
121

Pricing Lookback Options
with Knock-out Boundaries *

YOSHIFUMI MUROI
Bank of Japan

2-1-1 Nihonbashi-Hongokucho Chuou-ku, Tokyo 103-8660, Japan

May 20, 2005

Abstract.

This paper describes a new kind of exotic options, lookback options with knock-out bound-

aries. These options are knock-out options whose pay-offs depend on the extrema of a

given securitie’s price over a certain period of time. Closed form expressions for the price

of seven kinds of lookback options with knock-out boundaries are obtained in this article.

The numerical studies has also been presented.
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become worthless at the occasion that the price of underlying asset touches the certain
boundaries. The pricing problems of knock-out options$\mathrm{n}\mathrm{s}$ have already been considered in
early $1970\mathrm{s}$ by Merton (1973). Pricing problems of double knock-out options$\mathrm{n}\mathrm{s}$ have been

considered in Kunitomo and Ikeda (1994) and Ikeda (2000), for example. An advantageous
point of knock-out options is that they are cheaper than ordinary options. There is an
advantageous point for lookback options with knock-out boundaries. Althogh lookback
options are usually very expensive, it is possible to make the price of lookback options

much cheaper by equipping the knock-out features, The analytic formulas for the price
of float strike double knock-out lookback options are obtained in this article. The pricing
formulas for other kinds of lookback options with knock-out boundaries can be found in
Muroi (2004).

2 Lookback Options with knock-out boundaries

The pricing problems for lookback options with double knock-out boundaries are discussed
in this section. This is considered in the Black-Scholes economy with the probability space,
$(\Omega, \mathcal{F}, P)$ . There are two kinds of securities in this market, the risk securities and the
risk-free securities. The risk-free security earns interest continuously compounded at the
constant rate, $r(\geq 0)$ , with a dollar invested at time 0 accumulating to $B(t)$ by time $t$ .
The risk-neutral probability measure, $Q$ , has to be equiped to calculate the rational value
of contingent calims. On the risk-neutral probability measure, $Q$ , the price process of risk
assets is assumed to follow the SDE,

$dS_{t}$ $=$ $S_{t}(rdt+\sigma d\tilde{W}_{t})$ (2.1)
$S_{0}$ $=$ $s$ .

In order to define the price of lookback options with double nock-out boundaries, fol-
lowing variables are introduced:

$L= \inf_{0\leq r\leq t}S_{r}$ , $L_{T}= \inf_{t\leq r\leq T}S_{r}$ , $L(T)= \min\{L_{T}, L\}$

$M= \sup_{0\leq r\leq t}S_{r}$ , $M_{T}= \sup_{t\leq r\leq T}S_{r}$ , $M(T)= \max\{M_{T}, M\}$ .

Float strike double knock-out lookback options are defined.

Definition 2.1 Float strike double knock-out lookback options with the maturity date,
$T$, are options which have a cashflow at the matur$ity$ date, $T$, if the price of underlying
assets touch neither the lower boundary, 1, nor the upper boundary, $m_{J}$ during the life
of options. If the lower or upper boundary is breached by the price process of underlying
assets, options expire worthless. The cashflow for call options at the maturity date equals
$S_{T}-L(T)$ artd the cashflow for put options at the maturity date is given by $M(T)-S_{T}$ .
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In this section, the pricing problems of options with knock-out boundaries are consid-

ered under the conditions,
$S_{t}=x$ , $l<L$ , $M<m$ . (2.2)

The price of float strike double knock-out lookback call options at time $t$ is denoted by

$C_{FL}(t)$ . It is possible to derive the option premiums by using the expectation operator,
$E[\cdot]$ , which is a conditional expectaions with the measure, $Q$ , conditioned by (2.2). The

price of options is given by

$C_{FL}(t)$ $=$ $E[e^{-r\tau}(S_{\tau}-L(T))1\{l<L_{T},M_{T}<m\}]$

$=$ $e^{-r\tau}\{E[S_{T}1_{\{l<L_{T},M_{T}<m\}}]-LQ[L<L_{T}, M_{T}<m]$

$-E[L_{T}1_{\{l<L_{T}\leq L,M_{T}<m\}}]\}$ , (2.3)

where $\tau=T-t$ . The probability that the price process of underlying assets reach neither

the lower level, $p$ , nor the upper level, $q(p<s<q)$ , which is denote by $F(p, q)$ . The

closed form formula of this probability is given by

$F(p, q)=P[p<L_{T}, M_{T}<q]$

$= \sum_{n=-\infty}^{\infty}(\frac{q^{n}}{p^{n}})^{\frac{2}{\sigma}\tau^{-1}}\{\Phi(\frac{\log(\frac{xq^{2n}}{p^{2n+1}})+(r-\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}})r-\Phi(\frac{\log(\frac{xq^{2n-1}}{p^{2n}})+(r-\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}})\}$

-
$\sum_{n=-\infty}^{\infty}(\frac{p^{n+1}}{xq^{n}})^{\frac{2}{\sigma}\tau^{-1}}.\{\Phi(\frac{\log(\frac{p^{2n+1}}{xq^{2n}})+(r-\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}})?-\Phi(\frac{\log(\frac{p^{2n+^{\underline{\eta}}}}{xq^{2n+1}})+(r-\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}})\}$

(2.4)

where $\Phi(\cdot)$ is a distribution function for standard normal random variables. The first

term in (2.3) is represented by $D$ :

$D$ $=$ $E[e^{-r\tau}S_{T}1_{\{l<L_{T},M_{T}<m\}}]$

$=$ $x \sum_{n=-\infty}^{\infty}\{(\frac{m^{n}}{l^{n}})^{\frac{2r}{\sigma^{2}}+1}(\Phi(d_{1n})-\Phi(d_{2n}))-(\frac{l^{n+1}}{xm^{n}})^{\frac{2r}{\sigma^{2}}+1}(\Phi(d_{3n})-\Phi(d_{4n}))\}$ , (2.5)

where $d_{1n}$ , $d_{2n}$ , $d_{3n}$ and $d_{4n}$ are given by

$d_{1n}$ $=$
$\frac{\log(\frac{xm^{2n}}{l^{2n+1}})+(r+\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}}$, $d_{2n}= \frac{\log(\frac{xm^{2n-1}}{l^{2n}})+(r+\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}}$ ,

$d_{3n}$ $=$
$\frac{\log(\frac{l^{2n+1}}{xm^{2n}})+(r+\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}}$, $d_{4n}= \frac{\log(\frac{l^{2n+2}}{xm^{2n+1}})+(r+\frac{\sigma^{2}}{2})\tau}{\sigma\sqrt{\tau}}$ .

The second and third terms in (2.3) are derived as

$-LQ[L<L_{T}, M_{T}<m]-E[L_{T}1_{\{l<L_{T}<L,M_{T}<m\}}]=-lF(l, m)- \int_{l}^{L}F(y, m)dy$ . (2.6)
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The first term in (2.6) was already calculated in (2.4) and a remained task is to obatain the
explicit formula for the second term in (2.6). In order to derive the explicit representation

of this term, the function, $G(\cdot)$ , is introduced as

$G(z)= \int_{l}^{z}F(y, m)dy$ .

The function, $G(\cdot)$ , is given by

$G(z)= \sum_{n=-\infty}^{\infty}\{G_{n}^{1}(z)-G_{n}^{2}(z)\}-\sum_{n=-\infty}^{\infty}\{G_{n}^{3}(z)-G_{n}^{4}(z)\}$ . (2.7)

In order to derive the explicit representation formula for lookback options with knock-out
boundaries, the following assumption has to be imposed.

Assumption 2,1 For arry integer, $k_{2}$ the relation, $\frac{2r}{\sigma^{2}}=1+\frac{1}{k}$
) is not satisfied.

Even if Assumtion 2.1 is not satisfied, it is possible to obtained the formula for $G(\cdot)$ and
this is discussed later in Appendix. Under Assumption 2.1, the explicit representations
for $G_{n}^{1}$ ( $\cdot$ ), $G_{n}^{2}(z)$ , $G_{n}^{2}(z)$ and $G_{n}^{2}(z)$ are given by

$G_{n}^{1}(z)$ $=$ $\frac{m}{(2n+1)\alpha_{n}^{1}}\{(\frac{x}{m})e^{(r-\frac{\sigma^{2}}{2})\tau}\}^{\alpha_{n}^{1}}[e^{-\sigma\sqrt{\tau}\alpha_{n}^{1}f_{n}^{1}}\Phi(f_{n}^{1})-e^{-\sigma\sqrt{\tau}\alpha_{n}^{1}g_{n}^{1}}\Phi(g_{n}^{1})-$

$-e^{\sigma^{2}\tau(\alpha_{n}^{1})^{2}/2}\{\Phi(f_{n}^{1}+\sigma\sqrt{\tau}\alpha_{n}^{1})-\Phi(g_{n}^{1}+\sigma\sqrt{\tau}\alpha_{n}^{1})\}]$

$G_{n}^{2}(z)$ $=$ $\frac{m}{2n\alpha_{n}^{2}}\{(\frac{x}{m})e^{(r-\frac{\sigma^{2}}{2})\tau}\}^{\alpha_{n}^{2}}[e^{-\sigma\sqrt{\tau}\alpha_{n}^{2}f_{n}^{2}}\Phi(f_{n}^{2})-e^{-\sigma\sqrt{\tau}\alpha_{n}^{2}g_{n}^{2}}\Phi(g_{n}^{2})-$

$-e^{\sigma^{2}\tau(\alpha_{n}^{2})^{2}/2}(\Phi(f_{n}^{2}+\sigma\sqrt{\tau}\alpha_{n}^{2})-\Phi(g_{n}^{2}+\sigma\sqrt{\tau}\alpha_{n}^{2}))]$ $(n\neq 0)$

$G_{0}^{2}(z)$ $=$ $(z-l) \Phi(\frac{\log(\frac{x}{m})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}})$

$G_{n}^{3}(z)$ $=$ $\frac{m}{(2n+1)\alpha_{n}^{3}}(\frac{m}{x})^{\frac{2}{\sigma}\tau^{-1}}\{(\frac{x}{m})e^{-(r-\frac{\sigma^{2}}{2})\cdot r}\}^{\alpha_{n}^{3}}[e^{\sigma\sqrt{\tau}\alpha_{n}^{3}f_{n}^{3}}\Phi(f_{n}^{3})-e^{\sigma\sqrt{\tau}\alpha_{n}^{3}g_{n}^{3}}\Phi(g_{n}^{3})-r$

$-e^{\sigma^{2}\tau(\alpha_{n}^{3})^{2}/2}(\Phi(f_{n}^{3}-\sigma\sqrt{\tau}\alpha_{n}^{3})-\Phi(g_{n}^{3}-\sigma\sqrt{\tau}\alpha_{n}^{3}))]$

$G_{n}^{4}(z)$ $=$ $\frac{m}{(2n+2)\alpha_{n}^{4}}(\frac{m}{x})^{\pi^{-1}}\sigma\{(\frac{x}{m})e^{-(r-\frac{\sigma^{2}}{2})\tau}\}^{\alpha_{n}^{4}}[e^{\sigma\sqrt{\tau}\alpha_{n}^{4}f_{n}^{4}}\Phi(f_{n}^{4})-e^{\sigma\sqrt{\tau}\alpha_{n}^{4}g_{n}^{4}}\Phi(g_{n}^{4})-2r$

$-e^{\sigma^{2}\tau(\alpha_{n}^{4})^{2}/2}(\Phi(f_{n}^{4}-\sigma\sqrt{\tau}\alpha_{n}^{4})-\Phi(g_{n}^{4}-\sigma\sqrt{\tau}\alpha_{n}^{4}))]$ $(n\neq-1)$

$G_{-1}^{4}(z)$ $=$ $(z-l)( \frac{m}{x})^{\frac{2\tau}{\sigma^{2}}-1}\Phi(\frac{\log(\frac{m}{x})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}})$

where

$f_{n}^{1}$ $=$ $\frac{\log(\frac{xm^{2n}}{z^{2n+1}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ , $g_{n}^{1}= \frac{\log(\frac{xm^{2n}}{l^{2n+1}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ ,

$\alpha_{n}^{1}$ $=$ $\frac{1-n(\frac{2r}{\sigma^{2}}-1)}{2n+1}$ , $f_{n}^{2}= \frac{\log(\frac{xm^{2n-1}}{z^{2n}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ ,

$g_{n}^{2}$ $= \frac{\log(\frac{xm^{2n-1}}{l^{2n}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ , $\alpha_{n}^{2}=\frac{1-n(\frac{2r}{\sigma^{2}}-1)}{2n}$ ,
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$f_{n}^{3}$ $=$
$\frac{\log(\frac{z^{2n+[perp]}}{xm^{2n}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ , $g_{n}^{3}= \frac{\log(\frac{l^{2n+1}}{xm^{2n}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ ,

$\alpha_{n}^{3}$ $=$
$\frac{1+(n+1)(\frac{2r}{\sigma^{2}}-1)}{2n+1}$ , $f_{n}^{4}= \frac{\log(\frac{z^{2n+2}}{xm^{2n+1}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$,

$g_{n}^{4}$ $=$
$\frac{\log(\frac{l^{2n+2}}{xm^{2n+1}})+(r-\sigma^{2}/2)\tau}{\sigma\sqrt{\tau}}$ , $\alpha_{n}^{4}=\frac{1+(n+1)(\frac{2r}{\sigma^{2}}-1)}{2n+2}$ .

These calculations lead to the explicit representation of $G(\cdot)$ and it is given by

$G(z)= \sum_{n=-\infty}^{\infty}\{G_{n}^{1}(z)-G_{n}^{2}(z)\}-\sum_{n=-\infty}^{\infty}\{G_{n}^{3}(z)-G_{n}^{4}(z)\}$ . (2.8)

The following theorem is obtained.

Theorem 2.1 if the price of underlying assets touch neither the lower boundary, $l$ , nor

the upper boundary, $m$ , during the time interval, $[0, t]$ , the closed form formula for the

time $t$ price of float strike double knock-out lookback call options with the maturity date,
$T$ , is given by

$C_{FL}(t)=D-e^{-r\tau}(lF(l, m)$ $+G(L))$ .

The closed form analytic for rmulas of $D$ is given by (2.5), $F(\cdot, \cdot)$ is given by (2.4) and
$G(\cdot)\mathrm{i}s$ given by (2.7).

It has not been derived the pricing formulas for lookback options with knock-out bound-

aries in case that Assumption 2.1 is not satisfied. The following assumption is imposed.

Assumption 2.2 For some integer, $k$ , the relation, $\frac{2r}{\sigma^{2}}=1+\frac{1}{k}f$ is satisfied.

Under assumption 2.2, the terms, which needs corrections in $G(\cdot)$ , are $G_{k}^{1}(\cdot),G_{k}^{2}(\cdot),G_{-k-1}^{3}$ ( $\cdot$ )

and $G_{-k-1}^{4}$ ( $\cdot$ ). They are given by

$G_{k}^{1}(z)$ $=$ $- \frac{m\sigma\sqrt{\tau}}{2k+1}\{f_{k}^{1}\Phi(f_{k}^{1})-g_{k}^{1}\Phi(g_{k}^{1})+\phi(f_{k}^{1})-\phi(g_{k}^{1})\}$

$G_{k}^{2}(z)$ $=$ $- \frac{m\sigma\sqrt{\tau}}{2k}\{f_{k}^{2}\Phi(f_{k}^{2})-g_{k}^{2}\Phi(g_{k}^{2})+\phi(f_{k}^{2})-\phi(g_{k}^{2})\}$

$G_{-k-1}^{3}(z)$ $=$ $- \frac{m\sigma\sqrt{\tau}}{2k+1}(\frac{m}{x})^{\frac{1}{h}}\{f_{-k-1}^{3}\Phi(f_{-k-1}^{3})-g_{-k-1}^{3}\Phi(g_{-k-1}^{3})+\phi(f_{-k-1}^{3})-\phi(g_{-k-1}^{3})\}$

$G_{-k-1}^{4}(z)$ $=$ $- \frac{m\sigma\sqrt{\tau}}{2k}(\frac{m}{x})^{\frac{1}{k}}\{f_{-k-1}^{4}\Phi(f_{-k-1}^{4})-g_{-k-1}^{4}\Phi(g_{-k-1}^{4})+\phi(f_{-k-1}^{4})-\phi(g_{-k-1}^{4})\}$ .

where $\phi(\cdot)$ is a density function for the Normal random variables. It is also possible to

obtain the pricing formulas for other kind of lookback options with knock-out boundaries

and it is discussed in Muroi (2004). The numerical results are also shown in that paper
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