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Abstract, Kikuta (2005) proposed a duality of solutions in cooperative TU-
games. In this note we try to extend this duality and see that, in a sense,
the von Nuemann-Morgenstern solution satisfies the extended property.

Keywords: cooperative game, solution, duality, twisted duality.

JEL Classification: C71

1 Introduction and Preliminaries

Many papers examined relations between a cooperative game with transferable utility and
its dual, or relations between solutions for a game and its dual Shapley $(19\mathrm{G}2)$ outlines
theoretical structures of simple games, and states beautiful properties of simple games and
compound simple games with respect to their dual games. A solution for games is sometimes
caned to satisfy the duality if the solutions for a game and its dual coincide. The Shapley
value (Shapley, 1953) and the prenucleolus (Schmeidler, 1969) are single-valued solutions. It
is wen-known that the Shapley value satisfies the duality. On the other hand, it is easy to
find a game where the prenucleolus of a game is different from the prenucleolus of the dual
game of it. Is there another duality which is satisfied by the prenucleolus ?

Kikuta $(2002, 2005)$ proposed another kind of duality of solutions which is satisfied
by the prenucleolus. This duality is, however, satisfied by other solutions as wen as the
Shapley value. So it is stin a problem to find a duality-like property which distinguishes
the prenucleolus from the Shapley value. On the other hand, this duality is mathematicany
an extension of the self-duality of rules in bankruptcy problems to a property of solutions
for games. Nevertheless, this duality is caned a twisted duality since there may be other
extensions of the self-duality.

It is known that the von Neumann-Morgenstern solution does not satisfy twisted duality.
In this note, in Section 3 we try to extend twisted duality and see that, in a sense, the von
Neumann-Morgenstern solution satisfies the extended property. In Sections 2 and 4 we state
a part of results in Kikuta $(2002, 2005)$ .$-*$The authorwishes tothank workshop participants at the Research Institute for Mathe-
matical Sciences, Kyoto University, for helpful comments
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A cooperative game with transferable utility (abbreviated as a game) is an ordered pair
$(N, v)$ , where $N$ is a finite set of players and $v$ , called the characte ristic function, is a real-
valued function on the power set of $N$ , satisfying $\mathrm{u}(0)=0$ . For simplicity of notation, we
frequently express a game $(N, v)$ as $v$ . A coalition is a subset of $N$ . For a finite set $Z$ , $|Z|$

denotes the cardinality of $Z$ . For a coalition $\mathrm{S}$ , $R^{S}$ is the $|S|$ dimension al product space $R^{|S|}$

with coordinates indexed by players in $S$ . The ith component of $x\in R^{b^{\mathrm{v}}}$ is denoted by $x_{i}$ . For
$S\subseteq T\subseteq N$ and $x\in R^{T}$ , $x|s$ means the restriction of $x$ to $S$ For $x\in R^{N}$ and $Y\subseteq R^{N}$ , we let
$x+Y\equiv\{x+y:y\in Y\}$ and $-Y\equiv\{-y:y\in Y\}$ . We call $x\in R^{N}$ a (payoff) vector. For $S$ $\subseteq N$

and $x\in R^{N}$ , we define $x(S)$ $=\Sigma_{i\in S}x_{i}$ (if $S\neq\emptyset$ ) and $=0$ (if $s=\emptyset$). A game $v$ is called additive
if there exists $x\in R^{N}$ such that $v(S)=x(S)$ for all $S\subseteq N$ . We identify sometimes a vector
$x$ $\in R^{N}$ with an additive game $(N, \uparrow’)$ in which $?$ ) $(S)$ $=x(S)$ for all $S\subseteq N$ . A pre-imputation for
a game $\mathrm{q}$ ; is a vector $x\in R^{N}$ that satisfies

$x(N)=v(N)$ . (1.1)

$\mathrm{x}(\mathrm{S})\equiv \mathcal{X}(N, \tau’)$ is the set of all pre-imputations for a game $v$ . For games $v,w$ and $k\in R_{\}}$ define
gam es $?’+w$ and $h\tau$ ) by $(?’+’\{\{’)(S)=\iota)(S)+\mathrm{u}(0)$ and (Av)(5) $=kv(S)$ for all $S\subseteq N$ respectively.
By these two operations, the set of all games with the player set $N$ can be identified as the
real linear space with dimension $2^{|N|}-1$ . For a game $v$ . define $a(v)\in R^{N}\mathrm{b}\mathrm{y}^{1}a\{v$ )$i=v(i)$ for
all $i\in N$ . The dual game $v^{*}$ of a game $v$ is defined by: For all $S\subseteq N$ ,

$\uparrow l^{*}(S)=\tau)(N)-1\mathit{1}(N\backslash S’)$ . (12)

The zero-normalization of a game $v$ , denoted by $v^{0}$ , is defined by $\mathrm{c}\prime^{0}(S)=\mathrm{V}(\mathrm{S})-\sum_{\dot{\mathrm{z}}\in S}v(i)$ for
all $S\underline{\subseteq}N$ .

2 Twisted Duality

In this section we state that some solutions satisfy twisted duality.

Definition 1. Games (N,v) and (N,w) are called rwisted (to each other) if the game (N,$v^{*}+w)$

is additive.

By Definition 1, it is easy to see that games $(\mathrm{N},\mathrm{v})$ and $(N,w)$ are twisted to each other if and
only if $(v^{*}+w)^{0}(S)=0$ for all $S\subseteq N$ . So it is trivially clear that for any game $(N,v)$ , there
exists a game $(N, w)$ such that games $(N,v)$ and $(N_{\}w)$ are twisted. The twisted games $(N,v)$

and (Ntw) are well-defined since $(N, v^{*}+w)$ is additive if and only if the game $(N,v +w^{*})$ is
additive ( Rem ark 3.3 of Kikuta (2005)). Furthermore, $v^{*}(i)+w(i)=\mathrm{v}(\mathrm{i})+\mathrm{x}(\mathrm{S})$ for all $i\in N$

if $(N,v^{*}+w)$ is additive .
Let $\phi$ be a correspondence which associates with each game $(N,v)$ a subset $\mathrm{O}(\mathrm{v})\equiv(\mathrm{N},\mathrm{v})$

of $R^{N}$ . $\phi$ is called a solution. For a game $’\iota$), when $\emptyset(\{l)$ consists of a unique vector, we identify
$\phi(\tau^{y})$ as the unique vector.

Definition 2. A solution $\phi$ satisfies the twisted duality if for any twisted games $(N,v)$ and
$(N, u’)$ ,

$\phi(N,v)=a(v^{*}+w)-\phi(N,w)$ .

1 For simplicity we write $v(\{i\})_{J}$. $v(\{i,j\})$ etc. as $v(i),v(?.j)$ etc.
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For a game $v$ and a coalition $S$ , we let

$M_{\mathrm{z}}(\mathrm{c}’)\equiv M_{i}(N, v)\equiv$ rnax{{v(S $\cup\{i\})-v(S)$ : $S\subseteq N\backslash \{i\}$ } (2.1)

and
$mi(v) \equiv m_{i}(N, v)\equiv\min\{v(S\cup\{i\}) - v(S) : S\underline{\subset}N\backslash \{i\}\}$ . (22)

$M_{i}(v)$ and $m_{i}(v)$ are the largest and the smallest amounts that the player $i$ can contribute to a
coalition. For a game (N. $v$ ) , the reasonable set of outcomes, denoted by $\mathcal{R}(N,v)$ , is defined by
adding a lower bound to the reasonable set defined by Milnor (1952). In other words, $\mathcal{R}(N$ , ?; $)$

is the set of all pre-imputations that give each player an amount between the largest and
the smallest amounts he can contribute to a coalition (See Gerard-Valet and Zamir (1987)).

$\mathcal{R}(N_{\dot{\mathit{1}}}\uparrow’)\equiv\{x\in \mathcal{X}(N, ?’) : m(?))\leq x\leq M(\tau’)\}$ . (2.3)

For a real number $\epsilon$ , the (strong) $\epsilon$-core of a game $(N, v)$ , denoted $C_{\epsilon}(N,\tau’)$ , is the set of all
pre-im putations that give rise to excesses not greater than $\epsilon$ , for all coalitions other than 0
and $N$ :

Cd $(\mathrm{N},\mathrm{v})=$ { $x\in \mathrm{X}(\mathrm{N},$ $v)$ : $ev(Stx)\leq\epsilon$ for all $S\neq\emptyset,N$ }.

The strong 0-core of a game $(N,v)$ is called the core of the game and written as $C(N, \mathrm{s}’)$ .
It is known that the Shapley value, the prenueleolus. the prekernel, the reasonable set of
outcomes and the strong $\epsilon$-core satisfy twisted duality (Kikuta, 2005)2.

In the next section we try to extend twisted duality, in order to see what kind of relation
the von Neumann-Morgenstern solution satisfies.

3 Partially Twisted Duality

Ill this section we extend twisted duality and discuss whether von Neumann Morgenstern
solution satisfies the extended property or not.

For $x$ , $y\in \mathrm{X}(\mathrm{N},\mathrm{v})$ and for a coalition $S\subset N$ , we say $x$ dominates $y$ via $S$ , if

$x_{i}>y_{i},\forall\iota\in S$ , (3.1)

$x(S)\leq \mathrm{z};(S)$ . (32)

For $x$ , $y\in X(N, v)$ , we say $x$ dominates $y_{2}$ written as $x\succ_{v}\mathrm{y}$ . if there exists $S\subset N$ such that $x$

dominates $y$ via $S$ . For a game $(N,?’)$ and for $K\subset \mathrm{X}(\mathrm{N},\mathrm{v})$ , we define $Do\tau n_{v}K$ by

$D_{\mathit{0}?1\mathrm{L}_{v}}K\equiv\{x\in \mathcal{X}(N,v) : \exists y\in K s.t. y\succ_{\mathrm{t}^{\backslash }}x\}$ .

For a game $(Nv)\}$ and for $K\subseteq \mathcal{X}(N,\mathrm{u}),\mathrm{w}\mathrm{e}$ say $K$ is a stable set (or a von Nuemann-Morgenstern
solution) whenever

$K\cap Dom_{v}K=\emptyset$ and $K\mathrm{U}$ DomvK $=\mathcal{X}(N,\mathrm{c}))$ . (3.3)

We say a game $(N,v)$ has a stable core if the core is nonempty and it is a stable set. If the
core is stable, it is the unique stable set. The next example $\mathrm{b}^{\neg}\mathrm{a}.\mathrm{y}\mathrm{s}$ that $C(N_{\iota}^{i}\iota’)$ is not empty

$\overline{\sim\nabla}$We givedefinitions ofthe Shapley value and the prenueleolus in Section 4. We omit the
definition of the prekemel. See Peleg and $\mathrm{S}\mathrm{u}\mathrm{d}\mathrm{h}\dot{\mathrm{o}}$lter (2003)
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and it is not stable, while $C(N, w)$ is not empty and it is stable, which means that the von
Neumann-Morgenstern solution does not satisfy twisted duality.

Example 1. (Example 8.7 of Kikuta (2005)) Let $n$ $=3,\tau’(1)=\mathrm{v}\{2)=\iota’$(3) $=0\uparrow’(\}1\mathit{2})=20$ , $\mathrm{v}(13)=$

$10$ , $v(23)=50$ , and $v(123)$ $=60$ . By definition we call take $(N,w)$ so that $vJ$ (1) $=w(\mathit{2})=w(3)=$

$0$ , $\mathrm{v}(13)=0,w(13)$ $=-10\mathrm{t}\mathrm{w}(23)=30$ , and $w(123)=40$ . The core of $(N, w)$ is stable, while the core
of $(N,v)$ is not, as is seen by drawing the figures of the cores.

Definition 3. A pair of two solutions $\phi^{1}$ and $\phi\underline’$ satisfy partially twisted duality if for any
twisted games $(N, v)$ and $(N,w)$ ,

$\phi^{1}(N, v)=a(v^{*}+w)-\phi^{2}(N,w)$

It is easy to see that a solution $\phi$ satisfies twisted duality if and only if two solutions $\phi^{1}$ and
$\phi^{2}$ satisfy partially twisted duality wtren $\phi^{1}=\phi^{2}=\phi$ . For a game $(N_{\backslash }\mathrm{e}’)$ , let

$\underline{\mathrm{I}}(N,v)\equiv\{x\in \mathcal{X}(v) : x_{i}\geq v(i)_{\}}\forall i\in N\}$ ,

and
$\overline{\mathrm{I}}(N_{?}’\iota’)\equiv\{x \in \mathcal{X}(?)) : x_{?}\leq\uparrow)^{*}(i),\forall i\in N\}$ .

It is well-known that the set I( $N,\mathrm{s}’\rangle$ is called the imputation set.

Proposition 1. Two solutions $\underline{\mathrm{I}}$ and $\overline{\mathrm{I}}$ satisfy partiaily twisted duality
Proof: For $x\in\overline{\mathrm{I}}(N,w)_{i}$ let $y=\mathrm{a}(\mathrm{v})+a(w^{*})-x$ . Then

$y(N)= \sum_{i\in N}v(i)+\sum_{\dot{\mathrm{z}}\in N}w^{*}(i)-w(N)=v(N)$
,

and for every $i\in N$

$y_{i}=\mathrm{v}(\mathrm{i})+w^{*}(i)-x_{i}\geq \mathrm{v}(\mathrm{i})+w^{*}(i)-w^{*}(i)=\mathrm{v}(\mathrm{i})$

Hence $y\in 1(\mathrm{N}, v)$ . The converse is in the same way. $\bullet$

Example 2. Let
$v(i)=0$ , $v(12)=4$ , $v(13)=4$ , $v(23)=5$ , $v(123)=6$ ,

and
$w(i)=0$, $w(1\mathit{2})=-3$ , $w(13)=-3$ , $w(23)=-\mathit{2}$ , $w(1\mathit{2}3)=-1$

Gam es $\uparrow$ ) and $?U$ are twisted dual. By definition,

$M_{1}(v)=4$ , $M_{2}(v)=$ W3 $(v)=5,$ $m_{i}(v)=0$ , $i=1,\mathit{2},3$ .

M3 (w) $=1,\lambda$ I2 $(w)=M_{3}(w)=2,m_{i}(v)=-3,i=1,2,3$ .

It is easy to see that $\underline{\mathrm{I}}(N,v)$ is the convex hull of points (6,0,0), (0,6,0) and (0,0,6), while
$\overline{\mathrm{I}}(N,w)$ is the convex hull of points $(^{r_{J}}-|,2,2)$ , $(1,$ $-4, 2)$ and $(1, 2,$ $-4)$ . It is easy to see

$\underline{\mathrm{I}}(N,\uparrow’)=a(\tau\}^{*})-\overline{\mathrm{I}}(N,1l\mathrm{J})$ .

On the other hand, $\mathrm{Z}(\mathrm{N},\mathrm{w})=\emptyset$ and $\mathrm{I}\{\mathrm{N},\mathrm{v})=\emptyset$ .
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Definition 4. For x, y $\in \mathrm{X}(\mathrm{N},$v) and for a coalition S $\subset N$ , we say x td ominates y via S, if

$x_{i}<y_{i_{?}}\forall i\in S$ , (3.4)

$x(N\backslash S)\leq v(N\backslash S)$ (3.5)

For $x,y\in \mathrm{X}(\mathrm{N},v)$ , we say $x$ d-dominates $y$ , written as $x\succ_{\mathrm{t}^{\tau}}^{d}y_{\gamma}$ if there exists $S\subset N$ such that
$xd$-dominates $y$ via $S$ . We let

$Dom_{v}^{d}K\equiv\{x\in \mathcal{X}(N,v) : \exists y\in K s.t y\succ_{?}^{d}|x\}$.

Definition 5. For a game $(N, \{’)$ and for $K\subset \mathcal{X}(N,\{;),\mathrm{w}\mathrm{e}$ say $K$ is a testable set whenever

$K\cap Dom_{v}^{d}K=\emptyset$ and $K\cup Dom_{v}^{d}K=\mathcal{X}(N, v)$ .

In general a game has many stable sets and $d$-stable sets. The next proposition gives a
correspondence between stable sets and $d$-stable sets for twisted dual games. We om it the
proof of it since it is proved straightforward.

Proposition 2. Assume K is a stable set for a ga me (N, v). Let games $?$ ’ and w be twisted
dual. Then $a(v)+a(w^{*})-K$ is a d stable set for (N, w).

For a game 1” let $\Phi(?’)$ and %(v) be the set of all stable sets and the set of all $d$ stable sets
respectively. Let games ,,, and $w$ be twisted dual. From Proposition 2, we have a relation
between $\Phi(0’)$ and $\Psi(w)$ , which is similar to partially twisted duality :

$\Psi(w)=\{a(?’)+a(u)^{*})-K\cdot K\in\Phi(v)\}$

4 Axiomatization
In this section we discuss axiomatic characterizations of the Shapley value and the prenu-
cleolus. given in Kikuta $(2002)^{4}$ .
4.1 Shapley value
Let $\phi$ be a single-valued solution and $(N,\mathrm{c}))$ be a gamne. For $T\underline{\subset}N$ , Hart and Mas-Colell
(1989) defined the reduced game $(T_{\}}v_{T}^{\phi})$ by :

$\mathrm{t}^{\phi})\tau(S)=’\iota’(S\mathrm{U}T^{c})-\sum_{i\in T^{\Gamma}}\phi_{i}(S\mathrm{U}T_{\backslash }^{\mathrm{c}}\uparrow’)$
, for ali $S\subseteq T$,

where $T^{c}=N\backslash T$ . A solution $\phi$ is called consistent if, for every game $(N, \tau’)$ and every $T\subseteq N$ ,
we have

$\phi_{j}(T, v_{T}^{\phi})=\phi_{j}(N, v)$ , for all $j\in T$.

A solution $\phi$ is called standard for two-person games if for all games ( $\{i,j\},v1,$ , $i\neq j$ , it satisfies
$(\{\mathrm{i},\mathrm{j}\},\mathrm{v}),\mathrm{i}=1$ and $\phi_{k}(\{i,j\}_{\}v)=\mathrm{v}(\mathrm{i})+\frac{1}{9}.\{v(ij)-\mathrm{e}’(i)-v(j)\}$ . for $k$ $=i,j$ . The Shapley value

(Shapley, 1953) is a single-valued solution $\phi$ defined by: For $i\in N$ ,

$\phi_{i}(v)\equiv\phi(v)_{i}=\sum_{S:i\in s\subseteq N}\frac{(|N|-|S|)!(|S|-1)!}{|N|!}\{v(S)-v(S\backslash \{i\})\}$ . (4.1)

$\overline{3}$We omitan interpretation of d-domination.
4 Kikuta (2005) characterized both solutions by using axioms which are different from

those here
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Hart and Mas-Colell (1989) showed that assuming a solution $\phi$ is single-valued, $\phi$ is the
Shapley value if and only if (i) $\phi$ is consistent, and (ii) $\phi$ is standard for two-person games.
Now we have

Proposition 3. Let $\phi$ be a single-valued solution. Then $\phi$ is the Shapley value if and only
if (i) $\phi$ is consistent, and (ii) $\phi$ satisfies twisted duality.
Proof: The Shapley value satisfies the consistency by Proposition 4.5 of (Hart and Mas-
Colell, 1989). It satisfies twisted duality. Conversely, if a solution $\phi$ satisfies twisted duality.
it is standard for two-person games by Proposition 4 of (Kikuta, 2002). So by Theorem 5 of
(Hart and Mas-Colell, 1989), $\phi$ is the Shapley value. $\bullet$

We proceed by providing some properties of a solution $\phi$ .

Weakly positive: If $?$ ) $(S)$ $-v(S\backslash \{\mathrm{i}\})\geq 0$ for all $S$ such that $i\in s$ , then $\phi_{2}(\mathrm{c}))\geq 0$ .

Feasibility : $\Sigma_{i\in N}$ &(v)\leq v(S).

Superadditivity :For any games $v,w$ , $\phi_{i}(v+w)\geq\ (\mathrm{v})+\phi_{i}(w)_{j}$ for all $7\in N$ .

Let $\pi$ : $Narrow N$ be a $\mathrm{p}\mathrm{e}$ rmutation of $N$ . For all $S\subseteq N$ , $\pi’l1(S)\equiv?’(\pi(S))$ . where $\mathrm{v}(\mathrm{S})\equiv\{\pi(i)|i\in S\}$ .

Symmetry: For all $i\in N$ and for all permutations $\pi$ of $N$ , $\phi_{\pi(i)}(\pi r\lambda)=\phi_{i}(?’)$ .

Efficiency: $\Sigma_{i\in N}\phi_{i}(v)=v(N)$ .

If $\mathrm{v}(\mathrm{S})$ $-v(S\backslash \{i\})=0$ for all $S$ such that $i\in S$ , $i\in N$ is called a dummy player.

Dummy: If $i$ is a dummy player, $\phi_{i}(’\iota’)=0$ .

Additivity :For any games $?’,u’$ , $\phi(v+w)=\ (\mathrm{v})+\phi(w)$ .

Duality :For any game $v$ , $\ (\mathrm{v})=\phi(v^{*})$ .

Proposition 4. A solution $\phi$ satisfies single-valuedness. feasibility, weak positlvity, super-
additivity, symmetry and twisted duality, if and only if it is the Shapley value.
Proof: The Shapley value satisfies all properties in Proposition 4. Conversely, twisted
duality and superadditivity imply additivity. Twisted duality and weak positivity imply
Dummy. Twisted duality and feasibility imply efficiency. Hence by (Shapley, 1953), $\phi$ must
be the Shapley value. $\bullet$

4.2 Prenucleolus
Given a game $(N, \uparrow))$ , for all $S\subseteq N$ and $x\in \mathrm{X}(\mathrm{v})\}$ , define $p_{\vee\gamma},(6’.x)\equiv?$ ; $(S)-x(S)$ . $e_{v}(6’,x)$ is called thle
excess of $S$ at 2*. It represents the gain (or loss, if it is negative) to $S$ if its members depart
from an agreement that yields $x$ in order to form their own coalition (Maschler, 1992).
For $x\in \mathrm{X}(\mathrm{v})$ let $9(\mathrm{x})$ be the $2^{n}$-vector whose components are the numbers $e_{v}(S, x),S\subseteq N_{\}}$

arranged in nonincreasing order, $\mathrm{i}.\mathrm{e}.$ . $\theta(x)_{i}\geq\theta(x)_{j}$ whenever $1\leq i\leq j\leq \mathit{2}^{n}$ . We say that $0(\mathrm{x})$ is
lexicographically smaller than $\theta(y)$ , denoted $\mathrm{B}\{\mathrm{x}$ ) $\prec_{L}$ &(v), if and only if there is an index $k$ such
that $\theta(x)_{i}=0(\mathrm{y})\mathrm{i}$ for all $i<k$ , and $\theta(x)_{k}<\mathrm{B}\{\mathrm{y}$ ) $\mathrm{k}$ . We write $\theta(x)\preceq_{L}0\{\mathrm{y}$ ) for not $9(\mathrm{y})\prec_{L}9(\mathrm{x})$ . The
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prenucleolus of $v$ is the set $PN(?’)$ of pre-imputations that minimize $\theta$ in the lexicographical
ordering, $\mathrm{i}.\mathrm{e}.$ ,

$P\Lambda^{(}(v)\equiv$ { $x\in \mathrm{X}(\mathrm{v})$ : $\theta(x)\preceq_{L}\theta(y)$ for all $y\in \mathrm{X}(\mathrm{v})$ }.

Let $\phi$ be a solution and $(N,v)$ be a game. For $T\subseteq N$ and $x\in R^{N}$ , define the red uced game
$(T,v^{x})$ by:

$v^{x}(S)= \max${ $v(S$ IJ $Q)-\mathrm{X}(\mathrm{v})$ : $Q\underline{\subseteq}N\backslash T$ }, for all $S$ $\subseteq T$,

$v^{x}\langle T$) $=v(N)$ $-\mathrm{X}(\mathrm{v})$ , and $\mathrm{V}\mathrm{M}\{\mathrm{v})=0$ .

$\phi$ is said to have the reduced game property if, for a game $(N,$ $\mathrm{e}’\rangle$ , $\emptyset\neq T\subseteq N,\mathrm{a}\mathrm{n}\mathrm{d}$ $x\in\phi(N,v)\}$

we have $x|T\in\phi(T,v^{x})$ . Here we provide three properties of a solution function $\phi$ .

Covariance under strategic equivalence :if for a game $v$ , $k>0$ and $x\in R^{N}$ , $\phi(kv+x)=k\phi(v)+x$ .

The players $ij$ $\in N,i\neq j$ . are substitutes in a game $v$ if $v(S\mathrm{U}\{i\})=v(S\mathrm{U}\{j\})$ for all $S\underline{\subseteq}N\backslash \{i,j\}$ .

Equal trearment property: For any substitutes $ij\in N$ , $i\neq j$ in a game $v$ . $\phi_{i}(v)=\phi_{i}(v)$ .

Positive $homogene\mathrm{i}t_{c}t/.\cdot$ For any $k>0$ and any game $\mathrm{t}$ ). $\phi(k’\iota’)=k\phi(\uparrow))$ .

Proposition 5. Assume a solution $\phi$ is single-valued. It satisfies positive homogeneity,
twisted duality and reduced game property if and only if it is the prenucleolus.

Proof: It is well-known that the prenucleolus is single-valued and it satisfies reduced game
property. It satisfies twisted duality. It is covariant under strategic equivalence. Hence
it is positively homogeneous. Conversely, assume a solution $\phi$ is single-valued, positively
homogeneous, satisfies twisted duality and reduced game property. Then twisted duality,
combined with positive homogeneity, implies that $\phi$ is covariant under strategic invariance.
Assume $i$ and $j$ are substitutes. Let $T=\{\mathrm{i}\mathrm{j}\}$ . Let $x=\phi(N,\mathrm{e}))$ . We have $\mathrm{c}_{T}^{x}’(\{i\})=\mathrm{e})^{x}\tau(\{j\})$

for ali $Q$ $\subseteq T^{c}$ since $i$ and $j$ are substitutes. Hence $\phi_{i}(T_{\mathrm{t}_{T}’}^{x}’)\}=\phi_{j}(T, ?)^{x})\tau$
’ which implies $j\lambda_{l}=$

$x_{j}=\mathrm{v}\%\{\{\mathrm{i},\mathrm{j}\})/2$ by reduced game property. Hence $\phi$ has equal treatment property. Then $\phi$

must be the prenucleolus. by Theorem 3,2 of (Orshan, 1993) (The prenucleolus is the unique
solution concept $\phi$ which satisfies single-valuedness, covariance under strategic equivalence,
equal treatment property and reduced game property.). 1
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