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Abstract

In this paper, we survey the results of the mean-variance hedging prob-
lem for discontinuous asset price processes, based on Arai (2005a, 20056b,
2005¢). Furthermore, we introduce some examples satisfying assumptions
which are imposed in these papers on the variance-optimal martingale
measure. :
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1 Introduction

In this paper, we summarize the results of Arai (2005a, 2005b, 2005¢), and
introduce some examples related to these papers. Arai (2005a) has given a rep-
resentation of mean-variance hedging for the discontinuous assct price process
case under some additional assumptions related to the variancc-optimal mar-
tingale measure (VOM, for short) as an extension of Gouriéroux, Laurent and
Pham (1998) (GLP, for short) and Rheinldnder and Schweizer (1997) (RS, for
short). Morcover, Arai (2005b) gave another proof of Arai (2005a) by using
the duality method of Hou and Karatzas (2004) (HK, for short). Finally, Arai
(2005¢) improved the additional assumptions in Arai (2005a).

We consider an incomplete financial market being composed of one riskless
asset and d risky assets. Let T > O be its maturity. Suppose that the price
of the riskless asset is 1 at all times, and the fluctuation of d risky assets is
described by an Ré-valued semimartingale X. Furthermore, in this paper, we
regard an R%valued predictable X-integrable process such that the stochastic

integral G(+¥) = / ¥.dX, is a semimartingale of the space 82 as a self-financing

0
strategy, and denote the set of all such self-financing strategies by ©. The
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process G(9) means the trading gains induced by a sclf-financing strategy ¥.
Note that ¥ means the number of units invested in the risky asscts. Let H be
an Fp-measurable square integrable random variable. Throughout this paper,
we regard H as a contingent claim, that is, payoff at the maturity 7". Then,
we consider a hedger with an initial capital ¢ € R. She or he intends to hedge
against the contingent claim H by means of a self-financing strategy. However,
since the market is incomplete, it is impossible to replicate the contingent claim
by an appropriate self-financing strategy. Thus, she or he is under the necessity
of optimizing her or his strategy in some way. Then, we assume that she or
he makes an attempt to minimize the £2(P)-norm of discrepancy between the
underlying contingent claim and the value at the maturity T of a portfolio
associated with a sclf-financing strategy and the initial capital ¢. In other words,
she or he considers, for fixed ¢ € R, the following minimization problem:

Problem 1

Minimize E [(H —c¢— G‘T('z?))z} over all ¢ € ©.

The solution of Problem 1 is said to be mean-variance hedging.

GLP and RS have obtained conclusive results for the case where X is given
by a continuous semimartingale. By using a change of numéraire and a change
of measure, GLP reduced the problem to a martingale framework. On the other
hand, RS uscd weighted norm incqualities and the Galtchouk-Kunita-Watanahce
decomposition (GKW dccomposition, for short). They obtained a feedback
form expression of mean-variance hedging. Moreover, RS discussed the GLP
approach as an alternative approach. In addition, HK has introduced a new
duality approach to least-square approximation problem of random variables
by stochastic integrals. In Theorem 5.1 of HK, they obtained, through their
duality approach, mean-variance hedging under the assumption that the asset
price process is given by a semimartingale having continuous paths. This result
is the same one as Theorem 5.1 of GLP and Theorems 5, 6 of RS.

On the other hand, for the case where X is & discontinuous semimartin-
gale, Arai (2005a) has obtained a representation of mean-variance hedging as
an cxtension of the GLP approach under additional assumptions related to the
VOM as follows:

(A1) the VOM is a probability measure,

(A2) its density process satisfies the reverse Holder inequality,

(A3) it also satisfies a certain condition related to jumps.

He tried to construct a new decomposition of H on X by the same sort of
argument as the alternative approach in Scction 4 of RS. Unfortunately, the
new decomposition, in general, is not an orthogonal one, that is, not a GKW
onc. However, thanks to the technical condition (A3), he obtained nice proper-
tics of each term in the new decomposition. Thereby, he established a similar
representation as in the continuous casc along the lines of Section 4 of RS.



In the meantime, Arai (2005b) calculated mean-variance hedging strategy
for the discontinuous scmimartingale casc by means of Hou-Karatzas’ duality
approach. That is, he gave another proof of the results of Arai (2005a). By
using the new decomposition in Arai (2005a), he extended Theorem 5.1 of HK
to the discontinuous case.

Moreover, Arai (2005¢) investigated some properties of the VOM for dis-
continuous semimartingales. In addition, he discussed relationship with mean-
variance hedging for discontinuous asset price process models. Since we cannot
check easily whether or not the above assumptions (A1) (A3) are satisfied, he
drove for giving a sufficient condition for these assumptions, which is described
by the asset price process. However, it is very difficult for us to give an answer
to this question entirely. Therefore, he tried to give a partial solution to our
desire. '

If the asset price process has continuous paths a.s., then the VOM is given
by a probability measure under weak conditions. On the other hand, for the
case where the asset price process is discontinuous, the positivity of the density
is not cnsured. However, since the positivity makes a change of numdraire
method available, it is indispensable to calculate mean-variance hedging. Thus,
the following question is natural: When does the VOM become a probability
measure? Moreover, in the continuous case, if the cxistence of mean-variance
hedging and of the VOM are ensured, (A2) is satisfied. On the other hand,
in the discontinuous case, we do not know when (A2) is satisfied. In order to
give a partial answer to the above questions, Arai (2005¢) proved that, if (A3)
and another additional condition are satisfied, so are (Al) and (A2). In other
words, he concluded that (A3) is essential. However, we do not know a sufficient
condition for (A3). This problem has been postponed to future research.

The paper is structured as follows: Section 2 prepares for some definitions
and notations. Section 3 introduces the main results of Arai (2005a), which
is a representation of mean-variance hedging for the discontinuous asset price
process case under assumptions related to the VOM. In addition, we introduce,
in Section 4, the results of Arai (2005b), which are an extension of HK’s du-
ality approach to the discontinuous case. Section 5 deals with some cxamples
satisfying assumptions related to the VOM. In Section 6, we concentrate on
improvement of these assumptions. The contents of Section 6 are based on Arai
(2005c).

2 Preliminaries

Let (Q, F, P;F = {F:Joci<r) be a completed filtered probability space with a
right-continuous filiration F such that 7y is trivial and contains all null sets of F,
and Fp = F. Let X be an R%valued F-adapted RCLL special semimartingale
being in the space 8. Also, suppose the locally boundedness of X. There
is a unique canonical decomposition of X into an Ré-valued square integrable
P-martingale M starting at 0, namely, M € MZ(P), and an R%valued natural
process A of squarce integrable variation starting at 0. That is, the canonical
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decomposition of X is represented as X} = X¢ + M} + A, fori=1,...,d.
Let Y be a stochastic process. A property P is said to hold locally if

there cxists a sequence of stopping times (7, )n»1 increasing to T a.s. such that
Y714, >0} has property P, each n > 1. In particular, Y is a local martingale if
Y is locally a uniformly integrable martingale. C denotes a constant in (0, c0)
which may vary from line to line. For all unexplained notations, we refer to
Dellacherie and Meyer (1982).

We need some preparations. Firstly, for any RCLL process U, we define
the process U* by

Uf = sup [Ugl.

0<s<t

Let R?(P) be the set of all adapted RCLL processes U such that
[Ullracpy = Uzl 22y < o0

Next, © is defined as the space of all R%-valued predictable X-integrable pro-
cesses ¥ such that the stochastic integral

= / Fsd X
Jo

is in the space §? of semimartingales. In financial point of view, © represents
the sct of all sclf-financing strategics and the stochastic integral G(¥) is the
gain process induced by a self-financing strategy @ € 0. Next, we define signed
©-martingale measures and the variance-optimal martingale measure (VOM).

Definition 2.1 (1) A signed measure @ on (Q, F) is called a signed ©-martingale

measure, if Q(Q) =1, Q < P with j—]Q_) € L3(P), and

52,0 =0

for all # € ©. We denote by Ps(0) the set of all such signed ©-martingale
measures. Moreover, we define

P.(0) = {Q € P,(8)|Q ~ P and Q is a probability measurc},

and introduce the closed, convex set
D= {D ¢ z:*(P)ID - —9 some Q € P (9)}

(2) A signed martingale measure P € P,(0) is called the variance-optimal
martingale measurc (VOM) if D = arg min E[D?), where D = -ti}—)-
DeD dP



The space G7(0) := {Gr(9)|9 € O} is a linear subspace of £2(P). Then,
we denote by Gr(©)* its orthogonal complement, that is, Gr(©)* = {D €
L%(P)|E[DG7(9)] = 0, for any ¥ € ©}. Furthermore, Gr(©)*+ denotes
the orthogonal complement of Gr(©)+, which is the £2(P)-closure of Gp(8©).
Throughout this paper, we impose the following standing assumption on the
VOM:

Assumption 2.2 1 ¢ Gp(0)1+, equivalently P4(©) # 6.

Let f be the projection of 1 on Gr(©)++. Then, since E[f(1— f)] = 0, we have
E[f] = B[f?]. Thus, 0 < E[f] <1 by f # 1. Moreover, the density D of the
VOM P is expressed by

__1-7

- 1-Elf]

Besides, 1 — f € G7(@)*. Now, we define two processes as follows:

D

Zt = E[ﬁlft], Zt = E[ﬁ{ft],
where E means the expectation under P. Remark that D= L = ET. We call
Z the density process of the VOM.
3 A representation of mean-variance hedging

In this section, we survey the results of Arai (2005a), which are giving a feedback
form description of mean-variance hedging for the setting in Section 2 along the
lines of Section 4 of RS. We consider the case where ¢ = 0 in Problem 1, which
is the following minimization problem:

Problem 2
Minimize E [(H — GT(-ﬁ))B] over all ¥ € ©.
Now, we enumerate the standing assumptions of this paper:
Assumption 3.1 (1) The VOM P cxists as a probability measurc.

(2) The density process Z satisfies the reverse Holder inequality, that is, there
is a constant C' > 0 such that, for every stopping time ¢ <T', we have

E [Z%

}}] <CZ2.

(3) There exists a constant C such that Z_ < CZ.

Remark that the standing assumptions of RS arc
(RS1) the space G(©) is closed in L2(P),
(RS2) D* N L2(P) # .
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Let us discuss Assumption 3.1, especially its relationship with RS’s assumptions
and its meanings.

First, we consider Condition (1). Note that we can regard this condition as
one of absence of arbitrage. In the continuous case, P is in M®(P) if it exists.
However, in the discontinuous casc, P is not always a probability measure, so
that we assume Condition (1) which is stronger than (RS2). Thanks to Condi-
tion (1), Z is square integrable and strictly positive. This fact ~wiH simplify our
argument in the sequel. Moreover, Condition (1) cnsurces that Z is a numdraire.
Hence, we can apply the change of numéraire as in GLP to our setting. Remark
that, under Condition (1), for some NZ € Mg jo., we can represent Z = E(NZ).
Then, according to Theorem 1 of Schweizer (1995), Condition (1) ensures the lo-
cal square integrability of N4 and the following structure condition (SC): there

exists an R%valued predictable process ) satisfying

i
A= f My S,
0

As for Conditions (2) and (3), we need these for technical reasons. Al-
though, according to Theorem 2 of RS, Conditions (RS1) and (RS2) imply
Condition (2} in the continuous case, we cannot extend this relation to the dis-
continuous case, because Delbaen et al. (1997) have given a counterexample in
their Example 3.9. On the other hand, according to Theorem 5.2 of Choulli,
Krawczyk and Stricker (1998) (CKS, for short), Condition (2) together with
Condition (1) guarantcc Condition (RS1). Thus, the solution of Problem 2 al-
ways exists under Assumption 3.1. Next, Condition (3) means that there cxists
a positive constant ¢ such that AN? > —1 +¢. Although Condition (1) yiclds
ANZ% > —1, Condition (3) is slightly stronger than this.

Now, we remark that Condition (2) implies that there exists a constant
such that _

Z<Z<LCZ. (3.1)

‘Thus, Condition (3) implics that there exists a constant C such that
Z_<(CZ (3.2)

Next, we define a new space of predictable processes.

Definition 3.2 © denotes the space of all R-valued predictable X-integrable
processes ¥ such that G(9) is a P-martingale satisfying Gr(39) € L2(P).

Remark that GLP has considered © as the sct of all sclf-financing strategics.
Now, we prepare one lemma.

Lemma 3.3 (Lemma 4.1 of Arai (2005a)) For any ¥ € ©, G(4) is a local
P-martingale.

We can prove the equivalence between © and © as an extension of Lemma 9 of
RS to our setting by using the above lemmas:
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Lemma 3.4 (Lemma 9 of RS) 6 = ©.

Lemma 3.4 implies that we can replace © in Problemn 2 with 6. Moreover,
together with Lemma 1 of Schweizer (1996), Z is represented as

dpP
dP

Z,=F + G({). (3.3)

On the other hand, we define an RAt+1valued process Y and a new probability
measurc R which is cquivalent to P as

Yo = Z71!
Vi o= X'Z7', fori=1,....d,
and _ _
df _ Zr
AP Zy

We can now extend Proposition 8 of RS to our sctting.

Proposition 3.5 (Proposition 8 of RS, Proposition 3.2 of GLP) We have

ZGT@ { / e

where L2(Y, R) is the space of all R -valued predictable Y -integrable processes
W such that ] wdY is in Mé(ﬁ) Moreover, the relation between ¥ € © and

e L2(Y, R)}

o € L2(Y, R) is given by

Yto= 9 fori=1,....d,
Y = Go(9) -9V X_,
and _
=t + ¢ ( / -¢zfzy'~f4ﬁfy_> fori=1,....,d. (3.4)
0
Furthermore, for any ¥ € ©, we have
= || T  Gr(9)
I — Gr(9)|| .2 Zg l=— — —=—— ,
£ P) ZT ZT L'z(fi)

by the definition of R. Tn view of Proposition 3.5, Problem 2 is equivalent to
the following problem:

Problem 3

over all ¢ € L2(Y, R).
£2(R)

Minimize

T
‘g““/ P dYs
ZT 0
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Since :H— € L2(R) and Y € M2 _(R), there exists a GKW decomposition of

7 loc
T
—— on Y under R as follows:
Zr
H T
—f— = Ef lt—::—} +f 1;’75(5}’3 + L, (3.5)
Zr Zp 0 |

where 92 € L2(Y, R), and L € M2(R) is R-orthogonal to Y. The solution y°P*
of Problem 3 is given by the integrand 'JH . Then, the solution 9°?* of Problem
2 is obtained via (3.4).

Now, we have

ZrEg {‘?‘] = E[H)] (1 + GT(Z;lE)) : (3.6)
T

Next, by Proposition 3.5, we have
Zr [ 9HdY.= Gr(i) (3.7)
0

for some 92 € @ given from ¥¥ via (3.4). Remark that 9 is the solution of
Problem 2. By (3.5) (3.7), we can represent H as follows:

- r— _— ot ‘T S~ —~
H = E[H]+ Gr (E[H]Zglg +97 + L-g) + / Zo-dLs+1Z,Ll7. (3.8)
0 .

We denotoe

I—/t = ET[II}ZO_I -+ Lt, ﬁ{f = Ef +NI-:{,_<_-5,
and . t
Nt = / ZS_CZLS -+ [E,L]t = / ZS-(JIS + ]:Z, 1_]1 (39)
Q 0

Thus, we rewrite (3.8) as follows:
H = E[H] + Gr(7#) + Ny. (3.10)

This cquation is a new type decomposition of H, which is not orthogonal one.
However, we can treat this new decomposition (3.10) as orthogonal onc by the
good properties of N and 7. The following two lemmas will play important
roles in the proof of the main theorem of this section.

Lemma 3.6 (Lemma 4.4 of Arai (2005a)) N is a P-martingale with Ny =
0 and in R2(P).

Lemma 3.7 (Lemma 4.5 of Arai (2005a)) 77 € ©.

After the above preparations, we state the main theorem of this section.



Theorem 3.8 (Theorem 4.1 of Arai (2005a)) Under Assumption 3.1, the
solution 9°P* of Problem 2 is given by

,opf.:—-H___gﬁm VH _ ¢, _(gopt
o =il = g (V= G ro™).

where VH = E[H|F].
Proof. By Lemmas 3.6 and 3.7, we have

VH = E[H]+ G(7™) + M.
Moreover, by integration by parts,

ZL, = B[H] + G(T-0) + Ny = VE - G, (9°).

Then, we conclude that

977 = 7t - 2= (72 - Geo™)

t
-

by 9°Pt = §# = 5# — T_{. This completes the proof of Theorem 3.8.
n

4 Another approach

We explain, in this section, the contents of Hou-Karatzas’ duality approach, but
we will not give any proofs, and extend them to our setting. Remark that this
section is a survey of Arai (2005b).

We consider the following:

min((H —2)* +ye] = (H-(H - y/2))? +y(H —y/2)
= yH —y%/4, forally € R.

For given ¢ € R, arbitrary ¢ € ©, D € D and k € R, substitute ¢ + Gr(9) and
2kD for x and vy, respectively. Then we obtain

(H = ¢ — Gp(9)? + 2kD(c+ Gr(9)) = 2kDH — K D?.
Taking expectation, for every 9 € ©, D € D and k € R,
E|(H — ¢ — Gr(#9))?] > —~k*E[D? + 2k(E[DH] - ¢).

Thus, we obtain

V() = BI(H—c—Gr(®@)? = inf B[(H - e~ Gr(®))
> sup sup {—k*E[D? + 2k(E[DH] - ¢)}
DeD keR

7 2 _(12
gy EDH] 0

sup B[ =:V{(e), (4.1)
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where 9(¢) is the solution of Problem 1.
For given ¢ € R, the following problem would be a duality problem of

Problem 1:
Problem 4

(B[DH] - ¢)?

E[Dz} over all D e D.

Maximize

In HK, they proved that there is no duality gap between Problems 1 and 4,
namely, V(c) = V(c) for any ¢ € R. Now, let us define the projection operator
7w L2(P) — (Gp(®))* with property, for any H € L%(P) and D € (Gp(©))4,

E{(H - (H))D] = 0.

~ Elr(H

We denote by D, € D the optimizer for Problem 4, for any ¢ # —E%(_l—))]l Hence,
we have

— 3 —_— N 2 ¥ _ —~

Tie) = BLHI = oy | op (E(D.H] - o),

E[D?]
where k. := M:—C- In virtue of (4.1), the following cquality holds:
ED7]
BI(H - c = Gp(@)*] = —kZE[DZ] + 2ko(B[DcH] - )
= —k2E[D?] + 2 .(E|D.H — D.Gr(99)] —¢),

namely, we have E[(H — ¢ — Gp(9©) — k.D.)?] = 0. Consequently, we obtain
H —C— (}71('t9(p)) = chc.
On the other hand, from the Cauchy-Schwarz inequality, we have

(E[DH] - ¢)* = (E[Dn(H - o)))* < E[DYE[{=(H - ¢)}?,

for any D € D. Thus, D, = Cn(H — ¢) holds, where C' > 0 has to be chosen
such that E[D.] = 1. Therefore, we can conclude that
‘ ~  E[D,H]-c¢ w(H-c¢)
H—c~Grd'9) = kD, = - =7(H —c¢).
W) =heDe= = B B =y~
Elx(H)]
Elr(1)]

Also, for the case where ¢ = , HK proved that H — ¢ — Gr(9'9) =

w(H —¢).
As a result, HK obtained, for any ¢ € R,

Gr(9') = H — ¢~ n(H - ¢), (4.2)

where 9(¢) is the solution of Problem 1.
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Henceforth, we focus on to obtain the same result as Theorem 3.8 by means
of Hou-haratza,b duality approach.

For the process N in the new decomposition (3.10), since the random vari-
able Ny is square P-integrable, we can represent Ny as, for some ¥V € ©,

Np = Gp(9N) + m(Nr).
Moreover, remark that we can decompose the constant 1 into
1= Gp(€") +x(1) for some ¢' € ©.
Thus, we have

(H—c¢)—n(H—-c) = E[H]+Gr#)+ Nr—c— E[Hr(1) - n(Nr) + en(1)
= (E[H] - )(1 - (1)) + Gr(@) + Nr — n(Nr)
= Gr((E[H] - )€t + 77 +97).

Since the mapping ¥ — Gr(49) is injective, we can conclude that the solu-
tion 9(¢) is given by

9 = (B[H] ~ o)e* +7 + 97, (4.3)

by the above observation together with (4.2). In addition, we have the following
lemma:

Lemma 4.1 (Lemma 3.1 of Arai (2005b)) L in (3.5) is a P-martingale be-
ing P-orthogonal to G(+¥), for any ¥ € ©.

Therefore, for any 4 € ©, we have

E[GT(z?N+L_E)GT(19)] - E[(G (19“)+ZTLT—NT>G (29)}
E [(Gr(®Y) — Gr(8Y) — n(Nr)) G(9)]
Bl (NT)GT(??)]
0,

by Np = ETLT — Gr(L_ Z) and Lemma 4.1. Therefore, we obtain

9N =—L_(.
On the other hand, (3.22) of HK implies C=—B[Z2]8 = —Zot ¢l . Consequently,
the representation of ¥(°) is given by
9@ = (E[H]-e )51 i —L_¢

- +[E{II]—0+E[Z%] e

Remark that, since the predictable processes ¢, 777 and 9 are in the space ©,
so is 9%9). As a result, we can assert the following theorem:
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Theorem 4.2 (Theorem 3.1 of Arai (2005b)) Under Assumption 8.1, the
solution 9°) of Problem 1 is given by

B = 7H 4 [E[H’] —ct E[E%]L_] gL,

5 Examples

In this section, we give some examples satisfying Assumption 3.1. In particular,
we are interested in only models such that the minimal martingale measure
(MMM, for short) does not coincide with the VOM. Thus, we introduce some
such examples

Example 5.1 We consider the case where Q = {w;,wa,wy}, F =24, d=1
and T > 1. We define the asset price process X as follows: for ¢t < 1, X; =
0, and, for 1 < t < T, Xy(w1) = 1, X4(wz) = 0 and Xy(w3) = —2. Lot
Fo={0.Q} fort < 1and Fz = 2 for 1 <t < T. Morcover, we assume
that P({wi}) = {L:J3}) = 1/4. Then, by simple calculations, the VOM P is
given by {P({w1}), P{{w2}), P({ws})} = {48/77, 5/77,24/77}. It is very casy
to make sure that Assumption 3.1 is satisfied and P is not the MMM.

Example 5.2 (Section 3 of Arai (2005a)) We consider two completed fil-
tered probability spaces P! := (QF, F¥, P4 FY = {Filocicr) for i = 1,2. The
whole probability space P := (Q, F, P;F = {ft}g<t<']‘) is defined as the prod-
uct space of P! and P2 Let N* for 1 = 1,2, be two independent Poisson
processes with intensity 1, defined on the probability space P, respectively. In
particular, supposc that, for ¢ = 1,2, the filtration F¢ is the P"“-augmcmation
of the filtration generated by N, and F¢ = Fi. We definc N} := Nf —t, which
is the compensated process of N*. We deal with the case where d = 1 and the
asset price process is given by:

X =:n+/ndﬁl +/X02dt,

where = is a constant, and, A and o are predictable processcs defined on P.
Assume that there exists a positive constant € such that |o] > ¢ and |)m[ < l-e.

We consider only the case where A and o depend only on P?, which is a
kind of stochastic volatility model. In this case, the density Zr of the VOM is

described by
Er (— f NX )
B |&r (- f3dx)]

that is, the MMM does not coincide with the VOM. Moreover, we can prove
that Z satisfies Assumption 3.1.

Zr = (5.1)



Example 5.3 We try to extend Example 5.2 to more gencral cases. Set 17 = Ao
Then, we can rewrite X as

X=m+/r7dﬁ1+/no'dt.

For the case where the predictable process 7 depends only on P2, Zr is repre-
sented as (5.1) even if o depends on P, Morcover, we can gencralize the prob-
ability space P2. Let W = (W', W2,...,W") be an n-dimensional Brownian
motion, and J = (J!,J2,---,J™) an m-dimensional Poisson process. Assumc
that W and J are independent of N1. Then, we sct that the filtration F? is the
P2.augmentation of the filtration gencrated by W and J. In light of the mar-
tingale representation theorem, we have the same sort of argument as Example
5.2.

6 Reduction of Assumption 3.1

In gencral, it is difficult for us to obtain the density of the VOM explicitly.
Thus, to check whether or not Assumption 3.1 holds is impossible. Hence,
we wish Assumption 3.1 were relaxed to checkable condition. In this section,
we introduce the results of Arai (2005¢), which succeeded in giving checkable
condition partially. Throughout this section, we assume Assumption 2.2.

Proposition 6.1 (Proposition 3.2 of Arai (2005c)) If (3) of Assumption
3.1 holds and the density process Z of the VOM has a stochastic exponential

form, then the VOM P is in P.(9).

Remark 1 The process Z does not necessarily have a stochastic exponential
form. To be accurate, by Theorem 2 of Schweizer (1995), if the structure con-

dition (SC) is satisfied, that is, there cxists an R%-valued predictable process A
satisfying

A= f d{M)X,

then Z is given by a solution of the following stochastic differential equation:
Z=1—/z_’>?dM+R,

where R € M2(P) is P-orthogonal to M.

Tt is not easy to check whether or not conditions of Proposition 6.1 hold. On
the other hand, the combination of the following Assumption 6.2 and (3) of
Assumption 3.1 is a sufficient condition for the positivity of Z7. Although we
shall observe in the sequel, there is a checkable sufficient condition for only
Assumption 6.2.
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Assumption 6.2 There exists a probability measure @ € P.(©) satisfying the
reverse Hélder incquality.

Now, we assert main theorems of this section as follows:

Theorem 6.3 (Theorem 3.4 of Arai (2005c)) Under Assumption 6.2, Z sat-
1sfies the reverse Hdélder inequality.

Theorem 6.4 (Theorem 3.5 of Arai (2005c)) Under Assumption 6.2 and
(3) of Assumption 8.1, the VOM P is in P.(©).

Remark 2 In view of Theorems 6.3 and 6.4, the following two conditions arc
equivalent under (3) of Assumption 3.1:

(1) Assumption 6.2;

(2) the VOM exists as a probability measure, of which the density process
satisfies the reverse Holder inequality.
We can regard this equivalence as an extension of Theorem 2.18 of Delbaen et
al. (1997) to the discontinuous case.

Example 6.5 (Example 3.6 of Arai (2005c)) The converses of Theorems
6.3 and 6.4 do not hold, because there is the following counterexample: Let
d =1 and X be given by ‘

i t
X, =2+ / pedB, + / godJ, + 1,
0 0

where z € R, B is a one-dimensional Brownian motion, J is a Poisson process
with intensity 1, J is its compensated Poisson process, namely, J; = Jy —t and,
p and g are predictable processes such that p?+¢% = 1 and —1 < ¢ < 1. Remark
that the martingale part M of X is given by M = / pdB + / gdJ, so that we
have (M), = ¢. Hence, we can rewrite X as X = 2+ M + (M), which is the
canonical decomposition. In this case, the process Z is given by Z = £(—M).
Thus, AZ = ~Z_AM = —Z_qAJ. Conscquently, since (M), € L®(P), Z
satisfies the reversc Holder inequality by Proposition 3.7 of CKS, and, since
AZ[Z_ > —1, Z > 0 holds. On the other hand, (3) of Assumption 3.1 is not
satisficd.

By Theorems 6.3 and 6.4, we can rewrite (1) and (2) of Assumption 3.1 as
Assumption 6.2. In other words, we have the following theorem:

Theorem 6.6 (Theorem 5.1 of Arai (2005¢)) Under Assumption 6.2 and
(3) of Assumption 8.1, Theorem 8.8 holds.

We nced to discuss the question when Assumption 6.2 and (3) of Assump-
tion 3.1 are satisfied. We can give an answer to this question for only Assumption

6.2. We assume (SC), that is, A is given by /ci(M)’):. Y := /XdM € M3 and



(V) € £, then Z := E(~Y) satisfies the reversc Hélder inequality. Moreover,

. . . 5 dP =
we define a signed martingale measure P as 5 = Zr. Note that the signed

martingale measure P is said to be the MMM. Then, if we suppose that

d
AY =3 XNaMi<l,

i=1
then Pis a probability measure. In this case, Assumption 6.2 is satisfied. That
is, together (SC), Y € M3, (Y)r € £ and AY < 1 is a sufficient condition for
Assumption 6.2. We can check this sufficient condition by only using the assct
price process. On the other hand, a sufficient condition for (3) of Assumption
3.1 has been still open.
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