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Abstract

In this paper, we survey the rcsu lts of the mean-variance hedging prob-
lcm for discontinuous wsct price processes, based on Arai $(2005\mathrm{a},$ $2005\mathrm{b}$ ,
$2005\mathrm{c})$ . Furthe rmore, we introduce some examples satisfying assumptions $1\mathrm{S}$

which are imposed in these papers on the variance-optimal martingale
measure.
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1 Introduction
In this paper, we summ $\not\in" \mathrm{r}\mathrm{i}\mathrm{z}\mathrm{e}$ the results of Arai $(2005\mathrm{a}, 2005\mathrm{b}, 2005\mathrm{c})$ , and
introduce some examples related to these papers. Arai (2005a) has given a rep-
rcscntation of mean-variance hedging for the discontinuous asset price process
case under some additional assumptions related to the variance-optimal mar-
tingale measure (VOM, for short) as an extension of Gourieroux, Laurent and
Pham (1998) (GLP, for short) and Rhcinlandcr and Schweizcr (1997) ( $\mathrm{R}\mathrm{S}$ , for
short). Moreover, Arai (2005b) gave another proof of Arai $(200^{\mathrm{r}}\mathrm{t}\mathrm{J}\mathrm{a})$ by using
the duality method of Hou and Karatzas (2004) ( $\mathrm{H}\mathrm{K}$ , for short). Finally, Arai
(2005c) improved the additional assumptions in Arai (2005a).

Wc consider an incomplete financial market being composed of one riskless
asset and $\iota l$ risky assets. Let $T>0$ be its maturity. Suppose that the price
of the riskless asset is 1 at all times, and the fluctuation of $d$ risky assets is
described by an $\mathrm{R}^{d}$-valucd semimartingalc $X$ . Furthermore, in this paper, wc
regard an $\mathrm{R}^{d}$Revalued predictable $X$-integrablc process $\theta$ such that the stochastic

integral $\mathrm{f}_{I}^{\gamma}(\theta):=\int_{\mathrm{f}\mathrm{J}}.?^{(}J$ $sdX_{\mathit{6}}$ is a semimartingale of the space $\mathrm{S}^{2}$ as a self-financing

strategy, and denote the set of all such self-financing strategies by $\Theta$ . The
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process $G(\theta)$ means the trading gains induced by a self-financing strategy 19.
Note that $\theta$ means the number of units invested in the risky assets. Let $H$ be
an $F_{T}$-measurable square integrable random variable. Throughout this paper,
we regard If as a contingent claim, that is, payoff at the maturity $\mathrm{I}’$ . Then,
we consider a hedger with an initial capital $c\in$ R. She or he intends to hedge
against the contingent claim $H$ by means of a self-financing strategy. However,
since the market is incomplete, it is impossible to replicate the contingent claim
by an appropriate self-financing strategy. Thus, she or he is under the necessity
of optimizing her or his strategy in some way. Then, we assume that $\mathrm{s}1_{1}\mathrm{e}$ or
he $\mathrm{m}$ akes an attempt to minimize the $\mathcal{L}^{\underline{)}}.(P)$-norm of discrepancy between the
underlying contingent claim and the value at the maturity $T$ of a portfolio
associated with a self-financing strategy and the in itial capital $c$ . In other words,

she or he considers, for fixed $c\in \mathrm{R}$ . the following minimization problem:

Problem 1

Minimize $E\mathrm{i}|.(|-c-\mathrm{r}_{J}^{\mathrm{Y}}\tau-(H\theta-))^{2}]$ over all $\theta\in\Theta$ .

The solution of Problem 1 is said to be mean-variance hedging.
GLP and RS have obtained conclusive results for the case where $X$ is given

by a continuous semimartingale. By using a change of numeraire and a change
of measure. GLP reduced the problem to a martingale framework. On the other
hand, RS used weighted norm inequalities and the Galtchouk-Kunita-Watanabe
decomposition (GKW decomposition, for short). They obtained a feedback
form expression of mean-variance hedging. Moreover, RS discussed the GLP
approach as an alternative approach. In addition, HK has introduced a new
duality approach to least-square approximation problem of random variables
by stochastic integrals. In Theorem 5.1 of $\mathrm{H}\mathrm{K}$ , they obtained, through their
duality approach, mean-variance hedging under the assumption that the asset
price process is given by a semimartingale having continuous paths. This result
is the same one as Theorem 5.1 of GLP and Theorems 5. 6 of $\mathrm{R}\mathrm{S}$ .

On thc other hand, for the case where $X$ is a discontinuous scmimartin-
galc, Arai $(20()_{\mathrm{t}}^{\xi}\mathrm{j}.\mathrm{a})$ has obtained a representation of mean-variance hedging as
an extension of the GLP approach under additional assumptions related to the
VOMI as follows:
(A1) the VOM is a probability measure,
(A2) its density process satisfies the reverse H\"older inequality,
(A3) il, also satisfies a certain condition related to jumps.
He tried to construct a new decomposition of $H$ on $X$ by the sa ne sort of
argument as the alternative approach in Section 4 of $\mathrm{R}\mathrm{S}$ . Unfortunately, the
new decomposition, in general, is not an orthogonal one, that is, not a GKW
one. However, thanks to the technical condition (A3), hc obtained nice propcr-
tics of each term in the new decomposition. Thereby, he established a similar
representation as in the continuous case along the lines of Section 4 of $\mathrm{R}\mathrm{S}$ .
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In the meantime, Arai (2005b) calculated mean-variance hedging strategy
for the discontinuous scmimartingale case by means of Hou-Karatzas’ duality
approach. That is, he gave another proof of the results of Arai (2005a). By
using the new decomposition in Arai (2005a), he extended Theorem 5.1 of HK
to the discontinuous case.

Moreover, Arai (2005c) investigated some properties of the VOM for dis-
continuous semimartingales. In addition, he discussed relationship with lnean-

variance hedging for discontinuous asset price process models, Since we cannot
check easily whether or not the above assumptions (Ai) (A3) are satisfied, he
drove for giving a sufficient condition for these assumptions, which is described
by the asset price process. However, it is very difficult for us to give an answer
to this question entirely. Therefore, he tried to give a partial solution to our
desire.

If the asset price process has continuous paths $\mathrm{a}.\mathrm{s}.$ , then the VOM is given
by a probability measure under weak conditions. On the other hand, for the
case where the asset price process is discontinuous, the positivity of the density
is not ensured. However, since the positivity makes a change of numeraire
method available, it is indispensable to calculate mean-variance hedging. Thus,

the following question is natural: When does the VOM become a $\mathrm{p}\mathrm{r}\mathrm{o}\mathrm{b}\mathrm{a}1_{\mathrm{J}}11\mathrm{i}\mathrm{t}_{\mathrm{c}}\mathrm{v}$.
mcasure? $\mathrm{h}/\mathrm{I}\mathrm{o}\mathrm{r}\mathrm{c}^{\mathrm{Y}},\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}_{\backslash }$ in the continuous case, if the existence of mean-variance
hedging and of the VOM $\mathrm{a}\mathrm{I}^{\cdot}\mathrm{G}$ ensured, (A2) is satisfied. On the other hand,

in the discontinuous case, we do not know when (A2) is satisfied. In order to
give a partial answ cr to the above questions, Arai (2005c) proved that, if (A3)

and another additional condition are satisfied, so are (A1) and (A2). In other
words, he concluded that (A3) is essential. However, we do not know a sufficient
condition for (A3). This problem has been postponed to future research.

The paper is structured as follow$\mathrm{v}\mathrm{s}$ : Section 2 prepares for some definitions
and notation$1\mathrm{S}$ . Section 3 introduces the main results of Arai (2005a), which
is a representation of mean-variance hedging for the discontinuous asset price

process case under assumptions related to the VOM. In addition, we introduce,

in Section 4, the results of Arai (2005b), which are an extension of HK’s du-
ality approach to the discontinuous case. Section 5 deals with some examples
satisfying assumptions related to the VOM. In Section 6, we concentrate on
improvement of these assumptions. The contents of Section 6 are based on Arai
(2005c).

2 Preliminaries
Let $(\Omega,F, P;\mathrm{F}=\{F_{t}\}_{0\leq L\leq T})$ be a completed filtered probability space with a
right-continuous filtration $\mathrm{F}$ such that $F_{0}$ is trivial and contains all null sets of $F_{7}$

and $F_{\mathit{1}}r\urcorner$ $=F$ . Let $X$ be an $\mathrm{R}^{d}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ $\mathrm{F}$-adapted ROLL special semimartingale

being in the space $S^{2}$ . Also, suppose the locally boundedness of $X$ . There
is a unique canonical decomposition of $X$ into an $\mathrm{R}^{d}$-valucd square integrable
$P$-martingale $Alf$ starting at 0, namely, $M\in \mathcal{M}_{0}^{2}(P)_{\backslash }$ and an $\mathrm{R}^{d}$-valued natural
process $A$ of square integrable variation starting at 0. That is, the canonical
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decomposition of $X$ is represented as $A\mathrm{Y}_{t}^{i}=X_{0}^{\mathrm{i}}+\Lambda f_{t}^{i}+A_{t}^{i}$ , for $\acute{\iota}=1$ , . . . . $d$ .
Lct $Y$ be a stochastic process, A property $\mathcal{P}$ is said to hold locally if

there exists a sequence of stopping times $(\tau_{n})_{n\geq 1}$ increasing to $T\mathrm{a}.\mathrm{s}$ . such that
$Y^{\tau_{\mathcal{R}}}1\{\tau_{?}, >0\}$ has property P. each $n\geq 1$ . In particular, $Y$ is a local martingale if
$Y$ is locally a uniformly integrable martingale. $C$ denotes a constant in $(0, \infty)$

which may vary from line to line. For all unexplained notations, we refer to
Dellacherie and Meyer (1982).

We need some preparations. Firstly, for any RCLL process $U_{\backslash }$ we define
the process $U^{*}$ by

$U_{t}^{*}:= \sup_{0\leq \mathrm{s}\leq t}|U_{s}|$
.

$\mathrm{T}_{\lrcorner}\mathrm{e}\mathrm{t}$ $R^{2}$ (P-) be the set of all adapted RCLL processes $U$ such that

$||U||_{\mathcal{R}^{2}(\Gamma)}:=||U_{T}^{*}||_{\mathcal{L}^{2}(P)}<\infty$ .

Next, $\Theta$ is define as the space of all $\mathrm{R}^{d}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ predictable $X$ integrable pro-
cesses $\theta$ such that the stochastic integral

$G(\theta):=l$

.
$\theta_{s}dX_{s}$

$\mathrm{i}\epsilon$ in the space $S^{2}$ of $\mathrm{s}\mathrm{e}\mathrm{m}\mathrm{i}\mathrm{r}\mathrm{n}\mathrm{a},\mathrm{r}\mathrm{t}\mathrm{i}\mathrm{l}\tau \mathrm{g}\mathrm{a}\mathrm{l}\mathrm{e}\mathrm{s}$ . In fillalzcial point of view, $\Theta$ represents
the sct of all self-financing strategies and the stochastic integral $\mathrm{G}(\#)$ is thc
gain process induced by a self-financing strategy $!\theta\subset\sim\Theta$ . Next, we $\mathrm{d}\mathrm{e}\mathrm{h}^{\backslash }11\mathrm{e}$ signed
$\Theta- \mathrm{r}\mathrm{n}\mathrm{a}\mathrm{r}\mathrm{t}\mathrm{i}_{11}\mathrm{g}\mathrm{a}1\mathrm{e}$ measures aaid the variance-optimal martingale measure (VOM).

Definition 2,1 (1) A signed measure Q on $(\Omega_{\backslash }F)$ is called a signed $\Theta$ martingale

measure, if $Q(\Omega)=1$ . Q $<<P$ with $\frac{dQ}{dP}\in \mathcal{L}^{2}(P)\dot,$ and

$E|| \frac{dQ}{dP}G_{T}(\theta)]=$ CL

for all $\theta\in\Theta$ . We denote by $\mathrm{P}_{s}(\Theta)$ the set of all such signed $\Theta$ martingale
measures. Moreover we define

$\mathrm{P}_{\epsilon},(\Theta):=$ { $Q\in \mathrm{P}_{s}(\mathrm{O}-)|Q$ - $P$ and $Q$ is a probability $\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{b}^{\backslash }\mathrm{u}\mathrm{r}\mathrm{e}$ },

and introduce the closed, convex set

$D$ $:= \{D\in \mathcal{L}^{2}(P)|D=\frac{dQ}{dP}$ , somc $Q\in \mathrm{P}_{s}(\Theta)\}$ .

(2) A signed martingale measure $\overline{P}\in$ P5(0) is called the variance-optimal

martingale measure (VOM) if $\ddot{D}=\arg\min_{D\in D}E[D^{2}]$ , where $\check{D}=\frac{d\overline{P}}{dP}$ .
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Thc space $G_{T}(\Theta):=\{G_{T}(\theta)|\theta\in \mathrm{O}-\}$ is a linear subspace of $\mathcal{L}^{2}(P)$ . Then,
we denote by $G_{T}(\Theta)^{[perp]}$ its orthogonal complement, that is, $G_{T}(\mathrm{O}-)^{[perp]}:=\{D\in$

$\mathcal{L}^{2}(P)|E[DG_{T}(\theta)]=0$ , for any $lf$ $\in\Theta$ }. Furthermore, $G_{T}(\Theta)^{[perp][perp]}$ denotes
the orthogonal complement of $G_{T}(\Theta)^{[perp]}$ , which is the $\mathcal{L}^{2}(P)$ -closurc of $G_{T}(\mathrm{O}-)$ .
Throughout this paper, we impose the following standing assum ption on the
VOM:

Assumption 2.2 $1\not\in G_{T}(\Theta)^{[perp][perp]}$ , equivalently $\mathrm{P}_{s}(\Theta)\neq\emptyset$ .

Lct $f$ be the projection of 1 on $G_{T}(\Theta)^{[perp][perp]}$ . Then, since $E[f(1-f)]$ $=$ [$)$ , we have
$E[f]=E.[f^{2}.]$ . Thus, $0<E[f]<1$ by $f\neq 1$ . Moreover, the density $\overline{D}$ of the
VOM $\overline{P}$ is expressed by

$\tilde{LJ}=\frac{1-f}{1-E[f]}$. .

Besides, $1-f\in C_{T}(\Theta)^{[perp]}$ . Now, we define two processes as follows:

$Z_{t}:=F_{\lrcorner}[\overline{D}|F_{t}]$ , $\overline{Z}_{t}:=\overline{F_{J}}[\overline{\Gamma?}|F_{t}]$ ,

where $\tilde{F_{\lrcorner}}$ means the expectation under $\overline{P}$ . Remark that $\overline{D}=Z_{T}=\overline{7_{\lrcorner}}\tau$ . Wc call
$Z$ the density process of the VOM.

3 A representation of mean-variance hedging

In this section , we survey the results of Arai $(2005\mathrm{a})_{\backslash }$ which are giving a feedback
form description of mean-variance hedging for the setting 1n Section 2 along the
lines of Section 4 of $\mathrm{R}\mathrm{S}$ . We consider the case where $c=0$ in Problem 1, which
is the following minim ization problem:

Problem 2

Minimize $E[(H-G_{T}(\theta))^{2}]$ over all $\theta\in\Theta$ .

Now, we enumerate the standing assumptions of this paper:

Assumption 3.1 (1) The VOM $\overline{P}$ exists as a probability measure,

(2) The density process $Z$ satisfies the reverse Holder inequality, that is, there
is a constant $C>0$ such that, for every stopping time $\sigma\leq T$ , we have

$L^{\tau^{\mathrm{Y}}}[\ulcorner Z_{T}^{2}|F_{\sigma}]\leq C’Z_{\sigma}^{2}$ .

(3) There exists a constant $C$ such that $Z_{-}\ulcorner\leq \mathrm{C}^{1}\prime Z$ .

Remark that thc standing assumption$\mathrm{s}$ of RS arc
(RSI) the space $G_{T}(\Theta)$ is closed in $\mathcal{L}^{2}(P)$ ,
(RS2) $\prime D^{s}\cap \mathcal{L}^{2}(P)\neq\emptyset$ .
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Let us discuss Assumption 3.1, especially its relationship with RS ’s assumptions
and its meanings.

First, wc consider Condition (1). Note that we can regard this condition as
one of absence of arbitrage. In the continuous case, $\overline{P}$ is in $\mathrm{M}^{e}(P)$ if it exists.
However, in the discontinuous case, $\tilde{P}$ is not always a probability measure, so
that wc assume Condition (1) which is stronger than (RS2). Thanks to Condi-
tion (1), $Z$ is square integrable and strictly positive. This fact will simplify our
argument in the sequel $\mathrm{h}./\mathrm{I}\mathrm{o}\mathrm{r}\mathrm{e}\mathrm{o}\mathrm{v}\mathrm{e}\mathrm{r}$, Condition (1) cnsurcs that $\tilde{Z}$ is a $\mathrm{n}\mathrm{u}\mathrm{m}\acute{\mathrm{e}}\mathrm{r}\mathrm{a}\mathrm{i}_{1}\cdot \mathrm{e}$.
Hence, we can apply the change of numeraire as in GLP to our setting. Remark
that, under Condition (1), for some $N^{Z}\in \mathcal{M}_{0,toc}$ , we can represent $Z=\mathcal{E}(N^{Z})$ .
Then, according to Theorem 1 of Schwcizcr (1995), Condition (1) ensures the lo-
cal square integrability of $\Lambda^{\tau Z}$ a$\mathrm{n}\mathrm{d}$ the following structure condition (SC): there
exists an $\mathrm{R}^{d}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ predictable process A satisfying

$A_{t}= \int_{0}^{t}d\langle\lrcorner \mathrm{t}’\prime \mathit{1}\rangle_{s}\hat{\lambda}_{6}$ .

As for Conditions (2) and (3), we need these for technical reasons. Al-
though, according to Theorem 2 of $\mathrm{R}\mathrm{S}$ . Conditions (RSI) and (RS2) imply
Condition (2) in the continuous case, we cannot extend this relation to the dis-
continuous case, because Delbaen et al. (1997) have given a counterexample in
their Example 3.9. On thle other hand, according to Theorem 5.2 of Choulli,
Krawczyk aiid Strieker (1998) (CKS, for short), Condition (2) together with
Condition (1) guarantee Condition (RSI). Thus, the solution of Problem 2 al-
ways exists under Assumption 3.1, Ncxt, Condition (3) means that there exists
a positive constant $\epsilon$ such that $\Delta N^{Z}>-1+\epsilon$ . AJthough Condition (1) yiclds
$\Delta N^{Z}>-1_{7}$ Condition (3) is slightly stronger than this.

Now, we remark that Condition (2) implies that there exists a constant (”

such that
$Z\leq\overline{7_{J}}\leq CZ$ . (3.1)

Thus, Condition (3) implies that there exists a constant $C$ such that

$\overline{Z}_{-}\leq C\overline{Z}$ . (3.2)

Next, wc define a new space of predictable processes.

Definition 3.2 $\tilde{\Theta}$ denotes the space of all $\mathrm{R}^{d}$-valucd predictable $X$-integrab lc
processes ! such that $G(\theta)$ is a $P$-martingale satisfying $G_{T}(\theta)\in \mathcal{L}^{2}(P)$ .

Remark that GLP has considered $\overline{\Theta}\epsilon\gamma.\mathrm{q}$ the sct of all self-financing strategics.
Now, we prepare one lemma.

Lemma 3.3 (Lemma 4.1 of Arai (2005a)) For any $\theta$ $\in\Theta$ , $\mathrm{G}(’ \mathrm{d})$ is a local
P-martingale.

We can prove the equivalence between $\Theta$ and $\overline{\Theta}$ as an extension of Lelllrna, 9 of
RS to our setting by using $\mathrm{t}$ }$\mathrm{l}\mathrm{e}$ above lemma:
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Lemma 3.4 (Lemma 9 of RS) $\Theta-=\Theta$ .

Le $\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\mathrm{I}\iota \mathrm{a}$, 3.4 implies tl at we can repla.ce $\Theta$ in $\mathrm{T}^{)}\mathrm{r}\mathrm{o}\mathrm{b}1\mathrm{e}\mathrm{y}\mathrm{n}$ $2$ with $\overline{\Theta}$ . Moreover,
together with Lem $\mathrm{l}\mathrm{n}1\mathrm{a}$

$1$ of Schweizer (1996), $\overline{Z}$ is represented as

$\overline{Z}_{t}=\overline{E}\ovalbox{\tt\small REJECT}\frac{d\overline{P}}{dP}\ovalbox{\tt\small REJECT}+G_{t}(\overline{\zeta})$ . (3.3)

On the other hand, wc define an $\mathrm{R}^{d+1}$-valucd process $Y$ and a new probability
measure $R$ which is equivalent to $P$ as

$Y^{0}$
$:=$

$\tilde{Z}_{\}^{-1}$

$Y^{i}$
$:=$

$X^{i}’\overline{Z}^{-1}$ , for $\mathrm{i}=1$ , $\ldots$ . $d$ ,

and
$\frac{rd\overline{R}}{d\overline{P}}:=\frac{\overline{Z}_{T}}{\overline{Z}_{\mathrm{U}}}$ .

We cim now extend Proposition 8 of RS to our setting.

Proposition 3.5 (Proposition 8 of RS, Proposition 3.2 of GLP) We have

$\frac{1}{\tilde{Z}_{T}}G_{T}(\tilde{\Theta})=\{\int_{0}^{T}\{\mathit{1}_{s},\prime dY_{s}|\psi\in I_{d}^{2}(Y,\overline{R})\}$ ,

where $L^{2}(Y,\overline{R})$ is the space of all $\mathrm{R}^{d+1}$ -valued predictable $Y$ -intcgrable processes
$\psi$ such $that- \int \mathrm{s}’\acute,’ dY$ is in $\mathrm{A}4_{0}^{2}(\overline{R})$ . Moreover, the relation between $\theta\in\overline{\Theta}$ and

$\mathrm{t}f)$ $\in L^{2}(Y_{\mathrm{s}}R)$ is given by
$\psi^{i}$ $:=$

$\theta^{\mathrm{i}}$ for $\mathrm{i}=1_{\backslash }\ldots$ , $d$ ,

$\psi^{0}$ $:=$ $G_{-}(\theta)-\theta^{\mathrm{t}\mathrm{r}}X_{-}$ ,

and
$\theta^{i}:=\psi^{i}+\overline{\zeta}^{i}$ ( $\oint_{(\}}^{-}\cdot \mathit{4}\rangle dY$

$-\psi^{\mathrm{t}\iota}.Y_{-}$ ) for $\dot{\mathrm{s}}=1$ , $\ldots$ $
$d$ . (3.4)

Furtherm ore, for any $0\in\Theta$ , we have

$||II-G_{T}( \theta)||_{L-\langle P)},=\sqrt{\overline{Z}_{0}}||\frac{II}{\tilde{Z}_{T}}-\frac{G_{T}(\prime\theta)}{\tilde{Z}_{T}}||_{\mathcal{L}^{\mathrm{Q}}(\tilde{R})}\sim$

by the definition of $\overline{R}$ . In view of Proposition 3.5, Problem 2 is equivalent to
thc follo wing problem:

Problem 3

Minimize $|| \frac{H}{\overline{Z}_{T}}-\mathit{1}_{0}^{T}.\psi_{\mathit{8}}dY_{S}||_{\mathcal{L}^{2}(\overline{R})}$ over all $\psi$ $\in L^{2}(Y,\overline{R})$ .
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Since $\frac{H}{\tilde{Z}_{T}}\in \mathcal{L}^{2}(\tilde{R})$ and $Y\in \mathcal{M}_{loc}^{2}(\overline{R})$ , there exists a GKW decomposition of

$\frac{H}{\tilde{Z}_{T}}$ on $Y$ under $\tilde{R}$ as follows:

$\frac{H}{\overline{Z}_{T}}=\mathrm{A}_{\tilde{R}}^{1}\ovalbox{\tt\small REJECT}\frac{H}{\overline{Z}_{T}}||+\oint_{()}^{T}\tau\tilde{\prime}\acute{p}_{s}^{H}dY_{s}+L_{T\prime}$ (3.5)

where $\tau\overline{\mathit{1}^{H}’}\in L^{2}(Y_{\backslash },,\overline{R})$ , and $L\in \mathrm{A}t_{0}^{2}(\overline{R})$ is $\overline{R}$-orthogonal to $Y$ . The solution $\psi^{\mathrm{o}\mathrm{p}\mathrm{t}}$

of Problem 3 is given by the integrand $\overline{\psi}^{H}$ . Then, thc solution $\theta^{\mathrm{o}\mathrm{p}1}$ of Problem
2 is obtained via (3.4).

Now we have

$\tilde{Z}_{T}E_{\tilde{R}}\ovalbox{\tt\small REJECT}\frac{H}{\overline{Z}_{T}}\ovalbox{\tt\small REJECT}=\overline{F_{J}}[H]$ $(1+G_{T}(\tilde{Z}_{0}^{-1}\overline{\zeta})$). (3.6)

Next, by Proposition 3.5, we have

$\overline{Z}_{T}\int_{0}^{T}.\overline{\psi}_{s}^{H}dY_{s}=G_{T}(\overline{\theta}^{H}))$ (3.7)

for some $\tilde{\theta}^{H}\in\Theta$ given from $\tilde{\psi}^{H}$ via (3.4). Remark that $\overline{\theta}^{H}$ is the solution of
Proble $\mathrm{m}$

$2$ . By (3.5) (3.7), we can represent $H$ as fallow $\mathrm{s}$ :

$H=\tilde{-}F/[H]+G_{T}(\tilde{F_{d}}[H]\tilde{Z}_{0}^{-1}\overline{\zeta}+\overline{\theta}^{H}+I_{J-}\overline{\zeta})+\mathit{1}_{0}^{T}.\overline{Z}_{s-}dL_{s}+[\overline{\mathcal{F}_{J}}, I,]_{T}$. (3.8)

We denote
$\overline{L}_{t}:=\tilde{E\prime}[II]\tilde{Z}_{0}^{-1}+L_{t\}}$ $\overline{\eta}_{t}^{II}:=\overline{\theta}_{t}^{H}+\overline{L}_{t-}\overline{\zeta_{\mathrm{f}}}$,

and
$N_{t}:= \int_{(j}^{t}\overline{Z}_{s-}dL_{s}+[\hat{Z}_{\backslash }L]_{t}=\int_{0}^{t}\overline{Z}_{s-}rf\overline{L}_{s}+[\overline{Z},\overline{L}]_{t}$. (3.9)

Thus, we rewrite (3.8) as follow $\mathrm{s}$ :

$II=\tilde{E}[II]+G_{T}(\overline{\eta}^{H})+N_{T}$ . (3.10)

This equation is a now type decomposition of $H$ , which is not orthogonal one.
However, we can treat this new dccon position (3.10) as orthogonal one by the
good properties of $\mathit{1}\mathrm{V}$ and $\overline{\eta}^{H}$ . The following two lemmas will play important
roles in the proof of the main theorem of this section.

Lemma 3.6 (Lemma 4,4 of Arai (2005a)) 1V is a $\overline{P}$-martingale with $N_{0}=$

0 and in $\mathcal{R}^{2}(P)$ .

Lemma 3.7 (Lemma 4.5 of Arai (2005a)) $\check{\eta}^{H}\in\Theta$ .

After the above preparations, we state the main theorem of this section.
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Theorem 3.8 (Theorem 4.1 of Arai (2005a)) Under Assumption 3.1, the
solution $\theta^{\mathrm{o}\mathrm{p}1}$ of Problem 2 is given by

$\theta_{t}^{\mathrm{o}\mathrm{p}\mathrm{t}}=\overline{\eta}_{t}^{H}-\frac{\overline{\zeta_{t}}}{\overline{Z}_{t-}}(\tilde{V}_{t-}^{H}-G_{t-}(\theta^{\mathrm{o}\mathrm{p}\mathrm{t}}))$ ,

where $\overline{V}_{t}^{H}:=\tilde{E}[H|F_{t}]$ .

Proof. By Lemmas 3.6 and 3.7, we have

$\tilde{V}_{t}^{H}=\overline{E}[H]+\mathrm{r}_{J}^{\gamma}t(\tilde{\eta}^{H})+N_{t}$ .

Moreover, by integration $\mathrm{b}$. $\mathrm{y}$ parts,

$\overline{Z}_{t},\overline{L}_{t}=\overline{E}[H]+G_{t}(\overline{L}_{-}\overline{\zeta})+N_{t}=\tilde{V}_{t-}^{H}-G_{t-},(’\theta^{\mathrm{o}_{1^{3\mathrm{t}}}})$ .

Then, we conclude that

$\theta_{t}^{\mathrm{o}\mathrm{p}\mathrm{t}}=\overline{\eta}_{t}^{H}-\frac{\tilde{\zeta_{t}}}{\overline{Z}_{t-}}(\tilde{V}_{\mathrm{t}-}^{H}-G_{t-}(\theta^{\mathrm{o}\mathrm{p}\mathrm{t}}))$ .

by $\theta^{\mathrm{o}\mathrm{p}\mathrm{t}}=\overline{\theta}^{II}=\tilde{q}^{H}-\overline{L}_{-}\tilde{\zeta}$. This $\mathrm{c}\mathrm{o}\mathrm{m}$ pletes the proof of Theorem 3.8.

4 Another approach

We explain, in this section, the contents of Hou-Karatzas: duality approach, but

we will not give any proofs, and extend them to our setting. Remark that this
section is a survey of Arai (2005b).

We consider the following;

$x\in \mathrm{R}\mathrm{I}\mathrm{n}\mathrm{i}\mathrm{n}[(H-x)^{2}+yx]$
$=$ $(H-(H-y/2))^{2}+y(H-y/2)$

$=$ $yH$ $-y^{2}/4_{\}}$ for all $y$
$\in \mathrm{R}$ .

For given $c\in \mathrm{R}_{:}$ arbitrary $\theta\in\Theta$ , $D\in D$ and $k$. $\in \mathrm{R}$ , substitute $c$ $+G_{T}(\theta)$ and
$2f_{\acute{1}\prime}.D$ for $x$ and $y$ , respectively. Then we obtain

$(H-c-G_{T}(\theta.))^{2}+2kD(c +c_{\mathrm{J}}^{\mathrm{v}_{T}}(\theta))\geq 2kDH$ $-k^{2}D^{2}$ .

Taking expectation, for every I $\in\Theta$ , $D\in D$ and $f_{\tilde{v}}\in \mathrm{R}$,

$E[(H-c-G_{T}(\theta))^{2}]\geq-k^{2}E[D^{2}]+2k.(E[DH]-rj)$ .

Thus, we obtain

$V(c)$ $:=$ $E[(H-c -G_{T}( \theta^{(c)}))^{2}]=\inf_{\theta\in\Theta}F_{J}[(H-\ell^{1}-G_{T}(\theta))^{2}]$

$\geq$ $\sup_{D\in D}.\sup_{k\in \mathrm{R}}\{-k^{2}E[D^{2}]+2k(E[DH]-c)\}$

$=$ $\sup_{D\in D}\frac{(E^{J}[DII]-\mathrm{r})^{2}}{\mathrm{A}^{1}[D^{2}]}=:\tilde{V}$ (ci), (4.1)
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where $\theta^{\langle c)}$ is the solution of Problem 1.
For given $c\in$ R. the following problem would be a duality problem of

Problem 1:

Problem 4

Maximize
’

$\frac{(\mathrm{A}[DH]-c)^{2}}{E[D^{2}]}$

,

over $\mathrm{a}^{1}11D$ $\in D$ .

In $\mathrm{H}\mathrm{K}$ , they proved that there is no duality gap between Problems 1 and 4,
namely, $V(c)=\tilde{\ddagger^{r}\prime}(c)$ for any $c$ $\in$ R. Now, let us define the projection operator
$\pi$ : $\mathcal{L}^{2}(P)arrow(G_{JT}(\Theta))^{[perp]}$ with property, for any $H\in \mathcal{L}^{2}(P)$ and $D\in(G_{T}(\Theta))^{[perp]}$ ,

$E_{-^{\mathrm{I}}}[(H-\pi(H))D]=0$ .

We denote by $\tilde{D}_{c}$. $\in D$ the optim izer for Problem 4, for any $f^{\iota},$ $\neq\frac{F_{J}[\pi(H)]}{E[\pi(1)]}$ . Hence,

we have

$\tilde{\mathrm{t}/}-(c)=\frac{(E[\overline{D}_{c}H]-c)^{2}}{F_{J}[\overline{D}_{c}^{2}]},=-k_{c}^{2}E[\overline{D}_{c}^{2}]+2k_{c}.(E[\overline{D}_{c}H]-c)$,

where $k_{c}:= \frac{\mathrm{A}^{\backslash }[\tilde{D}_{c}I\mathrm{f}].-c}{E[\hat{\dot{D}}_{\mathrm{r}}^{2}]}$ . In virtue of (4.1), the following equality holds:

$\mathrm{E}[(\mathrm{H}-c-C_{J}’\tau(\theta^{(c)}))^{2}]$ $=$ $-k_{\mathrm{c}}^{2}\mathrm{A}^{1}[\tilde{D}_{c}^{2}]+2k_{\mathrm{c}}(\mathcal{B}[\overline{D}_{c}B]-\mathrm{r})$

$=$ $-\lambda_{\tilde{c}}^{9}’\cdot E[\tilde{D}_{c}^{2}]+2k_{c}.(E[\tilde{D}_{c}.H-\tilde{D}_{c}G_{T}(\theta^{(\mathrm{c})})]-Ci)$ ,

namclv, $\backslash \mathrm{v}\mathrm{e}$ have $E[(H-c-G_{T}(\theta^{(c)})-k_{c}\tilde{D}_{c})^{2}]=0$ . Conlseque-1ltly, we obtain
$H-\mathrm{r}^{\backslash },-G_{2}\urcorner(\theta^{(c)}.)=k_{\zeta_{d}^{\backslash }}\overline{D}_{c}$ .

On the other hand, from the Cauchy-Schwarz inequality, wc have

$(E[DH]-c)^{2}=(E[D\pi(If-c)])^{2}\underline{<}E[D^{2}]E^{d}[\{\pi(H-c)\}^{2}]$ ,

for any $D\in D$ . Thus, $\overline{I}J_{\mathrm{r}},$ $=C\pi(H-c)$ holds, where $(^{1},\cdot>0$ has to be chosen
such that $\mathrm{A}’[\overline{D}_{c}]=1$ . Therefore, we can conclude that

$H-c-G_{T}( \theta^{(c)})=k_{c}.,\tilde{I)}_{c}=\frac{F_{J}[\overline{D}_{c}H]-c}{E[\tilde{D}_{c}^{2}]}.\frac{\pi(H-c)}{E[\pi(H-c)]}=\pi(H-e)$ .

Also, for the case where $c= \frac{\mathrm{A}’[\pi(H)]}{E[\pi([perp])]}$ . HK proved that $H-c-G_{T}(\theta^{(c)},)=$

$\pi(ff-r^{4})$ .
As a result, HK obtained, for any $c\in \mathrm{R}$,

$G_{T}(\theta^{(\mathrm{c})})=II-ri$ $-\pi(I- I-\mathrm{r}\cdot)$ , (4.2)

where $\theta^{(c)}$ is the solution of Problem 1.
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Henceforth, wc focus on to obtain the same result as Theorem 3.8 by means
of Hou-Karatzas’ duality approach.

For the process $N$ in the new decomposition (3.10), since the random vari-
able $N_{T}$ is square $P$-integrable, we can represent $N_{T}$ as, for some $\theta^{N}\in\Theta$ ,

Np $=G_{T}(\theta^{N})+\pi(N_{T})$ .

Moreover, remark that we can decompose the constant 1 into

$1=G_{T}(\xi^{1})+\pi(1)$ for some 46 $\Theta$ .

Thus , wc have

$(H-c)-\pi(H-c)$ $=$ $\check{E}[H]+G_{T}(_{\tilde{l}}l^{I\mathrm{f}})+N_{T}-c-\tilde{\dot{E}}[H]\pi(1)-\pi(N_{T})+c\pi(1)$

$=$ $(\tilde{E}[H]-c)(1-r\downarrow(1))+G_{T}(\tilde{\eta}^{H})+N_{T}-\pi(N\mathrm{z}^{\tau})$

$=$ $G_{T}((\overline{E}[H]-r^{1})\xi^{1}+\hat{\eta}^{\acute{H}}+\theta^{N})$.

Since the mapping $\theta\mapsto$, $G_{T}(\theta)$ is injective, we can conclude that the solu-
tion $\theta^{(c)}$. is given by

$\theta^{(c)}’=(\tilde{L’\prec}[If]-c)\xi^{1}+\overline{\eta}^{H}+\theta^{N}$ , (4.3)

by the above observation together with (4.2). In addition, wc have the following
lemma:

Lemma 4.1 (Lemma 3.1 of Arai (2005b)) L in (3.5) is a $\tilde{P}$ -martingale be-
ing $\tilde{P}$ -orthogonal to $C(\theta)$ , $\int or$ any $‘(f\in\Theta$ .
Therefore, for any t2 $\in\Theta\dot,$ we have

$E[G_{T}(\theta^{N}+L_{-}\overline{\zeta}’)G_{T}(\theta)]$ $=$ $E[(G_{T}(\theta^{N})+\overline{Z}_{T}L_{T}-N_{T})G_{T}(\theta)]$

$=$ A $[(G_{T}(\theta^{N})-G_{T}(\theta^{N})-\pi(N_{T}))G(\theta)]$

$=$ $\mathrm{A}’[-\pi(N_{T})G_{T}(\theta)]$

$=$ 0,

by $N_{T}=\tilde{Z}_{T}L_{T}-G_{T}(L_{-}\overline{\zeta})$ and Lemma 4,1. Therefore, we obtain

$\theta^{N}=-L_{-}\tilde{\zeta}$.

On the other hand, (3.22) of HK implies $\tilde{\zeta}=-\mathrm{A}^{1}[\tilde{Z}_{T}^{2}]\xi^{1}=-\tilde{Z}_{0}\xi^{1}$ . Consequently,
the representation of $\theta^{\langle c)}$. is given $\dagger\not\supset \mathrm{y}$

$’\iota?^{\mathrm{t}c)}$.
$=$ $(\tilde{E}[H]-c)\xi^{1}+\cdot\tilde{\eta}^{H}-L_{-}\overline{\zeta}$

$=$ $\tilde{?7}^{II}+[\tilde{E^{\gamma}}[II]-c$ $+E[\tilde{Z}_{T}^{2}]L_{-}]\xi^{1}$ .

Remark that, since the predictable processes $\xi^{1},\tilde{\eta}^{H}$ and $\theta^{N}$ are in the space $\Theta$ ,
so is $\tau J^{(c)}$(. As a result, we $\mathrm{C}8\mathrm{J}1$ assert the following theorem
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Theorem 4.2 (Theorem 3.1 of Arai (2005b)) Under Assumption 3.1, the
solution $\theta^{(c)}$ of Problem 1 is given by

$\theta^{(c_{d})}=\overline{\eta}^{H}+[\mathrm{A}^{\tilde{\tau}}[Fl]-c+\mathrm{A}^{1}[\tilde{Z}_{T}^{2}]L_{-}]\xi^{1}$.

5 Examples

In this section, we give some examples satisfying Assumption 3.1. In particular,
we are interested in only models such that the minimal martingale measure
(MMM, for short) does not coincide with the VOM. Thus, we introduce some
such examples

Example 5.1 We consider the case where $\Omega=\{\omega_{1}$ , $\omega_{2\}}\{v_{\mathrm{d}}$
. $\}$ , $F=2^{\zeta\}}$ , $d=1$

and $T>1$ . We define the asset price process $X$ as follows: for $t<1$ , $X_{t}=$

$0$ , and, for $1\leq t\leq T$ , $X_{t}(\omega_{1})=1,$ $x\mathrm{Y}_{\mathrm{t}}(\omega 2)=0$ and $\grave{J}-(t\omega_{3})=-2$ . Let
$F_{t}=\{\emptyset. \Omega\}$ for $t<1$ and $F_{t}=2^{\mathrm{f}l}$ for 1 $\leq t\leq T$ . Moreover, we assume
that $P(\{\omega_{1}\underline{\}})=P(\{\underline{\omega}_{3}\})=1/4$. Then, by simple calculations, the VOM $\tilde{P}$ is
given by $\{P(\{\llcorner..\cdot 1\}), P(\{\omega_{2}\}),\tilde{P}(\{\omega_{3}\})\}=$ $\{48/77, 5/77\sim’ 24/77\}$ . It is very easy
to make sure that Assumption 3.1 is satisfied and $\Gamma$ is not the MMM.

Example 5.2 (Section 3 of Arai (2005a)) We consider two completed fil-
tered probability spaces $\mathcal{P}^{i}:=(\Omega^{i}, F^{\iota}, P_{7}^{i}.\mathrm{F}^{i}=\{F_{t’}^{i}\}_{0\leq t\leq T})$ for $\mathrm{i}=1,2$ . The
whole probability space $\mathcal{P}$ $:=$ $(\Omega, F, P; \mathrm{F}=\{F_{t}\}_{0\leq t\leq T})$ is defined as the prod-
uct space of $r^{1}$, and $\mathcal{P}^{2}$ . Let $N^{i}$ for $\mathrm{i}=1,2$ , be two independent Poisson
processes with intensity 1. defined on the probability space $\prime p^{i}$ , respectively. In
particular, suppose that, for $i=1,2$ , the filtration $\mathrm{F}^{i}$ is thc $P^{i}$-augmcntation
of the filtration generated by $N^{i}$ , and $\mathcal{F}^{i}=F_{T}^{i}$ . We define $\tilde{N}_{t}^{i}:=N_{t}^{i}-t$ , which
is the compensated process of $N^{i}$ . We deal with the case where $d=1$ and the
asset price process is given by:

$X= \eta\prime j+\int\sigma d\tilde{N}^{1}+\oint\hat{\lambda}\sigma^{2}(ft,$ ,

where $x$ is a constant, and, A and $\sigma$ are predictable processes defined on $\prime P$ .
Assume that there exists a positive constant $\epsilon$ such that $|\sigma|>\epsilon$ and $|\hat{\lambda}\sigma|<1-\llcorner C$ .

Wc consider only the case where A and a depend only on $\mathcal{P}^{2}$ , which is a
kind of stochastic volatility model. In this case, the density $Z_{T}$ of the VOM is
described by

$\mathcal{E}$

$Z_{T}= \frac{\tau(-f\hat{\lambda}dX)}{E[\mathcal{E}_{T}(-f\hat{\lambda}dX)]}\tau$ (5.1)

that is, the MM $\mathrm{M}$ does not coincide with the VOM. Moreover, we can prove
that $Z$ satisfies Assumption 3.1.
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Example 5.3 We try to extend Example 5.2 to more general cases. Sct $\eta=\hat{\lambda}\sigma$ .
Then, wc can rewrite $X$ as

$X=x+ \oint$ $\sigma d\tilde{N}^{1}+\int\eta\sigma dt$ .

For the case where the predictable process $7l$ depends only $\mathrm{f}\mathrm{J}\mathrm{n}$

$\mathcal{P}^{2}$ , $Z_{T}$ is re re-
sentcd as (5.1) even if a depends on $\mathcal{P}^{1}$ . Moreover, we can generalize the prob-
ability space $\mathcal{P}^{2}$ . Let $W=$ $(W^{1}, W^{2}, \cdots, W^{n})$ be an n-dim ensional Brownian
motion, and $J=$ $(J_{2}^{1}J^{2}, \cdots, J^{7\Pi})$ an $m$-dimensional Poisson process. Assume
that $W$ and $J$ are independent of $N^{1}$ . Then, wc set that the filtration $\mathrm{F}^{2}$ is the
$P^{2}$-augmentation of the filtration generated by $W$ and $J$ . In light of the mar-
tingale representation theorem, we have the same sort of argument as Example
5.2.

6 Reduction of Assumption 3.1
In general, it is difficult for us to obtain the density of the VOM4 explicitly.
Thus, to check whether or not Assumption 3.1 holds is impossible. Hence,

wc wish Assumption 3.1 were relaxed to checkable condition. In this section,

we introduce the results of Arai $(_{\backslash }2005\mathrm{c})_{\backslash }$ which succeeded in giving checkable
condition partially. Throughout this section, we assume Assun ption 2.2.

Proposition 6.1 (Proposition 3,2 of Arai (2005c)) if (3) of Assumption
3.1 holds and the density process $Z$ of the VOM has a stochastic exponential
form, then the VOM $\tilde{P}$ is in $\mathrm{P}_{e}(\Theta)$ ,

Remark 1 The process $Z$ does not necessarily have a stochastic exponential
form. To be accurate, by Theorem 2 of Schweizer (1995), if the structure con-
dition (SC) is satisfied, that is, there exists an $\mathrm{R}^{d}\mathrm{R}\mathrm{e}\mathrm{v}\mathrm{a}1\mathrm{u}\mathrm{e}\mathrm{d}$ predictable process A
satisfying

$\sim^{\mathit{1}1=}\int d\langle M\rangle\hat{\lambda}$ ,

then $Z$ is given by a solut ion of the following stochastic differential $\mathrm{c}^{s}\mathrm{q}\mathrm{u}\mathrm{a}\mathrm{t}\mathrm{i}\circ \mathrm{n}$ :

$Z=1- \oint Z_{-}\hat{\lambda}dM+R$ ,

where $R\in \mathcal{M}_{0}^{2}(P)$ is $P$-orthogonal to $M$ .

It is not easy to check whether or not conditions of Proposition 6.1 hold. On
the other hand, the combination of the following Assumption 6.2 and (3) of
Assumption 3.1 is a sufhcient condition for the positivity of $Z_{T}$ . Although we
shall observe in the sequel, there is a checkable sufficient condition for only
Assumption 6.2.
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Assumption 6.2 There exists a probability measure Q $\in \mathrm{P}_{e}(\Theta)$ satisfying the
reverse H\"oldcr inequality.

Now, we assert main theorems of this section as follows:

Theorem 6.3 (Theorem 3.4 of Arai (2005c)) Under Assumption 6.2, Z sat-
isfies the reverse H\"older inequality.

Theorem 6.4 (Theorem 3.5 of Arai (2005e)) Under Assumption 6.2 and
(3) of Assumpl,ion 3.1, the VOM $\overline{P}$ is in $\mathrm{P}_{e}(\Theta)$ .

Remark 2 In view of Theorems 6.3 and 6.4, the following two conditions are
equivalent under (3) of Assumption 3.1:

(1) Assumption 6.2;
(2) the VOM exists as a probability measure, of which the density process

satisfies the reverse H\"older inequality.
We can regard this equivalence as an extension of Theorem 2.18 of Delbaen et
al. (1997) to the discontinuous case.

Example 6.5 (Example 3.6 of Arai (2005c)) The converses of Theorems
6.3 and 6.4 do not hold, because there is the following counterexample: Let
$d=1$ and $X$ be given by

$X_{t}=x+ \int_{0}^{t}p_{S}dB_{\mathit{3}}+\int_{0}^{t}q_{S}d\tilde{J_{\mathit{8}}}+t$ ,

where $x\in \mathrm{R}_{\backslash }B$ is a one-dimensional Brownian motion, $J$ is a Poisson process
with intensity 1, $\check{J}$ is its compensated Poisson process, namcly, $\grave{J}_{t}=J_{f}-t$ and,
$p$ and $q$ are predictable processes such that $p^{2}+q^{2}\equiv 1$ and $-1<q<1$ . Remark
that the martingale part $\lambda/f$ of $X$ is given by $M= \int pdB$ $+ \int^{-}qd\tilde{J}$, so that we

have $\langle M\rangle_{t}=\mathrm{t}$ . Hence, we can rewrite $X$ as $X=.?j$ $+M+\langle ft/I\rangle$ , which is the
canonical decomposition. In this case, the process $Z$ is given by $Z=\mathcal{E}(-\Lambda l)$ .
Thus, $\Delta Z=-\mathrm{Z}.$ AM $=-Z_{-}q\Delta J$ . Consequently, since $\langle M\rangle_{T}\in \mathcal{L}^{\mathfrak{t}\mathrm{X}\mathrm{J}}(Plj$ $Z$

satisfies the reverse Holder inequality by Proposition 3.7 of CKS, and, since
$\Delta Z/Z_{-}>-1$ . $Z>0$ holds. On the other hand, (3) of Assumption 3.1 is not
satisfied.

By Theorems 6.3 and 6.4, we can rewrite (1) and (2) of Assumption 3.1 as
Assumption 6.2. In other words, we have the following theorem:

Theorem 6.6 (Theorem 5.1 of Arai (2005c)) Under Assumption 6.2 and
(3) of Assumption 3.1, Theorem 3.8 holds.

Wc need to discuss the question when Assumption 6.2 and (3) of Assump-
tion 3.1 are satisfied. We can give an answ er to this question for only Assumption
6.2. We assume (SC), that is, A is given by $\int d\langle M\rangle\hat{\lambda}$. If $Y:= \int\hat{\lambda}d\lambda,T$ $\in \mathcal{M}_{0}^{2}$ aJld
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$\langle Y\rangle_{T}\in \mathcal{L}$ ”, then $\hat{Z}:=\mathcal{E}(-Y)$ satisfies the reverse Holder inequality. Moreover,

we define a signed martingale measure $\hat{P}$ as $\frac{d\hat{P}}{dP}:=\hat{7_{J}}\tau$ . Note that the signed

martingale measure $\hat{P}$ is said to be the MMM. Then, if we suppose that

$\Delta Y=\sum_{i=1}^{d}\hat{\lambda}^{i}\Delta l\mathrm{t}\prime f^{i}<1$ ,

then $\hat{P}$ is a probability measure. In this case, Assumption 6.2 is satisfied. That
is, together (SC), $Y\in \mathrm{A}\mathrm{t}_{0}^{2}$ , $\langle$ $Y)_{T}\Gamma_{arrow}-\mathcal{L}^{\mathrm{c}\mathrm{o}}$ and $\Delta Y<1$ is a sufficient condition for
Assumption ri.2. We can check this $\mathrm{s}\iota$sufficient condition by only using the asset
price process. On the other hand, a sufficient condition for (3) of Assumption
3.1 has been still open.
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