, Japan®
t~-kurata@comp.metro-u.ac.jp

1. INTRODUCTION

In the study of denotational semantics of programming languages, we of-
ten employ the notion of function as a denotation of a program. Actually, for
a wide variety of systems of A-calculus, a number of successful mathematical
frameworks have been obtained so far according to this line. For example,
the models of type-free A-calculus presented in [3, Chapter 18] and [10] are
well-known under the name of A-model nowadays. However, on the other
hand it seems rather strong to ignore the internal feature of algorithms by
means of the extensionality of functions. In this explication, we considering
two algorithms with different internal structures, their denotations come out
to be identified when they always return the same result of application.

Contrary to this strong aspect of the ordinary semantics, we make an
attempt to present a general framework of semantics in which S-equality of
A-calculus is ensured to be sound without using the notion of extensional-
ity. In terms of semantics of type-free A-calculus, such structures exactly
correspond to the notion of A-algebras. For this requirement, we need an-
other mathematical notion to model A-abstraction and application in par-
ticular, for which we adopt the arrows of a version of free semi-cartesian

closed category and introduce a notion of their application. This induces

two viewpoint of interpretation. One is a certain fine viewpoint to capture
an internal structure of A-abstraction, and the other is a coarse viewpoint
to evaluate the result of application.

As a preliminary study on the motivation above, we first confine our
attention to the syntax of simply typed A-calculus. Hence, we need not
ensure the existence of any fixed point of the arrows and any isomorphism
among the objects. This means that we do not employ any result of domain
theory for our construction. As a future work, we leave the problem to
Incorporate domain theoretical discussion into our construction, which might

This research was supported in part by Grant-in-Aid for Young Scientists (B) No.
14780235 of the Ministry of Education, Culture, Sports, Science and Technology, Japan.
IAddress for correspondence from April 2005: Faculty of Business Administration,

Hosei University, Fujimi 2-17-1, Chiyoda-ku, Tokyo 102-8160, Japan.

lead us to models working on stronger paradigms of computation, such as
PCF and type-free A-calculus.

The content of this paper is as follows: In Section 2, we review the syntax
of simply typed A-calculus and its models. We especially take two notions
of models under our consideration by analogy with the semantical study
of type-free A-calculus. Ome is a counterpart of the notion of A-algebra
in which we only require that denotations of A-terms are invariant under
[-equality. The other is a counterpart of the notion of A-model, which is
endowed with the property of weak-entensionality. In Section 3, we are to
present a free-category F¢ so as to accomplish our expecting semantics.
The construction of F¢ is similar to the one studied in [8, Chapter 1], and
we first introduce an underlying graph #g. In the process of generating
ZFa, we explicitly define a notion of application of arrows by means of a
reduction for evaluation. We then introduce an equality on arrows. It is
substantially the equality of semi-cartesian closed category, but comes out
to be comparable with the equality of cartesian closed category for arrows
applied to a member of their domain. This presentation of equality would
be a key to manipulate the information concerning extensionality of models.
Tn Section 4, we finally present our model # of simply typed A-calculus.
As for the model Z, we know that 7-axiom is sound but n-equality is not
in general, which inevitably entails the fact that weak-extensionality does
not hold in 4. This sharply contrast to the model obtained from #¢ by
following the standard construction in [5, Chapter 3], in which it is not clear
whether weak-extensionality holds or not.

2. SIMPLY TYPED A-CALCULUS AND ITS MODELS

We fix a set of atomic types throughout this paper, from which the set of
simple types is generated by the following abstract syntax:
cu=a|lloxolo—0o

in which o varies over the set of type constants. We restrict our attention
only to typed A-terms of these simple types which are inductively generated
by the following rules:

- M:oxT
(Var) z°: 0 (Fst) (D) o
. M:0 N:T M:oXT
(Pair) (M,N):o0xT (Snd) snd(M): 7
M:oc—>1 N:o M:T
(App) MN 71 (Abs) M M:o—T

We use letters o,7,v,... as meta-variables to designate simple types and
M, N,... to designate typed A-terms, and specify the unique type o of a
A-term M by the expression M : o. For a A-term M, we write FV(M) for

49

o0

the set of free-variables appearing in M. For detailed explanation syntax of

this system, see [7, Chapter 5] for example.
Next we briefly review some semantical frameworks for simply typed A-

calculus. A typed applicative structure is defined by a 5-tuple
([]%®¢, Fst, Sud, Pair, App)

of functions such that the first component, called type-interpretation, as-
signs a non-empty set [o]¥P® to each simple type o, and the others assign
functions

Fst® : [o x 7]%P° — [o]%Pe,

Snd?” : Jo x 7P — [7]7P¢,

Pair®” : [o]W¥P® x [7]®P° —s [o x 7]7F¢,

App®T : [o — 7]PE x [o] VP — [7]7PS,
to each pair of simple types ¢ and 7, respectively. In a typed applicative
structure, an interpretation of free-variables is presented by a mapping &,
called an environment, which maps each term-variable z% to an element
of [o]™P¢. We say that a typed applicative structure is a weak-eztensional
model of simply typed A-calculus if we are able to determine a meaning of
each A-term with respect to an environment, more precisely, to introduce a

mapping [[*™™, called term-interpretation, which assigns a member [M }jgerm
of [o]%P® to each pair of environment £ and A-term M of type o, and which

satisfies

(1) V2 €FV(M) £@7) = p(a”) = [M]E™ = [M]™,

2 [27]F™ = ¢(2),

(3) [fst(M)]E™ = Fst”7 ([M]E™),

4) [snd(M)JF™ = Snd™ ([M]E™),

(5) [(M,N)EF™ = Pair™ (JM]™, [NJE™),

(6) [MNJE™ = App® ([M]E™, [N]E™),

(7) App™ (P MIE™,d) = M]3, o),

() Vi € [o"™ App® ([Aa” MIE™, d) = App™ ([ra® NTE™, d)
= [Aa”. MIF™ = [NJE™,

if all types appearing in these expressions are assigned consistently. Here
the expression £(z7 : d) in (7) designates the environment ¢ with the value
of the variable z7 updated to d € [o]™P®; that is, the value of £(z7 : d)(y")
is defined by d if y™ = 27, and by {(y") otherwise. We call (8) the property
of weak-extensionality. In what follows, we omit the superscripts to distin-
guish type-interpretation and term-interpretation because of less possibility
of confusion, denoting both of them simply by [].

When a weak-extensional model satisfies even the following strong version
of extensionality, it is said to be an eztensional model.

9) vd € [o] App”7(f,d) = App”T(g,d) = f=yg

Tt is clear that (9) implies (8). In some standard literatures, such as [5] and
[9], semantics of simple types have been studied only through the structures
comparable with extensional models, possibly under the name of type-frame
or Henkin-model.

One of the reason why we require (8) or (9) in the definitions above might
be that those enables us to determine the denotation of a A-abstraction
Az .M uniquely based on its extensional behaviour; namely, as the unique
element satisfying (7). This makes the presentation of term-interpretation
considerably simpler, which is actually presented by mere induction on the

structure of A-terms.
By contrast, in this paper we focus our attention to a weaker variant of

semantical frameworks in which a term-interpretation only satisfying the
equalities (1)-(6) plus the following conditions:

(10) M =g N =>v¢ [M]e=[N]

We call the structures satisfying these requirements models of simply typed
A-calculus. Note that (7) is satisfied in every model.
It is well-known that in every weak-extensional model (9) can be replaced

with each of the following condition:

(11) Vf II:A:L,O'—%TyO';mG'—}Ty{T]]g — ﬂ:)‘l,a-—}'r.zo'—%'r]k
(12) 27 ¢ FV(M) == V¢ [a®.Mz%]e = [M]¢

In this respect, we note that (11) implies (12) even in every model. However
the converse does not hold in general, a counterexample of which we are
actually to present at the end of this paper.

3. A FREE CATEGORY OF SEMI-CCC OPERATIONS

For giving our categorical framework to model simple types, we begin
with a graph underlying it. Let us first consider a sequence Ag, Ay, Ag, ...
of non-empty sets. Then, objects of this graph are given by the sets each of
which is denoted by [7] for some simple type 7 and generated in conjunction
with arrows by the following simultaneous induction:

a € A; = a € {0y,

« € [1],

a€lo] & ber]=(a,b) €[oxT],
s € Homg, ([o],[7]) => s € [0 — 7],

51

52

idg,1 € Homgy ([0}, [0]), Ofe] € Homg ([o], [1]),
Po],r] € Homg, ([o % 7], [0]), qe),[r] € Homg, (o x 7, [7]),
eV[g)jr] € Hom g, ([(T — o) x 7], [a]),

a € [o] = *\va € Homg([1], []),

s € Homg, ([0}, [r]) & t € Homg, (7], [v])
= tos € Homg,([o], [v]),

s € Homg,([o],[7]) & t € Homg,({o], [v]) |
= (5,t) € Homg, ([0}, [T x v]},

s € Homg, ([0 x 7}, [v]) == Cur(s) € Homg,([o], [T — v])-

Here, we designate the set of arrows from [o] to [r] by Homg, ([o], [7])- We
write .#¢ for the graph so obtained. According to the conventional notatiomn,
we also write Ob(Fg) for the set of its objects and Ar(Fq) for the set of
its arrows. We also denote the set of members of all objects in Fg by T;
namely, |

T = (J{[o] | o is a simple type}.

Note that Ar(Fg) C T. We use letters s,t,u,v, ... as meta-variables to des-
ignate elements of Ar(#¢), and a,b, ... to designate elements of T. Unless
it does not cause confusion, we drop the information of objects appearing
in atomic arrows.

We next establish a notion of application for the arrows of this graph,
considering an extension of the graph . It is defined by the same way as
Fq except that we denote each object by [o]* for some simple type o, and
that we add the following rule for generating its elements:

a€lo=7]* beo]*
a(b) € [7]*
We designate this extended version of graph by %}, and denote the set of
members of objects in &3 by T*; namely,

T = J{[o]" | v is a simple type}.

By the expression s(a) in particular, we intend to describe the result
of application of an arrow s to a member a of its domain, which would
inevitably lead us to a notion of reduction for evaluation. To be more precise,
we consider the smallest binary relation ~» on T* satisfying:

id(a) ~ a, ola) ~ %,
p(a,b) ~ a, (s 0 t)(a) ~ s(t(a)),
a(a,b) ~ b, (s,8)(a) ~ (s(a), (a)),

ev(a,b) ~ a(b),
(x\a)(x) ~ a,
a~>b
(a,c) ~ (b,c)
a~h
a(c) ~ b(c}
g~ t
uos~uot
s~ 1
(8, u) ~ {t,u}

g~ 1

Cur(s) ~» Cur(t)

53

Cur(s)(a) ~ 50 { (+™a) 0 0, id),

a~b
(c,a) ~ (c,b)
a~b
c(a) ~ c(b)
s~ 1
sou~tou
8§~ 1
{u, 8) ~ {u,1)
a~b

* N a %N\ b

According to the usual convention, we designate the reflexive closure of this
relation by ~»=, the transitive closure by ~»7 and the reflexive transitive
closure by ~*.

This term rewriting system turns out to be complete. Actually, it is
immediate that the reduction ~ does not yield any divergent critical pair
and thus satisfies weak Church-Rosser property.

Contrary to this, it seems rather difficult to confirm that no infinite reduc-
tion sequence arises under any reduction strategy. To see it, let us suppose

that

SN = {a € T* | a is strongly normalizable},
SN~ = {s(ag)--- (a,) € T* | s € Ar(#3),n € N and ag,...,a, € SN},

and that v(a) is the length of a longest reduction path starting from a
member a of SN. To show the equality SN = T*, we still need to consider
a restricted version of the reduction, under which we are allowed to reduce
the redex only in the head position. Specifically, we define a reduction ~p,
as the smallest relation satisfying the same axioms as ~» and the following

rules:
Ve, d a # (c,d) a~p b Ve, d a # (¢, d) a~pb
p(a) ~ p(b) a(a) ~n q(b)
Ve, d a # (c,d) a~pb b+ x b~y c
ev(a) ~p ev(b) (x\ea)(b) ~n (x\a){c)

a ~p b
a(c) ~+1 ble)

Under these preparations, we can now demonstrate our proof of strong nor-
malizability.

54

Lemma 1. (i) If s ~p, t1 and s ~» tg, then there exzists a term i3 such that

ty ~* t3 and i3 ~f L3,
(ii) If s ~p t where s € SN™ and t € SN, then s € SN.

Proof. (i) We show the statement by induction on the structure of s, and
distinguish cases on the generation of s ~p t;. We study some principal
cases below, in which we do not study the case where £; = 3 since we can
adopt itself as 23:

Case 1: Suppose p(a, b) ~»; a. Then a possible form, except a, of 5 is either
p(a’,b) or p(a,b’) where @ ~» o’ and b~ b'. Thus, we can set t3 = a’ for the
former and t3 = a for the latter.

Case 2: Suppose {u,v}(a) ~p (u(a),v(a)). Then a possible form, except
(u(a),v(a)), of tg is either {(«/,v}(a), (u,v')(a) or (u,v)(a’) where u ~ o/,
v ~ v and @ ~ a/. As for them, we can adopt (u'(a),v(e)), (u(a),v'(a))
and (u(a'),v(a’)) as t3, respectively.

Case 3: Suppose Cur(t)(a) ~p to {(x*\ya) o O,1d). Then a possible form,
except £ o ((x \ya) o O,id), of ¢ is either Cur(t')(a) or Cur(t)(a’) where
t ~ t' and a ~» a’. Thus, we can set t3 =t' o ((x\ya) 0 O, id) for the former
and f3 =to {(x\ya') 0 O,id) for the latter.

Case 4: Suppose p(a) ~»; p(b1) where a is not a pair and a ~»;, b;. Then a
possible form, except p(b1), of tg is p(ba) where a ~» by # b;. Here, whether
b1 is of the form {c,d} or not, we know that b is not in the form of pair;
indeed, it is unable to reduce a to a pair by ~ when a ¥, (¢, d) and to a pair
other than (¢, d)} when a ~, (¢, d). Thus, applying the induction hypothesis,
we can find a term bg such that b; ~»* b3 and by ~3 b3. Therefore we can
set t3 = p(bs)-

Case 5: Suppose (*\ya){b)} ~p, (¥ \¢a)(c;) where b ~»p, ¢;. Then a possible
form, except (x N\, a)(c1), of ty is either (x N\, a’}(b) or (x N\ a)(cz) where
a ~ a' and b ~ ¢y # c¢1. The former case does not yield any difficulty;
indeed, we can set t3 = (x \ya')(e1). In the latter case, even if ¢; 5 *, we
know that ¢y # *; indeed, it is unable to have b ~» * when b ¥y *. Thus,
applying the induction hypothesis, we can find a term c3 such that ¢; ~* ¢3
and ¢z ~7 c3. Therefore we can set t3 = (¥ \,a)(cs).

Case 6: Suppose u{a) ~, vi(a) where u ~} vy. Then a possible form,
except v {a), of ¢ is either vy(a) or u(a’) where u ~ vg # v; and @ ~ a@’. In
the former case, applying the induction hypothesis, we can find a term v
such that v; ~+* v3 and vy ~} vs; thus we can set t3 = vs(a). In the latter

case, we can set t3 = v1{a’).

(ii) Note that, from the assumption, we may describe s = u(ap) - - - (an) for
some u € Ar(Z#3), n € Nand ag,...,a, € SN. So we show the statement
by induction on the degree

v(t) + ,:Z;u(ai)

of the reduction step s ~» . It suffice to prove that terms, except ¢, ob-
tained from s = u(ag)--- (an) by one step reduction on ~» are all strongly
normalizable, and we exhibit proofs of some principal cases in the following:
Case 1: Suppose ev(a,b){a1)--- (an) ~n a(b}(ai)---(an). Then we obtain
the strong normalizability of ev(a’,b)(a1)-- - (an) if a ~ a'. This is because
degree of the reduction step ev{a,b)(a1)---(an) ~p @' (b)(a1)---(an) is
strictly smaller than that of the original one, and we can apply the induction
hypothesis. Analogously, ev(a,¥)(a1)--- (an) and ev(a,b)(a1)--- (a}) --- (an)
are both shown to be strongly normalizable if b ~» ¥ and a; ~ a/.

Case 2: Suppose (x \a)(b)(a1)---(an) ~n (x \a)(¥')(a1)---(an) where
b ~-p, b'. We first concentrate on a reduct of the form (x\a)(c)(a1)--- (an)
where b ~ ¢ # b'. In this case, even if ¥ # %, we know that ¢ 3 x, as is
observed in the proof of (i). So (i) guarantees the existence of a term ¢
such that ¢ ~»3 ¢’ and ¥ ~* ¢/. Here, we obtain the strong normalizability
of (x\ya)(c)(a1)--- (ay) even though ¢ # ¢/. This is because degree of the
reduction step (x \ya)(c){a1)--- (an) ~r (* \va)(c}(a1) - (an) is strictly
smaller than that of the original one, for which we can apply induction
hypothesis. The other reducts we need to verify are either of the form
(+ \ea@)()(a1) - (an) or (x \ca)(b)(a1)---(a}) -+~ (an) where a ~ o’ and
a; ~ a,. Their strong normalizability are obtained straightforwardly by
means of the induction hypothesis. 1

The proof of the strong normalizability which we present here uses a no-
tion of computability predicate. For every [o]* € Ob(F7), we define a set
Comp([o]*) by induction on the structure of o, as follows:

Comp([e]*) = {a € [0]* | a is strongly normalizable}
Comp([1]*) = Compy([1]") U Comp; ([1]*)
[

Q

=)

8
=
E)
S
N

i
-
=}

m
)

1
O,

*
<
o
m
Q
@]
B

=4
=)

-

Q
.
=
m
Q
Q
8
=
=X

N

Nt

Compy([1]*) = {*}
)={a€SN”|3n € Niay,...,an € SN~
@ ~p @1 ~p R OGn ~h %)

|

Compg(fo x 7)*) = {{a,8) € [o x 7]" |a € Comp([o]*) b € Comp{[7]*)}
Comp, ([o x 7]*) = {a € SN |In € Nay,...,an € SN

3b € Comp([o]*) Fc € Comp([7]")

a~p a1 g -~ an o (b e)}

Lemma 2. The following hold for every [o]* € Ob(F3):

(i) Comp(io]") # 0.

(ii) If a € Comp({o]*), then a € SN.

(iii) If a ~+;, b where a € SN and b € Comp([o]*), then a € Comp({[o]*).

59

56

Proof. We simultaneously verify all of the statements above by induction on
the structure of o:

(i) Suppose o is of the form 7 — v. Then we can find a member ¢ €
Comp([v]*) by the induction hypothesis of (i), and

((x\c0) 0 0)(b) ~n (¥ \e)(O(b))
~h (%) (#)

v-)hc

holds for every b € Comp([7]*). Thus, applying the induction hypotheses
of (ii) and (iii), we obtain ((* \ c) ¢ O)}(b) € Comp([v]*}. As a result, we
conclude (x N\ ¢} o O € Comp([r — v]|*). Proofs for the other cases are
immediate, which we omit.

(ii) If o is a type constant other than 1, then the statement is clear from the
definition. So we confirmn the other cases below:

Case 1: Suppose a = (b,¢) € Compy([r x v]*), which entails b € Comp([7]*)
and ¢ € Comp([v]*). Then b,c € SN, and so (b,c) € SN, follows by the
induction hypothesis of (ii).

Case 2: Suppose a € Compy([r x v]*); that is,

G ~op A g - v G~ (b €)

for some ay,...,a, € SN, b € Comp([7]*) and ¢ € Comp([v]*). Then we
obtain (b,¢) € SN as the preceding case. Thus consecutive applications of
Lemma 1 (ii) completes the proof of this case. We can also verify the case
where a € Comp, ([1]*) likewise.

Case 3: Suppose a € Comp([r — v]*). By virtue of the induction hypothesis
of (i), we can find at least one element, say b, in Comp([7]*). Thus a(b) €
Comp([v]*), from which a(b) € SN follows by induction hypothesis of (ii).
This entails ¢ € SN.

(iii) Suppose b € Comp([r — v]*) and ¢ € Comp([r]*). Then a(c) ~ b(c)
and b(c) € Comp([v]*} are clear from the definition. Here a{c) € SN~ holds
because ¢ € SN by induction hypothesis of (ii). Thus a{e) € Comp([v]*) by
induction hypothesis of (iii). So we conclude a € Comp([r — v]*). The other
cases are ensured by Lemma 1 (ii) and the definition of the computability
predicate. 0

Lemma 3. (i) If a € [0]*, then a € Comp([c]*).
(ii) If s € Homgg ([o]*, [7]"), then s € Comp([o — 7]*).

Proof. By simultaneous induction on the generation of ¢ and s. It is straight-
forward to confirm (i). Especially, the case where it is a member of an
exponential as an arrow of %} is ensured by the induction hypothesis of
(ii). Cousidering the case where a(b) € [r]* is induced from a € [o — 7]*
and b € [0]*, we obtain a(b) € Comp([7]*) by induction hypothesis and the
definition of the computability predicate.

We then study (ii). As an exemplification concerning base cases, we
concentrate on the case where s = ev as an arrow from [(7 — o} X 7]* to
[o]*. We let b € Comp; ([(— o) X 7]*). Then we have a reduction sequence

ev(b) ~p - -~y ev{c, d) ~h c(d)

for some ¢ € Comp{[r — o]*) and d € Comp([r]*). Here note that all
terms appearing in this sequence belong to SN~ by Lemma 2 (ii) and that
¢(d) € Comp([c]*) follows from the definition of the computability predicate.
Thus we obtain ev(h) € Comp([o]*) by means of Lemma 2 (iii). Likewise,
ev(c,d) € Comp([o]*) holds for every (c,d) € Compy([(— o) X 7]*). Asa
consequence, we obtain

ev € Comp([(T = o) x 7 = 0]").

Turning our attention to compound terms, we consider the case where s =

Cur(t) as an arrow from [o]* to [t — v]*. We let b € Comp([o]*) and

¢ € Comp([7]*). Then we have
Cur(2) (b)(c) ~ (t o ((x\b) 0 O,1d))(¢)
I t(((*\b) o O,id)(c)).
Here we know ((* \,b) o 0)(c) € Comp([c]*) by applying Lemma 2 (iii) to
the reduction sequence
((x\eb) 2 O){e) ~n (x\B)(O(0))

~p (6 \0) (¥)

~h ba
and id(c) € Comp([r]*) likewise. So {(* \yb) 0 ©,id}(c) € Comp([o x 7}*)
follows, and hence t({(* \y b) o O),id}(c)} € Comp([v]*) by the definition
of the computability predicate and the induction hypothesis of (i1). This
together with Lemma 2 (iii) implies Cur(t)(b){c) € Comp([v]*). This is the

reason why
Cur(t) € Comp([oc — 7 — v]).

Proofs for the other cases are similar, which we omit. O
Combining Lemma 2 (ii) and Lemma 3 (i), we now obtain the strong nor-

malizability which we expected. Accordingly, it follows from the discussion
presented here that every a € T* has unique normal form in T, for which

we write [a]n-
Theorem 4. If a € T*, then a € SN.

Next we introduce an equality ~ among the elements of T so as to make
the graph Zg a free semi-ccc which we expect. It is defined to be the
smallest equivalence relation satisfying
(13) evo {(x a) 0 0,id) ~ a,

(14) s o (x\a) ~ N\ [s(a)ln,

57

58

as well as the following axioms and rules of semi-ccc:

ido s ~ s, soid ~ s,
(sot)ou~so(tou), (s,t)ou~ {sou,tou),
po {s,t) ~ s, go (s, t) ~1,
ev o (Cur(t) ou,v) ~to (u,v), Cur(s)ot~ Cur(so (top,q}),
a~b an~b
(a,c) ~ (b, c) (c,a) ~ (¢, b)
s~ s~1
sou~tou hos~uot
§~1 s~ t
{s,u) ~ (t,u) {u, 8) ~ {u,t)
s~ a~b
Cur(s) ~ Cur{t) *N\ya ~ N\ b

As usual, we are to model A-terms as arrows of our introducing semi-
cce. Thus, from the viewpoint of our main purpose to discard the weak-
extensionality from our semantics, it is essential that extensionality of the
application of arrows is not established modulo the equality ~. To ensure
it, we need allow the existence of s,t € Ar(%¢) such that [s{a)]x ~ [t(b)]x
holds whereas s -4 ¢. In this respect, we require the equality of ccc under
the equality of extensional collapse. Indeed, incorporating (13) allows us to
identify [Cur(ev)(a)lv and [id(a)]n for every a. We also adopt (14) in our
definition, which implies the well-definedness of the application of arrows
modulo the equality ~.

Lemma 5. For every s,t € Homg, ([0, [7]) end a,b € [0], [s(a)]n ~ [t(b)|n
follows whenever s ~t and a ~ b.

Proof. By induction on the number v(s(a)) + v(t(b)). We distinguish cases
on the generation of s ~ #:

Case 1: Suppose s = idow and ¢t = u. Then we have v(u(a)) < v(s(a)) since
s(a) ~7T u(a), so that [s(a)]xy = [u(a)ln ~ [u(b)]y follows by the induction
hypothesis.

Case 2: Suppose s =uo (vow) and t = {(uov)ow. Then we have

v{w(a)) < v(s(a)} and v(w(b)) < v(t(b))
because s(a) ~* u(v(w(a))) and t(b) ~T u(v(w(b))). Therefore we ob-
tain [w(a)ly ~ [w(b)]y by induction hypothesis. Furthermore this implies
[v([w(a}]n)In ~ [v([w(b)]n)]n by induction hypothesis, so that
[v(w(a))]y ~ [v(w(a))]x.

This is because we have v(v{[w(a}]n)) < v(s(a)) from s(a) ~T u(v([w(a)lx)),
and v{v([w(b)]x)) < v(t(h)) likewise. By applying the same discussion

again, we obtain [u([v(w(a))]n)In ~ [u([v(w(b))]n)]x and conclude [s(a)ly ~

[t(b)]n-

Case 3: Suppose s = {u,v) ow and t = {u ow,v o w). Then we have
viw(a)) < v(s(a)) and v(w(b)) < v(t(b))

because s(a) ~* (u(w(a)),v(w(a))) and t(b) ~T (u(w(b)), v(w(b))). There-

fore we obtain [w(a)]n ~ [w(b)lx by induction hypothesis. Furthermore this

implies [u([w(a)]n)]x ~ [u([w(b)]n)lx by induction hypothesis, so that

[u(w(a))n ~ [u{w(b)lx
follows. This is because we have v(u([w(a)n)) < v(s{a)) from s(a) ~7

(u([w(a)]n), v{[w(a)]x)), and v(u([w(b)ln)) < v(t(b)) likewise. We can also
verify [v(w(a))ln ~ [v(w(b))]y by the same discussion. Hence we obtain
(w(w(a))y, [v(w(a)n) ~ (u(w®))y, [v(w(b))ly), and conclude [s(a)ly ~
[t(b)]x-

Case 4: Suppose s = p o {(u,v) and t = u. Then we have v(u(a)) < v(s(a))
since s(a) ~* u(a), so that [s(a)ln = [u(a)ly ~ [u(b)ly follows by the
induction hypothesis.

Case 5: Suppose s = ev o (Cur(u) o p,q) and t = u o (p,q). Then we have
v(pla)) < v(s(a)) and v(p(b)) < v(t(b)) because s(a) ~* u(p(a),q(a)) and
¢(b) ~*t u(p(b),a(b)). Therefore we obtain [p(a)ln ~ [p(b)]n by induction
hypothesis. Likewise, we also obtain [g{a)lx ~ [q(b)]n, from which

[(p(a), a(a))]x ~ [(p(B), a(B))]n

follows immediately. This implies [u([(p{a), ala))]n)In ~ [u([(p(?), a(b)n)In
by induction hypothesis, so that

[u(p(a), a(a))]l ~ [u(p(b),a(d))]n

follows. This is because we have v{u([(p(a), q(a))]n)) < v(s(a)) from s(a) ~7
u([(p(a), q(a))]n), and v(u([(p(b), a(d))]n)) < v(t(b)) likewise. Therefore we
conclude [s(a)]n ~ [t(b)]n-
Case 6: Suppose s = Cur(u)ov and ¢ = Cur(uo(vop, q}). Then the equation
is shown by
[s(a)ly = uo ((x [v(a)lx) 0 O, id)

~ o {(vo (" a)) 0 0, id)

~ (uo {vop,q) o {(xb)oO,id)

= [¢(b)]x-
Case 7: Suppose s = uo (¥ \y¢) and ¢ = x\, [u(c)]w, which inevitably entails
that a = b = . Hence we obtain [s(a)}x = [u(c)]n = [t(b)]n-
Case 8: Suppose s = t. Then we further distinguish cases on the structure
of the arrow. Here we concentrate on the case where s = t = ev. Without

loss of generality, we may assume that a = (u,c} and b = (v,d) for some
u,v,¢,d € T such that u ~ v and ¢ ~ d, for which viulc)) < v{s(a))

59

60

and v(v(d)) < v(t(h)) is clear. Therefore we obtain [u(c)ly ~ [v(d)]n by
induction hypothesis, so that [s(a)]ln ~ [t(b)]y. Proofs for the other cases
are easier, which we omit.

Case 9: Suppose s = wov and ¢t = u o w where v ~ w. Then we have
v(v(a)) < v(s(a)) and v(w(b)) < v(t(b)) because s(a) ~F u(v(a)) and
t(b) ~* u(w(b)). Therefore we obtain

[v(a)lw ~ [w(b)l

by induction hypothesis. This further implies [u([v(a)]n)]n ~ [u([w(b)]n)]N
by induction hypothesis, so that

[u(v(a))]w ~ [u(w(O))]w-

This is because we have v{u([v(a)ly)) < v{s(a)) from s(a) ~7 u{[v{a)]n),
and v(u([w(b)]x)) < v(t(b)) likewise. Hence we obtain [s(a)lx ~ [t(b)]lx. [

Under these preparations, we now present a semi-ccc naively by identify-
ing all of the components of the graph % modulo the equality ~. Indeed,
we denoting the semi-ccc by &, its objects are exactly quotient sets of ob-
jects of F¢ by the equality ~; that is, letting [0]¢ be [o] / ~ for each simple
type o, we define

Ob(Z¢) = {[o]° | o is a simple type}.
Among such objects, we can find the operations of semi-ccc naturally. Actu-

ally, we may adopt [1]° as a terminal object, and define a cartesian product
x and an exponential = by

[o]¢ x [7]" = [o x 7"
bl = [=lo =7

for each simple type o,7. We also identify arrows modulo the equality ~,
and define
Homfc([g]ca [T]C) - Homﬁa([o—L [TD /N

for each simple type o, 7. Note that this set coincides with the exponential
[6]° = [7]°. Among the equivalence classes so obtained, we then naively
consider the same operations as those on T. For example, letting s, ¢ and
a be equivalence classes, we define s ot and * \ya to be the equivalence
classes containing s ot and * \, a, respectively. To make the presentation
less cumbersome, we notationally identify elements of T with equivalence
classes containing them by following the ordinary convention.

4. THE MODEL

Based on the category %¢, we are to demonstrate our model of simply
typed A-calculus in which a restraint concerning the weak-extensionality
property of term-interpretation is established. It is accomplished by. two
frameworks of interpretation.

The first one is given naively by following the usual discussion of cate-
gorical semantics, which comes out to give a certain fine viewpoint of inter-
pretation. Here we trace its presentation with some proofs so as to confirm
that it is enough to satisfy (10) even if the equality of arrows in ¢ is now
strictly weaker than that of the ordinary discussion of categorical semantics
based on cartesian closed category, such as [5, Chapter 3] and [2, Chapter
8]. We note that this sort of presentation based on weakening the equality
of cartesian closed category can be also found in some literatures, such as
[4] and [6], which might be indispensable to our present purpose.

Our definition of term-interpretation is given as usual. Actually, we con-
sider a categorical version of interpretation of a A-term M of type o, which
is relative to finite sequence A = z7*,...,z9" of variables which contains all
free-variables in M and the components of which are distinct each other. For
this sequence, we define an object X (A) of F¢ by the following induction:

ey = (K if n =0,
A x(®) x[on)t Hn#0and ¥=2',... 277

We then associate an arrow [M] , from x(A) to [¢]° as an interpretation of
M with respect to A. This is defined by induction on the structure of M,

as follows:
[°14 = Proj A if 27 is the i element of 4,
[Est(M)]a =po[M],,
[snd(M)] 4 = qo [M] 4,
[(M, N4 = ([M] 2 IN]A)5
[MN] 4 =evo ([M]4IN]4),
[Pz?.M] = Cur([M[z7 == y°]l 5 ,-) where 37 is fresh.

Here, by the expression Proj iA we denote the arrow, called a generalised
projection, inductively defined by

LA q ifi =mn,
Projf = . o o .
Projop ifi#nand ¥=1zy",...,2,75 -
For each i € {1,...,n — 1}, we write 4; for the sequence obtained by ex-
changing i and i+ 1 elements in A, namely, 4; = z{t, ... ,xfﬁl VES e T,

and define an arrow Perm £ from x(4) to x(4;) by

Perm

On~1

a_ JUpop,a)qop) Hi=n-1,
(Perm op,q) ifi#n—land ¥=2',..., 2,77

61

62

This arrow is called a permutation. Among these general projections and
permutations, the equations below hold:

(15) Proj # = Proj ;A_ffl oPerm?,
(16) Proj f‘H = Proj fli o Permf,
(17) Projf = ProjjA*: oPerm{

where j equals neither ¢ nor ¢ + 1. These play a role to compensate the
difference among interpretations caused by a choice of finite sequence, which
underlies the proof of Lemma 8 (i} saying the invariance of the mterpretation
under f-equality.

Lemma 6. (i) [M], = [M],, © Perm £.
(ii) If 27 is not free in M and A, then [M] 5 oo = [M] 4 P

Proof. (i) By induction on the structure of M. If M is a variable, then
the equality to show turns out to be either of those listed in (15)-(17). If
M = Az°.N, then we have

[Az7 N, = Cur([N[z7 :
= Cur([N[z’ :
= Cur([N[z7 :=y”]4, 4~ © (Perm{* o p, q))
= [Az°.N] 5, o Perm A

I

¥ laye)
ya]]Ai’y"' ° PermZ.A ’ya) by i.h.

[

Proofs for the other cases concerning pairing and application are easier,
which we omit.

(ii) By induction on the structure of M. As (i), we concentrate our attention
on the cases of {(Var) and (Abs): Suppose M = z]*, namely, the ¢ element
of A. Then [z{*] 4 ,» = Pro] iA’ma =Projf op=[z7]sop. M = Ay".N,
then we have
" N]a e = Cur([Nly" = 2"]] 4 4o or)

= Cur(INy" = 2l p or gr 0 Perm p3T") by (i)

= Cur(([N[y" :=2"]] 4 ;- o P) o Perm T‘f\jﬁo’zr) by i.h.

= Cur([N]y" :==2"]la- o {Pop, @)

=[M/".N],cp.

Lemma 7. [M] 4 ;. o (id, [N] 1) = [M[z7 := N]] 4.

Proof. By induction on the structure of M. Here we verify the cases of (Var)
and (Abs): Let M be a variable. Then we distinguish cases whether it is z°
or not. For the former case, we obtain

[$U]A,zd o{id, [N] 4} = q o {id, [N]4) = [V] 4-

63

Assuming the latter, say M = z;*, we also have
251 5,00 © (id, [N] 4) = Proj o po {id, [N]) = [2'] 1

Suppose M = Ay”.P. Then, no matter whether y” = z? or not, we can
show the equality, as follows:

[My"-Pla e © (id, [V]4)

= Cur([Ply" = "]} 5 gv o~} 0 {id, [N])
= Cur([Ply" = 2"]] 5 go .- @ {{id, [N] 4} o P, q})
= Cur([Ply" = 2 agr,or © Permp ™ o (id, [N]4 0 b))
= Cur([Ply" := ZT]]A,z",z” o(id,[N] o)) by (i)
= Cur([Ply" = 2"l 5 2 gv © (1, [V] 4 o)) by (ii)
= Cur([Ply" = 2"][z” := Nl a;-) by ih.
= [(A2y".P)[z” := N]]4-

Proofs for the other cases are easier, which we omit. O

Lemma 8. (i)If M =z N and A contains all free-variables appearing either
in M orin N, then [M] 4 = [N]A-

(11) [)\mo'—lbrya.za’—)Tyo']A __}é [Amcr—%r_‘,ﬂa'—}'r]A.

(iii) Py My 4 # [M] 4 for every M such that y7 ¢ FV(M).

Proof. (i) By induction on the generation of the equality M =z N. Espe-
cially, the axiom of B-equality is shown to be satisfied, as follows:
[(Az?.M)N] o = ev o (Cur([M] 4 z-), [N] 4)

= evo ((Cur([M]44-) o p,q) {id, [N]a))

= ([M]A,a:7 °© (p’q)) ° <1d7 [N]A>

= [M] 5 5o © (id, [N]1A)

= [M[z7 := N]]4 by Lemma 7
Proofs for the other cases are easier, which we omit.

(ii) We know that the left-hand side is equal to Cur(Cur(ev) o q) but on the
other hand the right-hand side is Cur{q).

(ili) We know that the left-hand side is equal to Cur(ev) o [M] 4, which is
not identical with [M] 4 under the equality of semi-ccc. O

The foregoing discussion enables us to consider a typed applicative structure
o = <Hdw Fst, Snd, Pair, App) whose components are given by

[0 = Homg, ([1]% [o]),
Fst®(s) =pos,
Snd”"(s) =qo s,
Pair”™"(s,t) = {s,t),
App?7(s,t) =evo(s,t).

84

Furthermore this together with the following term-interpretation yields a
model of simply typed A-calculus:

[M]g = [M]a0€°

where, we writing ¢ for the empty sequence, £2 is defined by

¢ = O HA=g,
(€5, 0) ifA=5,a0.

The model & so introduced seems to give a certain fine viewpoint of inter-
pretation. Indeed, concentrating on the conditions for n-equality, we have
the following evaluation of interpretation:

[[A:z:"‘”y"w”‘”y"]]? = Cur(Cur(ev) o q)
[Azaﬁr_xa—w]]g’ — Cur(q)
Py My T = Cur(ev) o [M], 0 €

So we know that not only (12) but also (11} is not satisfied in &/. Hence
it seems hard and opaque at least only from this observation whether (8) is

true in & or not.

This is the main reason why we introduce a new coarse viewpoint of inter-
pretation and a devise to model the syntax of application and free-variables.
In this respect, we are indeed able to find an alternative at this point, allowed
to consider the typed applicative structure & = ([]%, Fst, Snd, Pair, App)
whose components are given by

[01% = [oT",

Fst® (a,b) = a,
Snd?"(a, b) = b,
Pair®" (a,b) = (a, b),
App™ (¢, a) = [t(a)]x.

We then define a mapping of term-interpretation by

(18) [M]E = [[M]a(a) In
where
fq = {* if A=e,
T ne@) EA=3.

The result of evaluating the right-hand side of (18) is independent from the
choice of the sequence A, so that the mapping []# is well-defined. This fact
is actually shown by induction on the structure of M; especially the case
where M is in the form of A-abstraction is ensured by proving the following

65

more general equality:

n~times

A

[M] 4 4o p© (- ({(+€a) 0 O,id) op, @) -~) e P, @)
= [M] g 4o r o {{-- {{(x\éx) 2 Oid) op, Q) ---) o P,)

o
n-times

where 7 is the length of I". As it is shown in the following theorem, this map-
ping actually satisfies all requirements for term-interpretation, and together
with the structure & comes out to be a model of simply typed A-calculus.
Furthermore, we know that (12) is satisfied in this model.

Theorem 9. The structure B is a model of simply typed A-calculus in which
(12) is satisfied but (11) is not.

Proof. (1) is clear from the definition since we obtain Ea = pa if we take a se-
quence A such that FV(M) = {z°| 2° appears in A}. As for the other con-
ditions, we obtain (2) by [z°]F = [z7],- (*,£(27)) In = [a(,&(z7)) In =
£(z%). We can show (3), and (4) analogously, by
[stANIE = [Ifst(M)] al€a) I

=[(p o [M]A)(€a) Iw

= Fst™" ([[M] 5(£a) Iv)

= Fst®™ ([M]7).

For (5) and (6), we obtain

i

[(M, N)]E = [[4, N)]a(€a) I
[{[M] 4, INJAN(Ea) I
[([M] A(a), [NTA(E)) In

Pair”™ ([M]Z, [VM12)

fl

and

I

[MN]Z = [[MN]4(€a) In

[(ev o {[M] 4, INIaD(Ea) N
[{([ML A€ (IN]A(E2)) [N
= [IMIZ(INID) I

= App”" ([M]Z, [NI?)

i

I

respectively. Now (10) is remaining to see the structure 2 is a model, which
immediately follows from Lemma 8 (i).

Directing our attention to (11) and (12), we have [[Am"‘”y"-:c”‘”y"]]? =
Cur{ev) and [Aw"“*?:c"“"’]]f = id. They do not coincide under the equality
of our semi-ccc, from which (11) is clearly shown to be not satisfied. On the

66

other hand, we have
Dy”.My°I¢ = (Cur(ev) o [M] 1) (€a)
=ev o ((x \[[M]?) 0 0,1d)
= [M]7
for (12) by virtue of (13). O

As a consequence of the discussion above, we eventually know which con-
ditions hold in the models & and #. It is summarised in the following

table:

| Model “ Satisfied condition { Dissatisfied condition]
4 (10) (11) (12)
B (10) (12) (8) (11)

It would be worth mentioning that (8) is not the case in % as we have
expected, which is entailed from the remarkable feature of the model that
the difference of the two arrows in Lemma 8 (iii) collapse whenever they are
applied to an element of an object. This yields the sharp contrast between
term-interpretations in & and %, and it is definitely caused by our explicitly
demanding (13) in the definition of semi-ccc. The discussion studied in this
paper leads us to a way of explicitly manipulating information on the weak-
extensionality property.

ACKNOWLEDGEMENTS

I am deeply grateful to Prof. Ken Nakamula for his constant encourage-
ment and consideration for my research activities at Tokyo Metropolitan
University. I would also like to thank Prof. Hirofumi Yokouchi who gave
me some helpful comments on an earlier version of this paper.

REFERENCES

[1] S. Abramsky and A. Jung, Domain theory, in S. Abramsky, D. M. Gabbay and
T. 8. E. Maibaum, editors, Handbook of Logic in Computer Science; volume 3 Se-
mantic Structures, Oxford Science Publications, 1994.

[2] A. Asperty and G. Longo, Categories, Types and Structures: An Introduction to
Category Theory for the Working Computer Scientist, MIT press, 1991.

{3] H. P. Barendregt, The Lembda Calculus: Iis Syntar and Semantics, North-Holland,
1984.

[4] P.-L. Curien, Categorical Combinators, Sequential Algorithms, and Functional Pro-
gramming, Birkhduser, 1993.

[5] C. A. Guanter, Semantics of Programming Languages: Structures and Technigues,
Foundations of Computing, MIT Press, 1992.

[6] S. Hayashi, Adjunction of semifunctors: categorical structures in nonextensional
lambda calculus, Theoretical Computer Science 41 (1985), North-Holland, pp. 95—
104.

[7] J. R. Hindley, Basic Simple Type Theory, Cambridge Tracts in Theoretical Computer
Science 47, Cambridge University Press, 1997.

[8] J. Lambek and P. J. Scott, Introduction to higher order categorical logic, Cambridge
studies in advanced mathematics 7, Cambridge University Press, 1986.

[9] J. C. Mitchell, Type Systems for Programming Languages, in J. van Leeuwen, editor,
Handbook of Theoretical Computer Science , North-Holland, 1990.

[10] D. S. Scott, Continuous lattices, in E. Lawvere editor, Toposes, Algebraic Geometry

and Logic, Lecture Notes in Mathematics 274, pp. 97-136, Springer-Verlag, Berlin,
1972.

67

