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ABSTRACT. In this article, we introduce two nonlinear operators of monotone
type and nonexpansive type, i.e., inverse-strongly-monotone operators and rel-
atively nonexpansive operators. Then, we obtain weak and strong convergence
theorems for the nonlinear operators in a Hilbert space or a Banach space. Us-
ing these results, we consider some applications.

1. INTRODUCTION

Let H be a real Hilbert space with inner product {-,-} and norm |{- ||, and let C
be a closed convex subset of H. An operator A of C into H is said to be monotone
if
for all z,y € C. An operator A of C into H is said to be inverse-strongly-monotone
if there exists a positive real number o such that

(@ —y, Az — Ay) > of|Az — Ay|I*
for all z,y € C. Such an operator A is said to be a-inverse-strongly-monotone. An
operator A of C into H is said to be strongly monotone if there exists a positive
real number a such that '
(z —y, Az — Ay) > allz — yI’

for all z,y € C. Such an operator A is said to be a-strongly monotone. An operator
A of Cinto H is said to be Lipschitz continuous if there exists a positive real number
3 such that '
tAz — Ayl| < Bllz -yl
for all z,y € C. Such an operator A is said to be §-Lipschitz continuous. If Ais
an a-strongly monotone and B-Lipschitz continuous operator of C into H, then 4
is o/ #-inverse-strongly-monotone. The variational inequality problem is to find a
- point u € C such that
(v—u,Au) 20

for all v € C. Variational inequalities were initially studied by Stampacchia [20,23].
The set of solutions of the variational inequality is denoted by VI(C, A). A mapping
S of C into itself is said to be nonexpansive if

|8z — Syll < {lz - yll
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for all z,y € C. We denote by F(S) the set of fixed points of S. Yamada [50]
proved the following strong convergence theorem for strongly monotone and Lips-
chitz continuous operators in a Hilbert space.

Theorem 1 (Yamada [50]). Let H be a real Hilbert space. Let S be a nonezpansive
mapping of H into itself such that F(S) # { and let A be an a-strongly monotone
and B-Lipschitz continous operator of H into itself. Suppose z; =z € H and {z,}
is given by

Tnt1 = Slfn et Otn+1)\‘4SIL‘n

for every n = 1,2,..., where {a.} is a sequence in [0,1] and X is a positive real
number. If {a,} and A are chosen so that A € (0,2a/8%),

=0
. . Cp — Onyl
lim o, =0, Y a,=coand lim "% =0,
n—00 oyt N—r00 Qe

then {z,} converges strongly to the uniquely ezisting solution of VI(F(S), A).

On the other hand, Nakajo and Takahashi [30] proved the following strong con-
vergence theorem by using the hybrid method in mathematical programming.

Theorem 2 (Nakajo and Takahashi [30]). Let C be a closed conver subset of a
real Hilbert space H and let S be a nonezpansive mapping of C into itself such that
F(S) #0. Suppose z; =z € C and {z,} is given by

Yn = (1 — @n)Zn + @S2y,
Co={2€C: |lyn — 2|l <|lzn — Z“}’
Qn:{zE C . (g;n—z,.’l?—l‘n) 20}1
Tni1 = Po,nQ.%

for everyn =1,2,..., where Pc, g, s the metric projection from C onto C,NQr
and {an} is chosen so that o, € [a,1] for some a with 0 < a < 1. Then {z,}
conwerges strongly to Pp(syz, where Pp(sy ts the metric projection from C onto
F(S).

In this article, motivated by Yamada [50], we first introduce four iterative schemes
for finding a common element of the set of fixed points of a nonexpansive map-
ping and the set of solutions of the variational inequality for an inverse-strongly-
monotone operator in a Hilbert space. Then we obtain weak and strong convergence
theorems for the iterative schemes. As in the above paragraph, if an operator is
strongly monotone and Lipschitz continuous, then it is inverse-strongly-monotone.
Further, we know important examples of inverse-strongly-monotone operators. So,
using these results, we consider some applications; see Section 2. In Section 3,
we define the notion of relatively nonexpansive mappings in a Banach space which
generalizes nonexpansive mappings in a Hilbert space. Then we obtain two con-
vergence theorems for relatively nonexpansive mappings in a Banach space. One.
of them solves a problem posed at the Symposium on Mathematical Economics
sponsored by the Research Institute for Mathematical Science, Kyoto University,
which was held during November 29 ~ December 1, 2002; see [46].



WEAK AND STRONG CONVERGENCE THEOREMS FOR NONLINEAR OPERATORS

2. PRELIMINARIES

Let H be a real Hilbert space and let C be a closed convex subset of H. We
write z, — z to indicate that the sequence {z,} converges weakly to z. z, = =
implies that {z.} converges strongly to z. We denote by N and R the sets of all
positive integers and all real numbers, respectively. For every point z € H, there
exists a unique nearest point in C, denoted by Pcz, such that ||z — Poz|| < |z —yl|
for all y € C. P is called the metric projection form H onto C. We know that Pc
is a nonexpansive mapping from H onto C. It is also known that P¢ satisfies

{z —y, Poz — Poy) > ||Pcz — Poyl®
for every z,y € H. Moreover, Pz is characterized by the properties: Poz € C and
(z — Poz,Pcz —y) >0
for all y € C. In the context of the variational inequality problem, this implies that
u € VI(C,A) < u = Po(u — Au)

for all A > 0, where 4 is a monotone operator of C into H. It is also known that
H satisfies Opial’s condition [32], that is, for any sequence {z,} with z, = z, the
inequality ,

lim nf [l2, — || < limnf [z, —

holds for every y € H with y # z. A set-valued monotone operator T: H—2H
is maximal if the graph G(T') of T is not properly contained in the graph of any
other monotone operator. It is known that a monotone operator T is maximal if
and only if for (z,f) € H x H, (x —y, f — g) > 0 for every (y,9) € G(T) implies
f € Tz. An operator A of C into H is said to be hemicontinous if for all z,y € C,
the mapping [0,1] 3 ¢t — A(tz + (1 - t)y) € H is continuous, where H has the weak
topology. We denote by Ncv the normal cone to C at a point v € C, that is,

Nev={weH: (v—u,w) >0, Yu € C}.
We know the following theorem [36]:

Theorem 3 {Rockafellar [36]). Let C be a closed convez subset of a Hilbert space
H and let A be o monotone and hemicontinuous operator of C into H. LetT: H—

2H be an operator defined as follows:
T = Av+ Nov, veC,
10, v ¢ C.

Then T is mazimal monotone and T~10 = VI(C, A).

Let E be a real Banach space with norm || - || and let E* be the dual of E. We
denote by (-,-) the duality product. The normalized duality mapping J form E to
E* is defined by

Jz ={z* € B*: (z,z*) = |lz|* = |="||}
4

for z € E. A Banach space E is said to be strictly convex if | = < 1 for
all z,y € E with |jz]] = |yl = land z # y. It is also said to be uniformly
convex if liMp oo ||Zn — Ynl| = O for any two sequences {z,}, {yn} in E such that
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llzall = lignll = 1 and limp o0 [|Z232=|| = 1. Let U = {z € E : |jz]| = 1} be the
unit sphere of E. Then the Banach spase £ is said to be smooth provided

lim [z + tyil — lll]

t—0 t
exists for each z,y € U. It is also said to be uniformly smooth if the limit is
attained uniformly for z,y € U. It is well known that if E is smooth, then the
duality mapping J is single valued. It is also known that if £ is uniformly smooth,
then J is uniformly norm-to-norm continuous on each bounded subset of E. Some
properties of the duality mapping have been given in [7, 43, 44]. A Banach space
E is said to have the Kadec-Klee property if z, — z € F and ||z,|| — ||z]], then
Zn —» z. It is known that if E is uniformly convex, then E has the Kadec-Klee
property; see [7, 43, 44] for more details. Let E be a smooth Banach space. The
function ¢ : E x E — R is defined by

$(y,z) = yli* - 2¢y, Jz) + |l
for z,y € E. Tt is obvious from the definition of the function ¢ that

Uyl = li=l)® < ¢y, 2) < (lyll + fizl)?

for all z,y € E. If F is a strictly convex and smooth Banach space, then for
z,y € E, ¢(y,z) = 01if and only if z = y. If ¢(z,y) = 0, we have ||z|| = |jy||. This
implies (y, Jz) = |ly||* = |Jz|]>. From the definition of J, we have Jz = Jy. Since
J is one-to-one, we have z = y; see [7, 43, 44] for more details. Recently, Kamimura
and Takahashi [18] proved the following result. This plays an important role in the
proof of Theorem 16.

Proposition 4 (Kamimura and Takahashi [18]). Let E be a uniformly conver and
smooth Banach space, and let {y,} and {z,} be two sequences of E. If ¢(yn, 2,) — 0
and either {yn} or {z,} is bounded, then y, — z, — 0.

Let C be a nonempty closed convex subset of E. Suppose that E is reflexive,
strictly convex and smooth. Then for any z € E, there exists a point z¢ € C such
that

$lzo,2) = min (3, ).
The mapping P¢ defined by Poz = xy is called the generalized projection [1, 18].
The following are well-known results. For example, see [1, 18].

Proposition 5 (Alber (1}, Kamimura and Takahashi {18]). Let C be a nonempty
closed conver subset of a smooth Banach space E and ¢ € E. Then, zo = Pox if
and only if

(o —y,Jx —~ Jz0) > 0
forye C.

Proposition 6 (Alber [1], Kamimura and Takahashi [18]). Let E be a reflezive,
strictly convez and smooth Banach space, let C be a nonempty closed convex subset
of E and let x € E. Then

¢y, Poz) + ¢(Foz,z) < ¢y, z)
forallyeC.
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3. INVERSE-STRONGLY-MONOTONE OPERATORS

Let H be a Hilbert space and let C be a nonempty closed convex subset of H.
An operator A4 of C into H is said to be inverse-strongly-monotone [5] if there exists
a positive real number « such that

(z -y, Az — Ay) > of|Az — Ay|]®

for all z,y € C. Such an A is said to be o-inverse-strongly-monotone. There are
many examples of inverse-strongly-monotone operators. HA=1-T, whereT is
a nonexpansive mapping of C into itself, then A is 1/2-inverse-strongly-monotone;
see [16]. Let f be a continuously Fréchet differentiable convex functional on H
and let V f be the gradient of f. If Vf is 1/a-Lipschitz continuous, then V fisa-
inverse-strongly-monotone; see [3]. We first establish a strong convergence theorem
for inverse-strongly-monotone operators and nonexpansive mappings in a Hilbert
space.

Theorem 7 (liduka and Takahashi [13]). Let C be a closed convez subset of a real
Hilbert space H. Let A be an a-inverse-strongly-monotone mapping of C into H
and let S be a nonezpansive mapping of C into itself such that F(S)NVI(C, A) # 9.
Let {z,} be a sequence generated by

T =& C,'
Tnpr = anZ + (1 — an)SPo{xn — AnAzy)

for everyn =1,2,..., where {an} C[0,1) and {An} C [a,B] C (0,2¢) satisfy

oQ o> o0 .
im a, =0, Z Qp = 00, Z |Qni1 — @] < 00 and Z Ant1 — An| < 0.

n-—+0o
n=1 n=1 n=1

Then, {z,} converges strongly to Pr(synviI(c,4)T-
Using Theorem 7, we obtain Wittmann's theorem [49].

Theorem 8 ([49]). Let C be a closed convez subset of a real Hilbert space H and let
S be a nonezpansive mapping C into itself such that F(S) # 0. Supposexzy =z €C
and {z,} is given by :

Tni1 = AnT + (1 — 00n)SZn
for everyn =1,2,..., where {a,} is a sequence in [0,1). If {an} is chosen so that
oo o
im an = oo, Zan = oo and Z |Qn1 — @} < 0,

n—od
n=1 n=1

then {z,} converges strongly to Pr(s)z, where Pr(sy is the metric projection from
C onto F(S).

Proof. In Theorem 7, put Az = 0 for all £ € C. Then A is inverse-strongly-
monotone. We have C = VI(C, A) and

Zni1 = AnT + (1 — @n)SPo(Tn — AndTs)
=@,z + (1 — 0, )SFczn
=anz+ (1 — an)STn.

Using Theorem 7, {z,} converges strongly to Pr(s)Z O
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A mapping T : C — C is called strictly pseudocontractive if there exists k with
0 < k < 1 such that

1Tz = Tylf® < llz —yIP? + k(I = T)z = (I = Tyl

for all ¢,y € C. Such a mapping T is said to be k-strictly pseudocontractive. If
k = 0, then T is nonexpansive. Put A = I ~ T, where T : C — C is a k-strictly
pseudocontractive mapping. Then, A is 25%-inverse-strongly-monotone; see [5].

Actually, by the definition of T, we have, for all z,y € C,
(I = Az — (I - Ayl < llz — yl® + k| Az — Ay|]*.
On the other hand, since H is a real Hilbert space, we have
(I = Az — (I - Ayl = llz — yl* + || Az — Ay|]® - 2z —y, Az — Ay).
Hence we have |-k
(z -y, Az — Ay) > 5 1Az — Ayl]?.

Using Theorem 7, we can also prove a strong convergence theorem for a common
fixed point of a nonexpansive mapping and a strictly pseudocontractive mapping.

Theorem 9. Let C be a closed conver subset of a real Hilbert space H. Let S be
a nonezpansive mapping of C into itself and let T' be a k-strictly pseudoconiractive
mapping of C into itself such that F(S)NF(T) # 0. Let {z.} be a sequence
generated by
1=z €C,
{ Tptl = QT + (1 - an)s((l - An):cn + '\nTzn)

for everyn = 1,2,..., where {a,} C[0,1) and {A\,} C[a,b] C (0,1 — k) satisfy

o0 oo xR
nl_i_)n'éo an, =0, Zan = 0, Z lnt1 — an| < oo and Z [Ant1 — An| < o0.
n=1 n=1 n=1

Then, {z,} converges strongly to Pr(synr(T)T-

We obtain another strong convergence theorem by using the hybrid method in
mathematical programming.

Theorem 10 (liduka and Takahashi [11]). Let C be a closed convez subset of a
real Hilbert space H. Let A be an a-inverse-strongly-monotone operator of C into H
and let S be a nonezpansive mapping of C into itself such that F{(S)NVI(C, A) # 0.
Suppose z; = x € C and {z,} is given by

Yn = (1 — an)zp + @nSPo(zn — AnAz,),

Con={2€C: {lyn —2ll <llza — 2|},

Qu=1{2€C: (an—28—z,) >0},

$n+1 - Pcannm
for everyn = 1,2,..., where {an} is a sequence in [0,1] and {\,} is a sequence
in [0,2a]. If {an} and {X,} are chosen so that o, € [c,1] for some ¢ with 0 <
¢ <1 and A, € [a,b] for some a,b with 0 < a < b < 2a, then {z,} converges

strongly to Pr(s)nvr(c,a)Z, where Pp(synvic,a) is the metric projection from C
onto F(S)NVI(C,A).

Using Theorem 10, we can prove the following strong convergence theorem in a
Hilbert space.
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Theorem 11. Let C be a closed convex subset of a real Hilbert space H. Let T be
a k-strictly pseudocontractive mapping of C into itself and let S be a nonezpansive
mapping of C into itself such that F(S) N F(T) # §. Supporse z; =z € C and
{zn} is given by

Yn = (1 = @n)Zn + anS({1 — An)ZTn + AT Azs),

Cn={2€C: |lyn — 2|l < llzn — 2li},

Qn={2€C: (&n— 2,2 —zn) 20},

Tnt1 = PC,.NQ,.JL'
for everyn =1,2,..., where {an} is a sequence in [0,1] and {An} is a sequence in
[0,1—k]. If {a.} and {A.} are chosen so that an € [e,1] for somec with0 < c <1
and A, € [a,b] for some a,b with0 < a < b < 1—k, then {z,} converges strongly to
Pp(syn r(r)T, where Prsyn p(z) 1 the metric projection from C onto F(S)NF(T).

We can also prove the following weak convegence theorem for inverse-strongly-

monotone operators and nonexpansive mappings in a Hilbert sapce.

Theorem 12 (Takahashi and Toyoda [48]). Let C be a closed convez subset of a
real Hilbert space H. Let A be an a-inverse-strongly-monotone operator of C into
H and let S be a nonezpansive mapping C' into itself such that F(S)NVI(C, A) # 0.
Supporse 11 = 7 € C and {zn} is given by
| Znil = QnTn + (1 — an)SPo(zn — AnAzy,)

for everyn = 1,2,..., where {an} is a sequence in [0, 1] and {An} is @ sequence in
[0,2a]. If {an} and {A\a} are chosen so that an € [a,b] for some a,b with 0 <a <
b< 1 and M, € [c,d] for some ¢,d with0 < ¢ < d < 2a, then {z,} converges weakly
to some element z of F(S)NVI(C,A). Further, z = liMp 0 Pr(s)nvi(c,a)Tn;
where Pr(synvi(c,a) 8 the metric projection from C onto F(S)NVI(C, A).

In this section, we finally establish a weak convergence theorem which generalizes
Baillon’s nonlinear ergodic theorem [2].

Theorem 13 (liduka and Takahashi [14]). Let C be a closed convex subset of e
real Hilbert space H. Let A be an a-inverse-sirongly-monotone operator of C into
H and let S be a nonezpansive mapping C into itself such that F(S)NVI(C, A) # 0.
Supporse x1 =z € C and {2z} is given by

$n+1 = SPC(ﬂ;n - AnA-'L'n),

Zn = %21;1 Tk
for everyn = 1,2,..., where {i,} is chosen so that A, € [a,b] for some a,b with
0<a<b< 2 Then{z,} converges weakly to some element z of F{S)NVI(C, A).
Further, z = ima 00 PR(S)NVI(C,A)%n; where Prs)nvi(c,4) is the metric projec-
tion from C onto F(S)NVI(C, 4). :

" Baillon’s nonlinear ergodic theorem [2] is as follows:

Theorem 14 ([2]). Let C be a closed conver subset of a real Hilbert space H and let
S be a nonezpansive mapping C into itself such that F (S) # 0. Supposez; =z € C

and {z,} is given by

1 n
Zn = — 5 Sh—1yg
n
k=1
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for everyn = 1,2,.... Then {z,} converges weakly to some element z of F(S).
Further, z = limy 00 Pr(s)Zn, where Pp(s) is the metric projection from C onto
F(S).
Proof. In Theorem 13, put Az = 0 for all z € C. Then A is inverse-strongly-
monotone. We have C = VI(C, A) and

Tnt1 = SPo(Zn — AnAz,)

= SPoxn = Szn
= 8"z.
So, by Theorem 13, {z,} converges weakly to some élement z of F(S). 0

Using Theorem 13, we can also obtain the following theorem.

Theorem 15. Let H be a real Hilbert space. Let A be an a-inverse-strongly-
monotone operator of H into itself and let S be a nonezpansive mapping H into
itself such that F(S)N A0 # 0. Supporse z1 =z € H and {z.} is given by

{$“+l = S8(zn — Andz,),

R
Zn = 5 2uk=1 Tk

for everyn = 1,2,..., where {\,} is chosen so that \,, € [a,b] for some a,b with
0<a<b<2a Then {2,} converges weakly to some element z of F(S)N A~10.
Further, z = lim, oo Pr(s)na~10Zn, where Pr(syna-10 i the metric projection
from H onto F(S) N A™10.

Proof. We have A0 = VI(H, A). So, putting Pg = I, by Theorem 13, we have
that {z,} converges weakly to some element z of F(S)N A10. |

4. RELATIVELY NONEXPANSIVE MAPPINGS

Let C be a closed convex subset of E, and let 7" be a mapping from C into itself.
We denote by F(T') the set of fixed points of T. A point p in C is said to be an
asymptotic fixed point of T' [35] if C' contains a sequence {z,} which converges
weakly to p such that the strong lim,, ,o.(z, — Tz,) = 0. The set of asymptotic
fixed points of T will be denoted by F(T'). A mapping T from C into itself is called
relatively nonexpansive if F(T) = F(T) and ¢(p,Tz) < ¢(p,z) for all z € C and
p € F(T).

The following is a strong convergence theorem for relatively nonexpansive map-
pings in a Banach space which generalizes Nakajo and Takahashi’s theorem [30] in
a Hilbert space.

Theorem 16 (Matsushita and Takahashi [28]). Let E be a uniformly convez and
uniformly smooth Banach space, let C be a nonempty closed convez subset of E, let
T be a relatively nonezpansive mapping from C into itself with F(T) # ¢ and let
{an} be a sequence of real numbers such that 0 < a, < 1 and limsup,,_, _ a, < 1.
Suppose that {z,} is given by

z; =z €C,

Yn = J Handzn + (1 — an)ITz,),

H, = {z € C:¢(2,5:) < ¢(2,20)},
Wn={2¢€C:{(z,—zJz - Jz,) >0},

Tn4l = PHﬂnWﬂw
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for alln = 1,2,..., where J is the duality mapping on E. Then {z,} converges
strongly to Pg(yz, where Pp(ty is the generalized projection from C onto F(T).

Using Theorem 16, we can prove Nakajo and Takahashi’s theorem (Theorem
2) as follows: To show Nakajo and Takahashi’s theorem, it is sufficient to prove
that if TAis nonexpansive, then T is relatively nonexpansive. It is obvious that
F(T) C F(T). If v € F(T), then there exists {xn} C C such that z, — u and
%n — Tzn — 0. Since T is nonexpansive, T is demiclosed. So, we have u = Tu.
This implies F(I') = F(T). Further, in a Hilbert space H, we know that

(z,y) = llz — yI?

for every z,y € H. So, [Tz — Ty|| < ||z - yl| is equivalent to ¢(Tz,Ty) < ¢(=,y)-
Therefore, T is relatively nonexpansive. Using Theorem 16, we obtain the desired
result. ‘

Using Theorem 16, we can also consider a proximal-type algorithm for finding
zero points of maximal monotone operators in a Banach space. Let A be a mul-
tivalued operator from E to E* with domain D(A) = {2 € E : Az # ¢} and
range R(A) = U{Az : z € D(A)}. An operator 4 is said to be monotone if
{zy — T9,y1 — y2) > O for each z; € D(A) and y; € Tzi,1 =1, 2. A monotone oper-
ator A is said to be maximal if its graph G(4) = {(z,y) : y € Az} is not properly
contained in the graph of any other monotone operator. We know that if Aisa
maximal monotone operator, then A™10 is closed and convex. The following result

is also well-known.

Theorem 17 (Rockafellar [36]). Let E be a reflexive, strictly conver and smooth
Banach space and let A be a monotone operator from E to E*. Then A is mazimal
if and only if R(J +1A) = E* for allr > 0.

Let E be a reflexive, strictly convex and smooth Banach space, and let 4 be a
maximal monotone operator from E to E*. Using Theorem 17 and strict convexity
of E, we obtain that for every r > 0 and z € E, there exists a unique z, € D(A)
such that

Jr € Jz, +TAzL,.

If J.z = z,, then we can define a single valued mapping J, : £ — D(4) by
J. = (J +rA)7'J and such a J, is called the resolvent of A. We know that
A=10 = F(J,) for all r > 0; see [43, 44] for more details. Using Theorem 16,
we can prove a strong convergence threorem for maximal monotone operators in a
Banach space. Such a problem has been also studied in [18, 22, 31, 33, 35, 39}.

Theorem 18. Let E be a uniformly convez and uniformly smooth Banach space,
let A be a mazimal monotone operator from E to E*, let J,. be the resolvent of A,
where r > 0 and let {a,} be a sequence of real numbers such that 0 < an < 1 and
lim sup,,_, ., @n < 1. Suppose that {z,} is given by

T, =z € FE,

Yn = J‘_l(an-}zn + (1 - an)JJrlf'n.);

H, ={z€ E:¢(2,yn) < (2, 2n)},
W,={z€E: (zn, — 2,JT — Jzp) 2> 0},
Tnit = PH,AW,. T
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foralln = 1,2,..., where J is the duality mapping on E. If A~10 is nonempty,
then {z,} converges strongly to Ps-igx, where P41 is the generalized projection
from E onto A™10.

Proof. We first show that F'(J,) C A™'0. Let p € F(J.). Then, there exists
{zn} C E such that 2, — p and lim, ,0o(2, — Jr2,) = 0. Since J is uniformly
norm-to-norm continuous on bounded sets, we obtain

%(Jzn ~ JJvzn) = 0.

It follows from %(J Zn — JJr2Zn) € AJrz, and the monotonicity of A that
(w — Jpzp, w* ~ %(-]zn — JJezn)) >0
for all w € D(A) and w* € Aw. Letting n — oo, we have
{(w-p,w) >0

for all w € D(A) and w* € Aw. Therefore from the maximality of A, we obtain
p € A~10. On the other hand, we know that F(J,) = A~10 and F(J,) C F(J,).
Therefore A~10 = F(J,) = F(J,). Next we show that J, is a relatively nonex-
pansive mapping with respect to A™'0. Let w € F and p € A~'0. From the
monotonicity of A, we have

¢(p, Jow) = ||pl? - 2(p, JJrw) + || Jow]]?
= ol + 2(p, Jw — JJ,w — Jw) + || Jw]]?
= [Ipl)? + 2{p, Jw — JJ,w) — 2p, Jw) + ||J,w]|]?
= lipi* = 2(Jow — p — Jow, Jw — JJ,w) — 2{p, Jw) + [|J.w|?
=|lp|* - 2(Jow — p, Jw — JJ,w)
+ 2{Jpw, Jw — JJ.w) — 2p, Jw) + || Jyw])®
= ol — 2r(Jpw — p, 2(Jw — JJrw))
+ 2{Jrw, Jw — JJrw) — 2{p, Jw) + || Jow|]?
< |lpll? + 2(Jow, Jw — JJpw) — 2(p, Jw) + || rw]]?
= |lpll* — 2(p, Jw) + llw|]® — || Jowl + 2(J,w, Jw) — |w]®
= ¢(p,w) — ¢(Jyw, w)

< é(p,w).
This implies that J; is a relatively nonexpansive mapping. Using Theorem 16, we
can conclude that {z,} converges strongly to Ps-157. O

Next, we obtain a weak convergence theorem for relatively nonexpansive map-
pings in a Banach space which is connected with Browder and Petryshyn’s theorem
[5] and Rockafellar’s theorem [37]. Before proving it, we need the following propo-
sition.

Proposition 19 (Matsushita and Takahashi [27]). Let E be a uniformly conver
and uniformly smooth Buanach space, let C be a nonempty closed conver subset
of E, and let T be a relatively nonezpansive mapping from C into itself such that
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F(S) # 9. Let {a,} be a sequence of real numbers such that 0 < a, < 1. Let
2y € C and let {,} be the sequence defined by

Tnry = Pod Handz, + (1~ an)JITz,)

forn =1,2,.... Then {Prm)zn} converges strongly to a fized point of T, where
Pg(T) is the generalized projection from C onto F(T).

Using Proposition 19, we can prove the following weak convergence theorem.

Theorem 20 (Matsushita and Takahashi [27]). Let E be a uniformly convez and
uniformly smooth Banach space, let C be a nonempty closed convez subset of E, and
let T be a relatively nonezpansive mapping from C into itself such that F(S) # @.
Let {a,,} be a sequence of real numbers such that .

0 < a, £1and liminfap(l —an) > 0.
n—rco

Let z; € C and let {z.,} be the sequence defined by
Zni1 = PoJ HanJz, + (1 — an)JTz,)

forn=1,2,.... If J is weakly sequentially continuous, then {z.} converges weakly
to u, where u = limp_,00 Pr(1)%n and Pp(r) 15 the generalized projection from C
onto F(T)

Using Theorem 20, we can prove‘ the following two weak convergence theorems.

Theorem 21 (Browder and Petryshyn [5]). Let C be a nonempty closed conver
subset of a Hilbert space H, let T be a monezpansive mapping from C into itself
such that F(T) # 0 and let X be a real number such that 0 < A< 1. Letz; € C
and let {z,} be the sequence defined by

Tns1 = ATp + (1 — A)Tzx

forn = 1,2,.... Then {z,} converges weakly to u, where u = liM, 00 Pr(1)Tn
and Pp(1) is the metric projection from C onto F(T)

Proof. Let an, = A for each n € No It is clear that liminfpee @n{l — @n) =
A(1—2) > 0. We know that if T' is nonexpansive, then T is relatively nonexpansive.
Using Theorem 20, we obtain the desired result. O

Theorem 22. Let E be a uniformly conver and uniformly smooth Banach space,
let A be o mazimal monotone operator from E to E* such that ATI0 £ 0, let J,
be the resolvent of A wherer >0, and let {an} be a sequence of real numbers such
that

0<a,<1 and Hminfa,(l- an) > 0.
n—>00

Let z; € E and let {z,} be the sequence defined by
Tni1 = J HanJTn + (1 — an) S JrTn)

forn=1,2,.... If J is weakly sequentially continuous, then {z,} converges weakly
to w in A~10, where u = liMp o0 P4-10Zn and Pa-10 15 the generalized projection
from E onto A7'0.

11
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Proof. As in the proof of Theorem 18, we have that
¢, Jrz) < $(p, )

for all z € F and p € A™*0 and F(J,) C F'(J,). Further, we know that F'(J,) C
AT10; see [17, 22, 28]. So, we obtain that J, is a relatively nonexpansive mapping
and F(J.) = F(J,) = A~10. Applying Theorem 20, we get that {z,} converges
weakly to lim, oo Py-10Z,, where Py-1q is the generalized projection from F onto
A~ O
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