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1 Introduction

A class of Gause-type predator-prey systems is one of the most important mathematical models
in population ecology. The following is a typical form of this model:

u' = ur(u) — p(u)v, v' = v(g(u) — D). (1.1

Here u(t) and v(t) are prey and predator densities, respectively; ' = d/dt; p(u) is the capture
rate of prey per predator (the rate is called a functional response of predators to prey); g{u) is
the growth rate of the predator enhanced by an amount proportional to the prey density; r(uw)
is the density-dependent growth rate of the prey in the absence of any predators; D > 0 is the
death rate of the predator in the absence of any preys (for details, see [3, Chap. 4]).

System (1.1) includes various kinds of famous models (say, Lotka-Volterra type, Holling
type, Ivlev type) as specific cases. It naturally has been studied by a number of authors; for ex-
ample, results can be found in [1-17,20-22] and the references cited therein. In those literature
it is assumed that the rates r(w), ¢(u) and p(u) are sufficiently smooth on [0, co) and satisfy

(i) 7(0) > 0 and there exists a K > 0 such that r(K) = 0 and (u — K)r(u) < 0foru # K;

d
(ii) ¢(0) =0, d—q(u) > 0 for all u > 0 and there exists a u* € (0, K) such that g(u*) = D
2

(iil) p(0) = 0 and ad—p(u) > 0 forallu > 0,
U

respectively. Let v* = w*r(u*)/p(u*). Then, from the assumptions above, the point £~ (u*,v*)
is a unique equilibrium in the first quadrant @ = {(z,v): u > 0 and v > 0}. We call E* the
positive equilibrium hereafter.

Main subjects of system (1.1) are the existence of a unique limit cycle which surrounds the
positive equilibrium E* (see, [1,9-11,13,16,17,21,22]) and the global asymptotic stability of
the positive equilibrium E* (refer to {2,6,12,20]). The positive equilibrium E* is said to be
globally asymptotically stable if E* is stable and if every orbit tends to £
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It is easy to show that all solutions of (1.1) are bounded in the future and remain in the first
quadrant ). Hence, the Poincaré-Bendixson theorem shows that if system (1.1) has a unique
limit cycle, then E* has to be unstable. Indeed, E* is locally repulsive; that is, there exists some
neighborhood U of E* such that each orbit of (1.1) starting at every point in U goes away from
U and each orbit of (1.1) starting at every point in Q\U does not enter into U. The smoothness
of the rates r(u), g(u) and p(u) in system (1.1) plays a major role in showing that £~ is locally
repulsive when system (1.1) has a unique limit cycle.

In a general dynamical system, however, an equilibrium is not always locally repulsive even
if it is unstable. An orbit is said to be homoclinic if its o~ and w-limit sets are the same equilib-
rium. If a homoclinic orbit exists, then the corresponding equilibrium is unstable, but it is not
locally repulsive.

Sugie and Katayama [20] have shown that under the above assumptions (i)-(iii) and the
smoothness condition on 7{u), g(z) and p(u), system (1.1) has no homoclinic orbits. From
their result we see that there is only two possibilities: either system (1.1) has at least one limit
cycle or the positive equilibrium E* is globally asymptotically stable. It is safe to say that
system (1.1) has relatively simple global phase portraits because of the smooth rates.

A question naturally arises as to what will happen in the case of non-smooth rates. Does a
homoclinic orbit appear in system (1.1) for lack of smoothness of the rates? To give an answer
to this question, we consider the predator-prey system with a non-smooth prey growth rate:

v =u(f—ylu—al) —uy, U’zv(u2~a2), (1.2)

where ¢, 3 and v are positive constants. System (1.2) has the positive equilibrium E* at
(u*,v*) = (a, ). Since

p(u) = U, Q(u) = uza T(u) = /6 - 'ﬂu - 061 and D=0’
in system (1.2), assumption (ii) holds and assumption (iii) is satisfied with u* = «. Also,
assumption (i) is satisfied with K = o + B/ if > ary. Otherwise r(u) does not satisfy the
assumption (i). Note that 7(u) is continuous for all u > 0, but is not differentiable at v = .
Our main result is stated as follows:

Theorem 1.1. System (1.2) has homoclinic orbits if and only if 0 < 3 < ¥?/8.

When any predators are absent, system (1.2) is reduced to
v =u(f —7u-a). (1.3)

In this model, the growth rate of the prey increases with the prey density up to the peak 3 and
then the rate decreases as the density increases. Hence, Eq. (1.3) exhibits the so-called “Allee
effect.” In the case that § < oy, a low density leads to extinction. To be precise, if the density
is lower than o — 3/, then the prey is strictly decreasing and will die out. The Allee effect is
an important phenomenon in the population dyhamics.
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From the above-mentioned relation between the prey growth rate and its density, we may say
that system (1.2) is an ecological significant model simulating the effects of underpopulation
and overpopulation of the prey. In system (1.2), the prey and the predator may coexist or they
may die together. Only one side of species cannot survive. For further details, see Sec. 4.

2 Proof of the main theorem
Consider a generalized Liénard system of the form
=hly) - F@), §=-g(), @1

where " = d/ds; F(z) and g(z) are continuous on an open interval I which contains 0, and
h(y) is continuous and strictly increasing on R. The functions F(z), g(z) and h(y) satisfy
smoothness conditions for uniqueness of solutions of initial value problems. We assume that
F(0) =0,

zg(z) >0 if z#0

and
yh(y) >0 if y#0.

Then the origin is the unique critical point of (2.1). Define the nonnegative function G(z) by
6(a) = [ alee
Under the assumption that there exists an m > 0 such that
h(y) < my 2.2)

for y > 0 sufficiently small, Sugie [18] has presented the following sufficient conditions for
system (2.1) to have homoclinic orbits (see also [19]).

Theorem A. Assume (2.2) and suppose that
F(z) > J/m {2\/26(;5) - qﬁ(\/QG’(a:))} 2.3)
for |z| sufficiently small, where ¢(o) is a nonnegative continuous function satisfying

(o)

g

is nondecreasing 2.4

_and there exists a constant a > 4 such that

for o > 0 sufficiently small. Then system (2.1) has homoclinic orbits.
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Remark 2.1. We can easily find a nonnegative continuous function ¢(u) satisfying conditions
(2.4) and (2.5). For example, we may take (o) = o'** for some ¢ > 0; $(0) = bo/(log 0)?
with0 < b < 1/4.

Using Theorem A, we can prove ‘if’-part of Theorem 1.1.
Proof of “if’-part of Theorem 1.1. Changing variables
r=u—a, y=logf—logv and ds=udt,

we can transform system (1.2) into system (2.1) with

2

F) =z, glz)=z+a— mi ~ and h(y)=p1-e), 2.6)

where F(z) and g(z) are defined on (—a, 00), and h(y) is defined on R. Note that F(0) =0,
zg(z) > 0if z # 0 and yh(y) > 0if y # 0. We get

1
G(z) = §z2 +ar — o?log (:{;—;a) X

Let m = (3. Then it is easy to check that
h(y) < my,

namely, condition (2.2). We take ¢(o) = o+/o. Then it is clear that $(o) is nonnegative and
continuous for o > 0. Since ¢(o)/0 = \/E, condition (2.4) holds. We have

0 &
for o > 0 sufficiently small. Thus, condition (2.5) is also satisfied with arbitrary a > 4.
We will show that condition (2.3) holds for || sufficiently small. Since § < +%/8, it is

enough to show that
> 1{2/6@) - VEE) V20w)

namely,
12| > VG @) {1 - %{’/ZG(:E)} @7

in some neighborhood of z = 0. We first estimate that

g(z) <2z for z > —a and z #0;

o (2.8)
g(z) >3z for *§<x<0.

In fact, we have

d o? d? 202
D —— d _ — e e
an dng(m) (z+a)? <0
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for z > —q, and therefore,

and g(z) is a convex function. We also have

(-5

VG(z) <lz| for z>0;
lz] < /G(z) < \/glxi for — % <z <0.

Hence, it is clear that (2.7) holds for z > 0. Let us examine whether (2.7) is also true for z < 0
or not. To this end, we define

From (2.8) we see that

2.9)

2

2
=—z‘—T+a-— .
filz) = :z: THo— ——
Then, from a straightforward calculation, we conclude that there exists a 6 > 0 such that
fi(z) > 0 for =6 < z < 0; that is,

L 9(2)

~r—1< <0 for —6<zx<0.
o —2x

We may assume without loss of generality that § < min{a/2, o?/4}. Hence, together with
(2.9), we obtain

1 |
ro1<-93) 4 for —5<z<0. (2.10)

o 2./G(z)

1) = —a = VE(@) + 5/ G /26 ).

We next define

Then we have

_ d _ (:c) 3g x)
f2(0)=0 and ngz(g;)_ -5 \/___

From (2.8)~(2.10) and the fact that § < a?/4, we see that

d 1 3 2%
4wy <-1-(Zo-1) -3 775, V0@
Vo2 il < Lol - LRI <0

for —8 < z < 0. Hence, (2.7) holds for —6 < z < 0.
By means of Theorem A, we conclude that system (2.1) with (2.6) has homoclinic orbits,

and so has system (1.1). The proof is complete. U
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To prove ‘only if”-part of Theorem 1.1, we need the following result which is a slight modi-
fication of Theorem 2.5 in [19].

Theorem B. Suppose that there exists an m > 0 such that
h(y) = my (2.11)
fory > 0 sufficiently small. Also, suppose that
F(o) < vm{2v/2G(@) - 4(v/2G(@)) } 2.12)

for x > 0 or z < 0, |z| sufficiently small, where (o) is a nonnegative continuous function
satisfying

‘ Tﬁ_(?_)_ is nondecreasing and is not greater than 2 (2.13)
o
and there exists a ¢ > 0 such that
og
/ ¢§) dé = oo. (2.14)
0

Then system (2.1) fails to have homoclinic orbits.

Remark 2.2. As simple examples satisfying conditions (2.13) and (2.14), we can cite ¢¥(0) =
go withe > 0; ¥(0) = ~o/log o for o > 0 sufficiently small.

Proof of ‘only if’-part of Theorem 1.1. As in the proof of ‘if’-part, we see that system (1.1)
is equivalent to system (2.1) with (2.6). We will show that if 5 > +2/8, then conditions (2.11)-
(2.14) in Theorem B are satisfied.

Since 3 > % /8, there exists a p > 0 such that

~
-2” + p =+/20.

Let € be chosen so that 0 < & < min{1,v/2,2p/(y + 4)}. Since

d

—h Y - ﬂa

&0
condition (2.11) is satisfied with m = 3 — £2/2. Define ¢/(c) = eo. Then (o) is nonnegative
and continuous for ¢ > 0 and satisfies conditions (2.13) and (2.14). We have only to show that
condition (2.12) also holds. From the same manner as in the proof of ‘if*-part, we can estimate
that

lz] < /G(z) for —a <z <.

Hence, we have
Vv {2v/2G() - 4(v26(@)) } = vim(2 - £)v2G(e) = V25 - 22(2 - £) /G a)
> (V28 -¢) (2 - e)V/B@) > (1/2+ p—2)(2 — £)lal

>{(2-€)p— (v/2+2e+ 7}z > (p— p+7)|z]
= v|z| = F(=z) |



105

for —a < z < 0, namely, condition (2.12) is satisfied for z < 0, |z| sufficiently small.
Thus, by Theorem B we see that system (2.1) with (2.6) has no homoclinic orbits, and neither
has system (1.1). This completes the proof. O

3 Discussion

Let us return to the Gause model (1.1). Recall that system (1.1) has three density-dependent
rates p(u), g(u) and r(u). We here suppose that p(u) and ¢{u) satisfy the assumptions (iii)
and (ii) in Sec. 1, respectively; and r(u) is continuous on [0, c0) with r(u*) > 0, where u*
is a constant given in the assumption (ii). Note that this. condition of r(u) is easier than the
assumption (i) in Sec. 1. Let v* = w*r(u*)/p(u*). Then system (1.1) has a unique positive
equilibrium E*(u*, v*).

By putting ,
z=u—u", y=logv*—logv and ds=p(u)dt,

system (1.1) is transformed into the system

{z+u)r(z+wr) L - _q(z+u*) -D
B N A e G-D
- (o + wr(z + o) (e +u)-D
. z+utir{z+u gz +u
Flo) =o'~y and gle) =" o

for z > —u* and let
hiy) =v*(1 —eY)

for y € R. Itis clear that F(0) = 0 and yh(y) > 0 if y # 0. From the assumption (ii) we also
see that zg(z) > 0 for z > —u* and = # 0. Hence, system (3.1) is of Liénard type.
For the sake of simplicity, we denote

(z + u*)r(z + u*)

I'(z) = Vurp(z + u*)

2(€ + ") -
A(z \/ D€+ 1) df

for z > —u*. Then, from Theorems A and B, we obtain the following results.

and

Theorem 3.1. Suppose that
r) — I'(z) 2 24(z) — ¢(A(z)) (3.2)

for |z| sufficiently small, where ¢(0) is a nonnegative continuous function satisfying conditions
(2.4) and (2.5). Then system (3.1) has homoclinic orbits, and so has system (1.1).
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Theorem 3.2. Suppose that there exists a constant ¢ with 0 < ¢ < 1 such that
I - I(@) < {24@) - w(AE)} 33

forz > 0 orz < 0, |z| sufficiently small, where 1(c) is a nonnegative continuous function
satisfying conditions (2.13) and (2.14). Then system (3.1) does not have homoclinic orbits, and
neither has system (1.1). '

In single-species population dynamics, the equation
U

o = /\u(l . }5) (3.4)

is very famous as the logistic growth model. The parameters X and K are positive, and they are
called the intrinsic rate of increase and the carrying capacity for the prey density, respectively.
The Allee effect is taken no account in Eq. (3.4).

As mentioned in Sec. 1, we can reduce system (1.2) to Eq.(1.3) in case of absence of any
predators. To contrast with system (1.2) and Eq. (1.3), we consider the system

u' = u(f - y(u—a)) — uv, o' =v(v’ - a?) (3.5)

and the equation

W =u(f—y(u- a)). (3.6)
Arranging the right-hand side of (3.6), we see that this equation becomes the logistic-type equa-
tion (3.4) with A = 8 + oy and K = a + 3/v. System (3.5) naturally belongs to the Gause
model (1.1). In case of (3.5),

I'(z) = /06— T ¢ and Alz) = \/9; + 20z — 2% log (f;;—g) >0

VB

for z > —a, because p(u) = u, g(u) = v2, 7(u) = B+ay—yu, D = of and (v*,v*) = (e, B).
Since I'(0) — I'(z) = yz/+/B for z > —u* it turns out that for —a < z < 0, conditions (2.13),
(2.14) and (3.3) are satisfied with ¢ = 1/2 and ¢)(0) = o, but condition (3.2) fails to hold for an
arbitrary function ¢(c) satisfying conditions (2.4) and (2.5). Thus, by virtue of Theorem 3.2,
we conclude that system (3.5) does not have homoclinic orbits. As a matter of fact, it is easy to
prove that there exist no limit cycles in system (3.5). Hence, the positive equilibrium E*(a, 5)
is always globally asymptotically stable for any parameters «, 5 and +y. But, to argue this point
would carry us too far away from the purpose of this paper, and so we omit the details.

4 Numerical Example

To illustrate our results, we give an example and a series of figures. System (1.2) has three
parameters. We fix the value of v at 2 and consider the system

W =u(f-2u—-aof)—uw, v =v(u®-d’), “.1
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whose positive equilibrium E* is the point (a, ). The origin Ey(0,0) and the point E; (o +
/2, 0) are also equilibria of (4.1). We say that an equilibrium is a boundary equilibrium if it is
on the u-axis.

In Figures 1-4 below, we classify some orbits in five types according to the properties as
follows:

(i) an orbit starting at a point P; ( = 1,2,...,6) rotates in a counterclockwise direction
about E* infinitely many times and approaches £*;

(ii) an orbit starting at a point Q; (¢ = 1, 2, 3) tends to the origin as ¢ increases;

(ili) an orbit starting at a point B; ( = 1,2,...,6) approaches E* without rotating about £*
perpetually;

(iv) an orbit passing through a point S; (¢ = 1,2,...,6) makes a loop together with E*
namely, a homoclinic orbit;

(v) an orbit passing through a point 7; (i = 1,2, 3) connects E* and the origin, in other
words, its o-limit set is E* and its w-limit set is the origin.

An orbit of type (v) is said to be keteroclinic. The broken line in each figure indicates the graph
of v =  — 2|u — . For this reason, if an orbit meets the broken line, then it passes across the
line in the vertical direction.

From Theorem 1.1 we see that system (4.1) has homoclinic orbits if and only if 0 < § <
1/2. In Figures 1-4, we describe global phase portraits of (4.1) in the cases that (a, B) =
(1/8,3/4),(1/2,3/4), (1/8,1/3), (1/2,1/3), respectively. Hence, homoclinic orbits exist only
in Figures 3 and 4.

The first case: In Figure 1, we draw orbits of type (i). Each of them starts from one of the
points P (0.6,0.12), P»(0.6,0.27), P5(0.6,0.42), P,(0.6,0.57), Ps (0.6,0.72) and P5(0.6,0.87).
This figure shows that two boundary equilibria Fy and E; are unstable and the positive equi-
librium E* is globally asymptotically stable. This means that the prey and the predator always
exist together.

The second case: As sketched in Figure 2, another boundary equilibrium appears at the point
Es(a ~ /2,0). The boundary equilibria E; and E; are unstable, and the origin Ey and the
positive equilibrium E* are locally asymptotically stable. There are orbits of two types (i) and
(ii); each orbit starting at the point P;(1.2,0.08), P»(1.2,0.18) or P3(1.2,0.28) approaches E*
and each orbit starting at the point Q;(1.2,0.32), Q2(1.2,0.42) or Q3(1.2,0.52) tends to Ey.
Hence, E* is not globally asymptotically stable. Both species may become extinct.

The third case: There are nine orbits in Figure 3. Each orbit passing through the point
$1(0.125,0.05), S5(0.125, 0.14) or S3(0.125,0.23) is homoclinic. The other orbits are not ho-
moclinic, but they also tend to the positive equilibrium E*. Each of them starts at the point
R1(0.5,0.02), Ry(0.5,0.1), R3(0.5,0.18), R4(0.5,0.26), R5(0.5,0.34) or Rs(0.5,0.42). The
boundary equilibria £, and E; are unstable. Since homoclinic orbits exist, needless to say, the
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positive equilibrium E* is not even stable. Although E* is unstable, it is globally attractive
because every orbit approaches it. Hence, the prey coexists with the predator.

The fourth case: Figure 4 is more complicated than Figures 1-3. A remarkable feature
of this case is the appearance of heteroclinic orbits joining the positive equilibrium E* and the
boundary equilibrium Ej. Such heteroclinic orbit passes through one of the points 73 (0.2, 0.03),
T5(0.2,0.09) and T3(0.2, 0.15). Bach orbit passing through the point S; (0.5, 0.05), S2(0.5, 0.15)
or S3(0.5,0.25) is homoclinic. There are orbits of two types (i) and (iil) besides hetero-
clinic orbits and homoclinic orbits; each orbit starting at the point @;(1,0.21), Q2(1,0.27)
or @5(1,0.33) tends to Ey and each orbit starting at the point R;(1,0.02), R;(1,0.08) or
R3(1,0.14) approaches E*. As in the second case, the boundary equilibria F; and E, are
unstable. Since orbits of type (ii) or (v) appear, there is a high risk of extinction of the prey and
the predator. '

v
1.2¢ 1.0

0 T 0 :
Fig. 1. Phase portrait for system (4.1) with Fig. 2. Phase portrait for system (4.1) with
a=1/8and g = 3/4 a=1/2and § = 3/4.
v v
0.5

. —
0 ‘ 05 ¢
Fig. 3. Phase portrait for system (4.1) with Fig. 4. Phase portrait for system (4.1) with

a=1/8and §=1/3. a=1/2and f=1/3.
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