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Satoru Kuroda (ZRH %)
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1 Introduction

Bounded arithmetic is a branch of mathematical logic which characterize
various classes of computational complexity by fragments of arithmetical
theories. On the other hand, descriptive complexity gives another logical
method to characterize complexity classes. However, until recently, no ac-
tual connection was known between these two branches of mathematical
logic.

S. Cook and A. Kolokolova [2] gave an elegant method to define second
order systems of bounded arithmetic which utilizes the descriptive charac-
terization of PTIME and NL. Their method uses the fragments of second
order logic which was used by E. Gridel to characterize those complexity
classes.

In this paper we will give a fragment of second order logic which charac-
terizes LOGSPACE over finite ordered structures. This result may be used
to obtain a second order system of bounded arithmetic similar to Cook and
Kolokolova system for NL and P.

Descriptive characterizations for LOGSPACE is obtained by Immerman
and Grédel. The former one is by introducing deterministic transitive clo-
sure (DT'C) to first order logic, while the latter is a fragment of second order
Krom logic. Our result is similar to the latter one, but the formula we use

is more natural.

2 Descriptive complexity and LOGSPACE

2.1 Basic Notions

We will briefly review basic definitions of descriptive complexity. For
details, readers are encouraged to refer Immerman [4]
A signature is a finite set of constant symbols and relation symbols. We



do not include function symbols in signature but rather add thier graphs as
relation symbols. Signatures are denoted by o, 7 and so on.

Let o be a signature. A o-structure is a tuple A = (4, { R} reo, {c*} eeo)
where A is a possibly finite set called universe, RA is a relation on A for
each relation symbol R € o and ¢ € A for each constant symbol ¢ € o.

We will denote the number of elements in A by |A.

Example 1 1. Let E be a binary relation and o = {E}. Then the o-
structure A = ({0,1,...,n — 1}, BA) represents a directed graph.

2. The signature o = {min, max, S} is called a successor signature, where
min and max are constent symbols denoting minimal end mazimal ele-
ments of the universe respectively, and S is a relation symbol denoting

the successor relation.

3. o = {min, max, <} is called an ordered structure where min and max

are as above and < is the usual order relation.

4. ¢ = {min, max, <,+, x} is called an arithmetical structure where +

and X are graphs of addition and multiplication respectively.

Lower case letters «,, 7, ... denote first order variables and upper case
letters X,Y,Z,... denote second order variables. Since we do not have
function symbols in signatures, terms are either first order variables or con-
stants. Formulae are built up from atomic formulae by applying the logical
connectives A, V, =, ¥, 3. A logic is a set of formulae.

In order to make strict connections between logics and complexity classes,
it must be made clear how we regard finite structures as binary strings and
vice versa. »

A structure A = {A, RA, 4} can be regarded as a binary string by coding

each relation R by a binary string wga of length n¥ such that
(1, Zn) € R* & the corresponding bit of wga is 1.

Similarly, each constant symbol ¢ is coded by a binary string w4 of length
n such that

1 ifi=j

0 ifig#j.

Finally, the code of the whole structure A is the concatenation of codes for
relations and constants defined as above.

Conversely, a binary string w of length n can be represented by a structure

({0, 1,...,n—1}, min, max, <) by introducing a unary relation P such that

¢ = 1 & jth bit of wea =

P(i) < ith bit of w is 1.
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Now we a ready to state what it means that a logic corresponds to a

complexity class.

Definition 1 Let £ be a logic, C be a complezity class and D be a set of
finite structures. We say that L captures C over D if the following conditions

hold:

1. For all o € L and A€ D, the model checking problem A = ¢ is
decidable in C.

2. For each set C € C there emists ¢ € L such that

VAeD(AEC & AL @)

Some relations between logics and complexity classes are well-known.

Definition 2 FO is the set of first order formulae, that is, all quantifiers
are first order quantifiers. SO is the sei of second order formulae. SO3 is
the set of formulae of the form APo(P) where ¢ € FO.

Theorem 1 Over ordered structures, FO captures the class uniform ACY,
that is, the class of sets computable by constant depth, polynomial size

boolean circuits of unbounded fan-in.

Theorem 2 (Fagin’s Theorem) SO captures the polynomial hierarchy
over oll structures. SOF captures the class NP over all structures.

It is not known whether there exists a logic which captures P or smaller
complexity classes over all structures. However, several results are known
about the relations between logic and complexity classes over ordered struc-
tures. So in the following, will concentrate on ordered structures.

There are two ways to capture complexity classes such as P, NL, L and
so on, namely, extending first order logic by operators or generalized quan-

tifiers, and restricting second order logic.

2.2 Extending first order logic

By introducing additional operators to first order logic, various complex-

ity classes below P are characterized. Below we will give some examples.

Definition 3 Let P be a predicate symbol not in the signature o and (%)
be a formula of the signature o U {P} with only positive occurrences of P
and with free variables & = x4, ... ,x,. For each o-structure A, @ defines a

mapping
wa : P—{d: (A P) =@}
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Since P appears only positively, this mapping is monotone. So @a has a
least fized point defined by

PO =,

PItL = o4 (PY),

P = Ujem @A(Pj)‘
Now we introduce the least fized point operator LEP such that A = [LF Ppz](a)

if and only if @ is contained in the least fized point of ¢ on the structure A.
FO + LFP is defined as the first order logic with o positive least fized

point operator [LF Ppzp).

Theorem 3 (Immerman [5]) FO + LFP captures the class P over or-

dered structures.

Another prominent example is the connection between transitive closure

and logarithmic space.

Definition 4 Let o(Z,7) be a formula with free variables T = xy,..., %k
and § = Yi,..-,Ye. Then we define [T'Cz go(Z,7))(4,0) to be a formula
such that A |= [TCys 50(Z, D), D) if and only if there exists ¢y, ..., € A
such that & =@, G, = b and A = @(&, ¢51) for all i <.

FO +TC is the first order logic extended by the operator TC.

Theorem 4 (Immerman [5]) FO + T'C captures the class of nondeter-

minintic logarithmic space computable sets NL over ordered struclures.

There is also a deterministic version of T'C.

Definition 5 The deterministic transitive closure operator DT'C is defined

by

[\

>
|

[N

-

) —

[DTCs,50(F, 7)) = [TCs,5(0(E,7) ANVE(p(Z,

Theorem 5 (Immerman [5]) FO + DTC captures the class of logarith-

mic space computable sets NL over ordered structures.

2.3 Fragments of second order logic

Second order logic can also be used to capture complexity classes. The

following results are due to Grédel [3].

Definition 6 A second order formula is SO-Horn if it is of the form

lelePngép(Pb’Pk;g)
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where each Q1,...,Qr is either ¥V or 3 and ¢ is o quantifier free Horn
formula with respect to P, ..., Py, that is, it is in congunctive norman form

such that in each clause there is at most one positive occurrence of second

order variable.
A formula is (SO3)-Horn if all second order quantifiers are existential.

Proposition 1 SO-Horn collapses to (SO3)-Horn, that is, for oll SO-
Horn formula ¢ there exists a (SO3)-Horn formula <) such that for any
structure A, A =@ & 9.

Theorem 6 (Gridel [3]) SO-Horn captures P over ordered structures.
Definition 7 A second order formula is SO-Krom if it is of the form
QP QePe¥ip(Py, - .., P, )

where each Qu,...,Qr 1s either ¥V or 3 and ¢ is a quantifier free Krom,
formula with respect to Py, ..., Py, that is, it is in conjunctive norman form
such that in each clause there are at most two occurrences of second order

variables.
A formula is (SO3)-Krom if all second order quantifiers are existential.

Proposition 2 SO-Krom collapses to (SOT)-Krom, that is, for all SO-
Krom formula o there exists a (SO3)-Krom formula o such that for any

structure A, A = @ e 1.

Theorem 7 (Gradel [3]) SO-Krom captures NL over ordered structures.

2.4 A second order logic for LOGSPACE

Now we will state and prove our main result of this section. That is,
we will present a fragment of second order logic which captures the class
LOGSPACE.

Grédel’s second order logics SO-Horn and SO-Krom make use of satisfia-
bility problems which are complete for P and NL respectively. Analogously,
we will use a satifiability problem which is complete for L to build a second
order logic capturing L.

Johannsenn [6] showed that the following satisfiability problem is com-

plete for L.

Definition 8 A propositional formula is CNF(2) if it is in conjunctive
normal form and each propositional variable occurs at most twice.

SAT(2) .= {9 € CNF(2) : p is satisfiable}.



Theorem 8 (Johannsen [6]) SAT(2) is complete for L.
Using this result, we can define a fragment of second order logic as follows:
Definition 9 (SO3)-CNF(2) is the set of formulae of the form
3P, - APNyo(Py,. .., P, §)

where (P, ..., P, §) is CNF(2) with respect to Py, ..., Fy, that is, a quan-
tifier free formula in conjunctive normal form such that each P; appears at

most tusice.

First we will show that the model checking problem for (SO3)-CNF'(2)

formula is in L.

Theorem 9 Let ¢ € (SOI)-CNF(2). Then the set of finite models of ¢ is
in L.

(Proof). Let ¢ =3P, -+ PoVigo(Py,. .., P, §) where ¢q is a CNF'(2) for-
mula with respect to Py, ..., Py and let A be a finite structure. First elimi-
nate the universal quantifier ¥4 by transforming Vo (P, 7) to a conjunction

over all elements of A. This yields a formula of the form
APy -+ - APpp1(P1, .., Pr)

where ¢; is a CNF formula such that each clause is a disjunction of P’s
and first order atomic formulae. Evaluate eahc atomic formula in A. If it
is evaluated to true then eliminate all clauses which contain it. Otherwise
eliminate all occurrences of the atomic formula.

Now the original formula is transformed into a formula of the form

3P - Pepa (P, - -5 FPr)

where (o, is considered as a propositional CN F(2) formula. Thus check-
ing whether A k= 3P; -+ - 3Ppa(Py, - .., Pr) is the satisfiability problem of
CNF(2) formula. So by Theorem 8 it is in L.

Next we will show that (SOJ)-CNF(2) is strong enought to express all
LOGSPACE relations. To do this, we will use an operator representing a
complete problem for LOGSPACE.

Proposition 3 (Johannsen [6]) The following tree-freeness (TF) prob-
lem is complete for LOGSPACE:

TF : Given an undirected graph G, does every connected com-

ponent in G contain a cycle?

13
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Definition 10 Let ©(#,5) be a formula with free parameters as shoum,
where T and § are k-tuples of variables. We define the tree-freeness operator
TFz g in such a woy that A = TFz g0 if and only if the undirected graph
whose edge relation is defined by ¢ on the structure A is tree-free.
TF(FO) is the logic which consists of formulae of the form TFz g where

@ is a quantifier free formula.

Then the following holds:
Theorem 10 TF(FO) captures LOGSPACE over ordered structures.

(Proof). This is an immediate consequence of Proposition 3.
Now it suffices to show that (SO3)-CNF(2) formulae can express the

tree-freeness operator TF.

Theorem 11 For all quantifier free formula o there exists a (SOF)-CNF(2)
formula ) such that for oll ordered structure A, A= "TFzgo « 1.

(Proof). Given and undirected graph G = (V, /) we will construct a
CNF(2) formula as follows: First introduce a variable P, for each edge
e € E. For each vertex v € V we construct a clause C, which contains one
literal for each edge e which is incident upon v. If e connects v to a vertex
with greater number then C, contains z. and C, contains I, otherwise.
Now it is obvious that This formula is CNF(2) and it is also readily

proved that G is tree-free if and only if this formula is satisfiable. Thus we

have proved the theorem.

3 Further research

Combining the result in this paper and the work of Cook and Kolokolova
[2], we can construct a second order bounded arithmetic which corresponds
to LOGSPACE. Several other theory for LOGSPACE are obtained by D.
Zambella [7] and Clote and Takeuti [1}. Using our result, we can con-
struct a theory whose only nontrivial axiom is the comprehension scheme
for (SO3)-CN F(2) formulae, which is simpler than other systems.

It is known that LOGSPACE is equivalent to the class of predicates which
are computable by polynomial size branching programs. This fact has some
applications in logical approaches to the class LOGSPACE. Cook defined
the first propositional proof system which corresponds to LOGSPACE using
the branching program based characterization of the class.

Concering bounded arithmetic, we can define a boolean algebra based
on the set of polynomial size branching programs. So the boolean valued
method of Takeuti and Yasumoto [8] is also available for LOGSPACE.
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