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1 Introduction
Bounded arithmetic is a branch of mathematical logic which characterize

various classes of computational complexity by fragments of arithmetical
theories. On the other hand, descriptive complexity gives another logical
method to characterize complexity classes. However, until recently, no ac-
tual connection was know $\mathrm{n}$ between these two branches of mathematical
logic.

S. Cook and A. Kolokolova [2] gave an elegant method to define second
order systems of bounded arithmetic which utilizes the descriptive charac-
terization of PTIME and $\mathrm{N}\mathrm{L}$ . Their method uses the fragments of second
order logic which was used by E. Gradel to characterize those complexity
classes.

In this paper we will give a fragment of second order logic which charac-
terizes LOGSPACE over finite ordered structures. This result may be used
to obtain a second order system of bounded arithmetic similar to Cook and
Kolokolova system for NL and P.

Descriptive characterizations for LOGSPACE is obtain ed $\mathrm{t}$)$\mathrm{J}^{r}$ Immerman
and Gr\"adel. The former one is by introducing deterministic transitive clo-
sure (DTC) to first order logic, while the latter is a fragment of second order
Krom logic. Our result is similar to the latter one, but the formula we use
is more natural.

2 Descriptive complexity and LOGSPACE
2.1 Basic Notions

We will briefly review basic definitions of descriptive complexity. For
details, readers are encouraged to refer Immerman [4]

A signature is a finite set of constant symbols and relation symbols. We
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ea
do not include function symbols in signature but rather add thier graphs as

relation symbols. Signatures are denoted by $\sigma_{\backslash }\tau$ and so on.

Let a be a signature. A a-structure is a tuple $A=\langle A) \{R^{A}\}_{R\in\sigma}, \{c^{A},\}_{c\in\sigma}\rangle$

where $A$ is a possibly finite set called universe, $R^{A}$ is a relation on $A$ for

each relation symbol $R$ $\in\sigma$ and $\mathrm{c}^{A}\in A$ for each constant symbol $c\in\sigma$ .
We will denote the number of elements in $A$ by $|A$ .

Example 1 1. Let E be a bina ry relation and a $=$ {E}. Then the a-

structure A $=\langle\{0,$ 1, \ldots , n $-1\})E^{A}\rangle$ repres enf“s a directed graph.

2. The signature $\sigma=\{\min, \max, S\}$ is $co,ll^{\mathit{2}}‘\prime d$ a successor signature, where
$\min$ and $\max$ are constant symbols denoting minimal and maximal ele-

ments of the universe respectively, and $S$ is a relation symbol denoting

the $s\tau r,c,c_{J}essor$ relation.

3. $\sigma=\{\min, \max, \leq\}$ is called an ordered structure where $\min$ and $\max$

are as above $and\leq iS$ the usual order relation.

4. $\sigma=$ $\{\min, \max, \leq)+_{)}\cross\}$ is called an $ar\mathrm{i}thmet\mathrm{i}c,al$ structure where $+$

$and\cross$ are graphs of addition and multiplication respectively.

Lower case letters $x,y,$ $\nearrow\lrcorner$ , $\ldots$ denote first order variables and upper case

letters $X$, $Y$, $Z$, . . . denote second order variables. Since we do not have

function symbols in signaturas, terms are either first order variables or con-

stants. Formulae are built up from atomic formulae by applying the logical

connectives $\Lambda_{\backslash }$ , $\neg\forall\backslash$

’
$\exists$ . A logic is a set of formulae.

In order to make strict connections })etween logics and complexity classes,

it must be made clear how we regard finite structures as binary strings and

vice versa.
A structure $A=\{A,\overline{R}^{A},\overline{c}^{A}\}$ can be regarded as a binary string by cod ing

each relation $R^{A}$ by a binary string $w_{R}A$ of length $71^{k}$ such that

$(x_{1}, \ldots, x_{n})\in R^{A}$ a the corresponding t)it of $w_{R^{A}}$ is 1.

Similarly, each constant symbol $c^{\mathrm{A}}$ is coded by a binary string $w_{c}A$ of length

$7l$ such that

$c^{A},=1\Leftrightarrow j\mathrm{t}\mathrm{h}$ bit of $w_{\mathrm{c}^{A}}=\{$

1 if $n$ $=j$ ,
0if $i\neq j$ .

Finally, the code of the whole structure $A$ is the concatenation of codes for

relations and constants defined as above.
Conversely, a binary string $n/$ of length $n$ can be represented by a structure

$\langle\{0,1, \ldots, n. -1\}, \min, \mathrm{m}_{\mathrm{r}}^{l}]\mathrm{x}, \leq\rangle$ by introducing a unary relation $P$ such that

$\mathrm{P}(\mathrm{i})\Leftrightarrow \mathrm{i}\mathrm{t}\mathrm{h}$ bit of $\tau v$ is 1.
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Now we a ready to state what it means that a logic corresponds to a

complexity $\mathrm{c}1_{c\mathrm{L}}^{r}\mathrm{s}\mathrm{s}$ .

Definition 1 Let $\mathcal{L}$ be a logic, $\mathrm{C}$ be a complexity class and 72 be a set of
finite structures. We say thai $C$ captures $\mathrm{C}$ over $D$ if the following conditions

hold:

1. For all $\varphi\in \mathcal{L}$ and $A\in D_{f}$ the model checking problem $A\models\varphi$ is

$d\xi^{\}}x\mathrm{i}dabl,e$ in C.

2. For each set C $\in \mathrm{C}$ th eve eists $\varphi\in \mathcal{L}S\uparrow J_{J}Ch$ that

$\forall A\in D(A\in \mathrm{C} \Leftrightarrow A\models\varphi)$.

Some relations between logics and complexity classes are well-known-

Definition 2 $FO\iota s$ the set of first order formulae, that $\mathrm{i}_{\backslash },9$, all quantifiers

are first order quantifiers. SO is the set of second order formulae. $SO\exists$ is

the set of formulae of the form $\exists\overline{P}\varphi(\overline{P})$ $t$ here $\varphi$
$\in FO$ .

Theorem 1 Over ordered structures, $FO$ cap rures the class rrniform $AC_{f}^{0}$

that is, the class of sets computable by constant depth, $pol,\tau/nom\iota al$ size

boolean circuits of unbounded fan-in.

Theorem 2 (Fagin’s Theorem) SO captures the polynomial hierarchy

over all $stmctur\epsilon_{\nearrow}^{l}s$ . $SO\exists$ cap rures the class $NP$ over all structures,

It is not known whether there exists a logic which captures $\mathrm{P}$ or smaller
complexity classes over all structures, However, several results are known

about the relations between logic and com plexity classes over ordered struc-
tures. So in the following, will concentrate on ordered structures.

There are two ways to capture complexity classes such as $\mathrm{P}_{\backslash }\mathrm{N}\mathrm{L}_{\backslash }\mathrm{L}$ and

so on, namely, extending first order logic by operators or generalized quan-
tifiers, and restricting second order logic.

2.2 Extending first order logic

By introducing additional operators to first order logic. various complex-
ity classes below $\mathrm{P}$ are characterized. Below we will give some examples.

Definition 3 Let, $P$ be a predicate symbol not in the signature a and $\varphi(\overline{x})$

be a formula of the signature a $\cup\{P\}$ with only positive occurrences of $P$

and with free variables $\overline{x}=x_{1}$ , $\ldots$ , $x_{\iota},$ . For each $\sigma- str?J,cture$ $A_{J}\varphi$ defines $a$

mappin
$\varphi_{A}$ : $P\mapsto\{\overline{rx} : (A, P)\models\varphi(\overline{\mathrm{r}x})\}$ .
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Since $P$ appears only positively, this rnapping is monotone. So $\varphi A$ has $a$

least fixed point defined by

$P^{0}:=\emptyset)$

$P^{j’+1}:=\varphi_{A}(P^{i})$ ,
$P^{\omega}.-- \bigcup_{j\in\omega}\varphi_{A}(P^{j})$ .

Norn we introd $uce$ the least fixed point operator $LFP$ such that $A\models[LFPP.\overline{x}\varphi](\overline{\mathrm{r}x})$

if and only if $\overline{a}$ is $c,onto_{l}\mathrm{i}ned$ in the least fixed point of $\varphi$ on the structure $A$ .
$FO+LFP$ is definea as th $e$ first order logic with a positive least fixed

poin$rt$ operator $[LFP_{P_{\backslash }\overline{x}}\varphi]$ .

Theorem 3 (Immerman [5]) $FO+LFP$ captures the class P over or-

derei structures.

Another prominent example is the connection between transitive closure

and logarithmic space.

Definition 4 Let $\varphi(\overline{x}_{7}\overline{?/})$ be $0$ forrrvttla with free variables $\overline{x,}=x_{1}$ , $\ldots$ , $x_{k}$

arid $\overline{?/}=y_{1},$ . . .)
$y_{k}$ . Then we define $[TC_{\overline{x}.\overline{y}}\varphi(\overline{x},\overline{\tau/})](\overline{u},\cdot\overline{lJ})$ to be a $form\tau r_{l}lo$,

such that $A|=[TC_{\overline{x}.\overline{y}}\varphi(\overline{x},\overline{\tau j})](\overline{u},\overline{?)})$ if and only if there exists $c^{-}\circ$ , $\ldots$
$\dot{\prime}c_{r\iota}^{-}\in A$

such that $c_{0}^{-}=\overline{\mathrm{f}J}_{f},\overline{c_{r\iota}}=\overline{b}$ and $A\models\varphi(\overline{c_{i},}, c_{i+1}^{-})$ for all $\mathrm{i}<7l$ .

$FO+TC$ is the first order logic extended by the operator $TC$ .

Theorem 4 (Immerman [5]) $FO+TC$ cap rures the class of nondeter-

minintic logarithmic space computable sets NL over ordered structures.

There is also a deterministic version of $TC$ .

Definition 5 The deterministic transitive closure operator $DTC\uparrow,\mathrm{t}9$ defined
by

$[DTC_{\overline{x},\overline{y}}\varphi(\overline{x},\overline{\tau/})]\equiv$ [$TC_{\overline{x},\overline{y}}(\varphi(.’\overline{x},\overline{y})$ A $\forall\overline{z}(\varphi(\overline{x},\overline{\nearrow.})arrow\overline{y}=\overline{z})$ ].

Theorem 5 (Immerman [5]) $FO+DTC$ captures the class of logarith-

mic space computable sets NL over ordered $st_{J}r?r,cture*9$ .

2.3 Fragments of second order logic

Second order logic can also be used to capture complexity classes. The

follow ing results are chie to Gr\"adel [3].

Definition 6 A second order formula is SO-Horn if it is of the $f^{l}orm$

$Q_{1}P_{1}\cdots Q_{k}P_{k}\forall\overline{y}\varphi(P_{1,7}\ldots P_{k},\overline{y})$
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where each $Q_{1}$ , $\ldots$ , $Q_{k}$ is either $\forall$ or $\exists$ and $\varphi$ is a quantifier free Horn

for rmula with respect to $P_{1}$ , . . . , $P_{k}$ , thai is, it is in conjunctive norman form
such that in each clause there is at most one positive occu rrence of $sec,ond$

order variable.
A formula is $(SO\exists)$ -Horn if all second order quantifiers are existential.

Proposition 1 SO-Horn collapses to (803) -Horrt,, that is, for all SO-
Horn formula $\varphi$ there exists $a(SO\exists)$ Horn formula $\psi srl,c_{J}h$ that for arvy
$st_{J}r\uparrow xct,\tau \mathit{1}1reA_{\mathrm{Z}}A\models\varphirightarrow\psi$.

Theorem 6 (Gradel [3]) SO-Horn captures P over ordered struc rures.

Definition 7 A second order formula is SO-Krom if it is of the form
$Q_{1}P_{1}\cdots Q_{k}P_{k^{\wedge}}\forall\overline{\tau/}\varphi(^{\mathrm{p}_{1}..P_{k_{2}}\overline{?/}},.,)$

where each $Q_{1}$ , $\ldots$ , $Q_{k}$ is either $\forall$ or $\exists$ and $\varphi$ is a quantifier free Krom

formula with respect to $P_{1}$ , .. . )
$P_{k;}t_{J}ho_{t}t$ is, it is in conjunctive no rman forrn

such that in each clause there are at most $t^{J}uJo$ occurrences of second order
variabl,es.

$A$ for rmula is $(SO\exists)$ -Krom if all second order $quo,n$tifiers are existential.

Proposition 2 SO-Krom collapses to $(SO\exists)$ -Krom, that is, for all 50-
Krom formula $\varphi$ there eists $a$, $(SO\underline{\exists})$ -Krom $fom\uparrow\gamma_{J}la$ $\psi$ such that for any
structure $A$ , $A\models\varphirightarrow\psi$ .

Theorem 7 (Gradel [3]) SO-Krom captures NL over ordered sstructures.

2.4 A second order logic for LOGSPACE

Now we will state and prove our main result of this section. That is,

we will present a fragment of second order logic which captures the class
LOGSPACE.

Gradel’s second order logics SO-Horn and SO-Krom make use of satisfia-
bility problems which are complete for $\mathrm{P}$ and NL respectively. Analogously,
we will use a satifiability problem which is complete for $\mathrm{L}$ to build a second
order logic capturing L.

Johannsenn [6] showed that the following satisfiability problem is com-
plete for L.

Definition 8 A propositional formula is $CNF(2)$ if it is in conjunctive
normal form and each propositional variable occurs at most twice,

SAT(2) $:=$ {$\varphi\in CNF(2)$ : $\varphi$ is satisfiable}
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Theorem 8 (Johannsen [6]) SAT{2) is complete for $L$ .

Using this result, we can define a fragment of second order logic as follows:

Definition 9 $(SO\exists)- CNF(2)$ is the set of formulae of the form

$\exists P_{1}\cdots$ $\exists P_{k}\forall\overline{y}\varphi(P_{1},$
$\ldots$ , $P_{k},\overline{?/}\mathrm{I}$

where $\varphi(P_{1,\}}\ldots P_{k},\overline{?/})$ is $CNF(2)$ with respect to $P_{1}$ , . . . , $P_{k}$ , that is, a quan-

tifier free formula in conjunctive normal form such that each $P_{\iota}$ appears at

most rwice.

First we will show that the model checking problem for $(SO\exists)-CNF(2)$

formula is in L.

Theorem 9 Let $\varphi\in(SO\exists)- CNF(2)$ . Then the set of finite models of $\varphi$ is

in $L$ .

(Proof). Let $\varphi\equiv\exists P_{1}\cdots P_{k}\forall\overline{y}\varphi 0(P_{1}, \ldots, P_{k},\overline{\tau/})$ where $\varphi 0$ is a $CNF(2)$ for-

mula with respect to $P_{17}.$ . . , $P_{k}$ and let $A$ t) $\mathrm{e}$ a finite structure. First eIimi-

nate the universal quantifier $\forall\overline{y}$ by transforming $\forall\overline{y}\varphi 0(\overline{P},\overline{y})$ to a conjunction

over all elements of $A$ . This yields a formula of the form

$\exists P_{0}\cdot$ . . $\exists P_{k}\varphi_{1}(P_{1}, \ldots, P_{k})$

where $\varphi_{1}$ is a $\mathrm{C}\mathrm{N}\mathrm{F}$ formula such that each clause is a disjunction of $P_{?}$ ’s

and first order atomic formulae. Evaluate eahc atomic formula in $A$ . If it

is evaluated to true then eliminate all clauses which contain it. Otherwise

eliminate all occurrences of the atomic formula.
Now the original formu Ja is transformed into a formula of the form

$\exists P_{1}$ . . . $P_{k^{\sim}}\varphi_{2}(P_{1}, \ldots, P_{k})$

where $\varphi_{2}$ is considered as a propositional $CNF(2)$ formula. Thus check-

ing whether $A|=\exists P_{1}\cdots\exists P_{k}\varphi_{2}(P_{1}$ , .. . ’
$P_{k})$ is the satisfiability problem of

$CNF(2)$ formula. So $1$)$\mathrm{y}$ Theorem 8 it is in L.

Next we will show that $(SO\exists)-CNF(2)$ is strong$\mathrm{n}\mathrm{g}$ enought to express all

LOGSPACE relations. To do this, we will use an operator representing a

cor plete problem for LOGSPACE.

Proposition 3 (Johannsen [6]) The following tree-freeness (TF) prob-

tlen is $c,\zeta$) $mp$ lete for $L$ OGSPACE:

$TF$ : Given an undirected graph $G_{f}$ does $e\tau$ ) $er\uparrow/$ connected $c_{J}om-$

ponent in $G$ contain a cycle
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Definition 10 Let $\varphi(\overline{x},\overline{\tau}./)$ be $a$ for rmulo. $\uparrow \mathit{1}Jit_{J}h$ free parameters as shown,

inhere $\overline{x}$ and $\overline{?/}$ are $k$ -tuples of variables. We define the tree-freeness operator
$\mathrm{T}\Gamma_{\overline{x}.\overline{y}}^{;}\varphi$ in such a $\mathit{8}\mathit{1}jay$ that $A|=\mathrm{T}F_{\overline{x}_{\backslash }\overline{y}}\varphi$ if and only if the undirecte $d$ graph

whose edge relation is defined by $\varphi$ on the structure $A$ is tree-free,

$\mathrm{T}F(FO)$ is the logic which consists ofform ulae of the form $\mathrm{T}F_{\overline{x}_{\backslash }\overline{y}}\varphi$ where

$\varphi$ is a quantifier free $fo$ rmula.

Then the following holds:

Theorem 10 $\mathrm{T}F(FO)$ captures LOGSPACE over ordered structures,

(Proof). This is an immediate consequence of Proposition 3.
Now it suffices to show that $(SO\exists)- CNF(2)$ formulae can express the

tree-freeness operator $\mathrm{T}F$ .

Theorem 11 For $alt$ quantifier free formula $\varphi$ there exists $a(SO\exists)- CNF(2)$

for rmula $\psi$ such that for all ordered structure $A_{J}A|=\mathrm{T}F_{\overline{x},\overline{y}}\varphirightarrow\psi$ .

(Proof). Given an $\mathrm{d}$ undirected graph $G=(V_{)}E)$ we will construct a
$CNF(2)$ formula as follows: First introduce a variable $P_{e}$ for each edge
$e\in E$ . For each vertex $v\in V$ we construct a clause $C_{v}$ which contains one
literal for each edge $e$ which is incident upon $v$ . If $e$ connects $v$ to a vertex
with greater number then $C_{v}$ contains $x_{e}$ and $C_{v}$ contains $\overline{x}_{e}$ otherwise.

Now it is obvious that This formula is $CNF(2)$ and it is also readily

proved that $G$ is tree free if and only if this formula is satisfiable. Thus we
have proved the theorem,

3 Further research

Combining the result in this paper and the work of Cook and Kolokolova
[2], we can construct a second order bounded arithmetic which corresponds
to LOGSPACE. Several other theory for LOGSPACE are obtained by D.
Zam t)ella [7] and Clote and Takeuti [1]. Using our result, we can con-
struct a theory whose only nontrivial axiom is the comprehension scheme

for $(SO\exists)- CNF(2)$ formulae, which is simpler than other systems.
It is known that LOGSPACE is equivalent to the class of predicates which

are computable by polynomial size branching program $\mathrm{s}$ . This fact has some
applications in logical approaches to the class LOGSPACE. Cook defined
the first propositional proof system which corresponds to LOGSPACE using
the branching program based characterization of the class.

Concering bounded arithmetic, we can define a t)oolean algebra based
on the set of polynomial size branching programs. So the boolean valued
method of Takeuti and Yasumoto [8] is also available for LOGSPACE.
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