
99

Homoclinic orbits in predator-prey systems
with an Allee effect

島根大学総合理工学部 杉江実郎 (Jitsuro Sugie)
島根大学総合理工学研究科 木本恭子 (Kyoko Kimoto)

Department of Mathematics
Shimane University

1 Introduction

A class ofGause-type predator-prey systems is one of the most important mathematical models

in population ecology. The following is a typical form of this model:

$u’=ur(u)-p(u)v$ , $v^{\ell}=v(q(u)-D)$ . (1.1)

Here $u(t)$ and $v(t)$ are prey and predator densities, respectively; $’=d/dt;p(u)$ is the capture

rate of Prey per predator (the rate is called a functional response of predators to prey); $q(u)$ is

the growth rate of the predator enhanced by an amount proportional to the prey density; $r(u)$

is the density-dependent growth rate of the Prey in the absence of any predators; $D>0$ is the

death rate of the predator in the absence of any preys (for details, see [3, Chap. 4]).

System (1.1) includes various kinds of famous models (say, Lotka-Volterra type, Holling

type, Ivlev type) as specific cases. It naturally has been studied by a number of authors; for ex-
ample, results can be found in [1-17, 20-22] and the references cited therein. In those literature

it is assumed that the rates $r(u)$ , $q(u)$ and $p(u)$ are sufficiently smooth on $[0, \infty)$ and satisfy

(i) $r(0)$ $>0$ and there exists a $K>0$ such that $r(K)=0$ and $(u-K)r(u)<0$ for $u\neq K$ ;

(ii) $q(0)=0$, $\frac{d}{du}q(u)>0$ for all $u>0$ and there exists a $u^{*}\in(0, K)$ such that $q(u^{*})=D$ ;

(iii) $p(0)=0$ and $\frac{d}{du}p(u)>0$ for all $u>0$ ,

respectively. Let $v^{*}=u^{*}r(u^{*})/p(u^{*})$ . Then, from the assumptions above, the point $E^{*}(u^{*}, v^{*})$

is a unique equilibrium in the first quadrant $Q=$ { ( $u$ , $v$ ) $:u>0$ and $v>0$} . We call $E^{*}$ the

positive equilibrium hereafter.
Main subjects of system (1.1) are the existence of a unique limit cycle which surrounds the

positive equilibrium $E^{*}$ (see, [1, 9-11, 13, 16, 17, 21, 22]) and the global asymptotic stability of

the positive equilibrium $E^{*}$ (refer to [2, 6, 12, 20]). The positive equilibrium $E^{*}$ is said to be

globally asymptotically stable if $E^{*}$ is stable and if every orbit tends to $E^{*}$.
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It is easy to show that all solutions of (1.1) are bounded in the future and remain in the first

quadrant $Q$ . Hence, the Poincar\’e-Bendixson theorem shows that if system (1.1) has a unique
limit cycle, then $E^{*}$ has to be unstable. Indeed, $E^{*}$ is locally repulsive; that is, there exists some
neighborhood $U$ of $E^{*}$ such that each orbit of (1.1) starting at every point in $U$ goes away from
$U$ and each orbit of (1.1) starting at every point in $Q\backslash U$ does not enter into $U$ . The smoothness
of the rates $r(u)$ , $q(u)$ and $p(u)$ in system (1.1) plays a major role in showing that $E^{*}$ is locally

repulsive when system (1.1) has a unique limit cycle.
In a general dynamical system, however, an equilibrium is not always locally repulsive even

if it is unstable. An orbit is said to be homoclinic if its $\alpha-$ and $\omega$-limit sets are the same equilib-

rium. If a homoclinic orbit exists, then the corresponding equilibrium is unstable, but it is not

locally repulsive.
Sugie and Katayama [20] have shown that under the above assumptions $(\mathrm{i})-(\mathrm{i}\mathrm{i}\mathrm{i})$ and the

smoothness condition on $r(u)$ , $q(u)$ and $p(u)$ , system (1.1) has no homoclinic orbits. From
their result we see that there is only two possibilities: either system (1.1) has at least one limit
cycle or the positive equilibrium $E^{*}$ is globally asymptotically stable. It is safe to say that
system (1.1) has relatively simple global phase portraits because of the smooth rates.

A question naturally arises as to what will happen in the case of non-smooth rates. Does $\mathrm{a}$

homoclinic orbit appear in system (1.1) for lack of smoothness of the rates? To give an answer
to this question, we consider the predator-prey system with a non-smooth prey growth rate:

$u’=u(\beta-\gamma|u-\alpha|)-uv$ , $v’=v(u^{2}-\alpha^{2})$ , (1.2)

where $\alpha$ , $\beta$ and $\gamma$ are positive constants. System (1.2) has the positive equilibrium $E^{*}$ at
$(u’, v^{*})=(\alpha, \beta)$ . Since

$p(u)=u$ , $q(u)=u^{2}$ , $r(u)=\beta-\gamma|u-\alpha|$ and $D=\alpha^{2}$

in system (1.2), assumption (ii) holds and assumption (iii) is satisfied with $u^{*}=\alpha$ . Also,

assumption (i) is satisfied with $K=\alpha+\beta/\gamma$ if $\beta>\alpha\gamma$. Otherwise $r(u)$ does not satisfy the
assumption (i). Note that $r(u)$ is continuous for all $u\geq 0$ , but is not differentiate at $u=\alpha$ .

Our main result is stated as follows:

Theorem 1.1. System (1.2) has homoclinic orbits ifand only if $0<\beta\leq\gamma^{2}/8$ .

When any predators are absent, system (1.2) is reduced to

$u’=u(\beta-\gamma|u-\alpha|)$ . (1.3)

In this model, the growth rate of the prey increases with the prey density up to the peak ! and
then the rate decreases as the density increases. Hence, Eq. (1.3) exhibits the so-called “Allee
effect.” In the case that $\beta<\alpha\gamma$ , a low density leads to extinction. To be precise, if the density
is lower than a $-\beta/\gamma$ , then the prey is strictly decreasing and will die out. The Allee effect is
an important phenomenon in the population dynamics
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From the above-mentioned relation between the prey growth rate and its density, we may say
that system (1.2) is an ecological significant model simulating the effects of underpopulation
and overpopulation of the prey. In system (1.2), the Prey and the predator may coexist or they
may die together. Only one side of species cannot survive. For further details, see Sec. 4.

2 Proof of the main theorem

Consider a generalized Lienard system of the form

$\dot{x}=h(y)-F(x)$ , $\dot{y}=-g(x)$ , (2.1)

where $=d/ds;F(x)$ and $g(x)$ are continuous on an open interval I which contains 0, and
$h(y)$ is continuous and strictly increasing on R. The functions $F(x)$ , $g(x)$ and $h(y)$ satisfy
smoothness conditions for uniqueness of solutions of initial value problems. We assume that
$F(0)=0$,

$xg(x)>0$ if $x\neq 0$

and
$yh(y)>0$ if $y\neq 0$ .

Then the origin is the unique critical point of (2.1). Define the nonn egative function $G(x)$ by

$G(x)= \int_{0}^{x}g(\xi),d\xi$ .

Under the assumption that there exists an $m>0$ such that

$h(y)\leq my$ (2.2)

for $y>0$ sufficiently small, Sugie [18] has presented the following sufficient conditions for
system (2.1) to have homoclinic orbits (see also [19]).

Theorem A. Assume (2.2) and suppose that

$F(x)\geq\sqrt{m}\{2\sqrt{2G(x)}-\phi(\sqrt{2G(x)})\}$ (2.3)

for $|x|$ sufficiently small, where $\phi(\sigma)$ is a nonnegative continuous function satisfying

$\frac{\phi(\sigma)}{\sigma}$ is nondecreasing (2.4)

and there exists a constant $a>4$ such that

$a( \int_{0}^{\sigma}\frac{\phi(\xi)}{\xi^{2}}d\xi)^{2}\leq\frac{\phi(\sigma)}{\sigma}$ (2.5)

for $\sigma>0$ sufficiently small. Then system (2.1) has homoclinic orbits
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Remark 2.1, We can easily find a nonnegative continuous fiinction $\phi(u)$ satisfying conditions
(2.4) and (2.5). For example, we may take $\phi(\sigma)=\sigma^{1+\epsilon}$ for some $\epsilon$ $>0;\phi(\sigma)=b\sigma/(\log\sigma)^{2}$

with $0<b<1/4$ .

Using Theorem A, we can prove ‘if -part of Theorem 1.1.

Proof of ’-part of Theorem 1.1. Changing variables

$x=u-\alpha$ , $y=\log\beta-\log v$ and $ds$ $=udt$ ,

we can transform system (1.2) into system (2.1) with

$F(x)=\gamma|x|$ , $g(x)=x+ \alpha-\frac{\alpha^{2}}{x+\alpha}$ and $h(y)=\beta(1-e^{-y})$ , (2.6)

where $F(x)$ and $g(x)$ are defined on $(-\alpha, \infty)$ , and $h(y)$ is defined on $\mathbb{R}$ . Note that $F(0)=0$,

$xg(x)>0$ if $x\neq 0$ and $yh(y)>0$ if $y\neq 0$ . We get

$G(x)= \frac{1}{2}x^{2}+\alpha x$ $- \alpha^{2}\log(\frac{x+\alpha}{\alpha})$ .

Let $m=\beta$ . Then it is easy to check that

$h(y)\leq my_{\backslash }$

namely, condition (2.2). We take $\phi(\sigma)=\sigma\sqrt{\sigma}$. Then it is clear that $\phi(\sigma)$ is nonnegative and

continuous for $\sigma>0$ . Since $\phi(\sigma)/\sigma=\sqrt{\sigma}$, condition (2.4) holds. We have

$a( \int_{0}^{\sigma}\frac{\phi(\xi)}{\xi^{2}}d\xi)^{2}=4a\sigma<\sqrt{\sigma}=\frac{\phi(\sigma)}{\sigma}$

for $\sigma>0$ sufficiently small. Thus, condition (2.5) is also satisfied with arbitrary $a>4$ .
We will show that condition $(2,3)$ holds for $|x|$ sufficiently small. Since $\beta\leq\gamma^{2}/8$ , it is

enough to show that
$F(x) \geq\frac{\gamma}{2}\{2\sqrt{G(x)}-\sqrt{G(x)}\sqrt[4]{2G(x)}\}$ ,

namely,
$|x| \geq\sqrt{G(x)}\{1-\frac{1}{2}\sqrt[4]{2G(x)}\}$ (2.7)

in some neighborhood of $x=0$ . We first estimate that

$g(x)<2x$ for $x>-\mathrm{a}$ and $x\neq 0$ ;
(2.8)

$g(x)>3x$ for $- \frac{\alpha}{2}<x<0$ .

In fact, we have

$\frac{d}{dx}g(x)=1+\frac{\alpha^{2}}{(x+\alpha)^{2}}$ and $\frac{d^{2}}{dx^{2}}g(x)=-\frac{2\alpha^{2}}{(x+\alpha)^{3}}<0$
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for $x>-\alpha$ , and therefore,

$\frac{d}{dx}g(x)|_{x=0}=2$

and $g(x)$ is a convex function. We also have

$g(- \frac{\alpha}{2})=-\frac{3}{2}\alpha=3(-\frac{\alpha}{2})$ .

From (2.8) we see that

$\sqrt{G(x)}<|x|$ for $x>0$ ;
(2.9)

$|x|<\sqrt{G(x)}<\sqrt{\frac{3}{2}}|x|$ for $- \frac{\alpha}{2}<x<0$ .

Hence, it is clear that (2.7) holds for $x\geq 0$ . Let us examine whether (2.7) is also true for $x<0$

or not. To this end, we define

$f_{1}(x)= \frac{2}{\alpha}x^{2}-x+\alpha-\frac{\alpha^{2}}{x+\alpha}$ .

Then, from a straightforward calculation, we conclude that there exists a $\delta$ $>0$ such that
$\mathrm{f}\mathrm{i}\{\mathrm{x}$ ) $>0$ for $-\delta<x<0$ ; that is,

$\frac{1}{\alpha}x-1<\frac{g(x)}{-2x}<0$ for $-\delta<x<0$ .

We may assume without loss of generality that $\delta$ $< \min\{\alpha/2, \alpha^{2}/4\}$ . Hence, together with

(2.9), we obtain
$\frac{1}{\alpha}x-1<\frac{g(x)}{2\sqrt{G(x)}}<0$ for $-\delta<x<0$ . (2.10)

We next define
$f_{2}(x)=-x- \sqrt{G(x)}+\frac{1}{2}\ovalbox{\tt\small REJECT} G(x)\sqrt[4]{2G(x)}$.

Then we have

$f_{2}(0)=0$ and $\frac{d}{dx}f_{2}(x)=-1-\frac{g(x)}{2\sqrt{G(x)}}+\frac{3g(x)}{8\sqrt{G(x)}}\sqrt[4]{2G(x)}$ .

From $(2.8\mathrm{M}2.10)$ and the fact that $\delta<\alpha^{2}/4$ , we see that

$\frac{d}{dx}f_{2}(x)<-1-(\frac{1}{\alpha}x-1)-\frac{3}{8}\frac{2x}{\sqrt{3/2}x}\sqrt[4]{2G(x)}$

$< \frac{1}{\alpha}|x|-\frac{\sqrt{6}\sqrt[4]{2}}{4}\sqrt{|x|}<\frac{1}{\alpha}|x|-\frac{1}{2}\sqrt{|x|}<0$

for $-\delta<x<0$ . Hence, (2.7) holds for $-\delta<x<0$ .
By means of Theorem $\mathrm{A}$ , we conclude that system (2.1) with (2.6) has homoclinic

$\mathrm{o}\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{t}\mathrm{s}\square$

’

and so has system (1.1). The proof is complete.
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To prove ‘only if’-part of Theorem 1.1 we need the following result which is a slight modi-
fication of Theorem 2.5 in [19].

Theorem B. Suppose that there exists an m $>0$ such that

$h(y)\geq my$ (2.11)

for $y>0$ sufficiently small. Also, suppose that

$F(x)\leq\sqrt{m}\{2\sqrt{2G(x)}-\psi$ $(\sqrt{2G(x)})\}$ (2.12)

for $x>0$ or $x<0$ , $|x|$ sufficiently small, where $\psi(\sigma)$ is a nonnegative continuous function
satisfying

$\frac{\psi(\sigma)}{\sigma}$ is nondecreasing and is not greater than 2 (2.13)

and there exists a $\sigma_{0}>0$ such that

$\int_{0}^{\sigma_{0}}\frac{\psi(\xi)}{\xi^{2}}d\xi=\infty$ . (2.14)

Then system (2.1) fails to have homoclinic orbits.

Remark 2.2. As simple examples satisfying conditions (2.13) and (2.14), we can cite $\psi(\sigma)=$

$\epsilon\sigma$ with $\epsilon$ $>0;\psi(\sigma)=-\sigma/\log$ a for $\sigma>0$ sufficiently small.

Proof of ‘only $\mathrm{i}\mathrm{f}’\cdot \mathrm{p}\mathrm{a}\mathrm{r}\mathrm{t}$ of Theorem 1.1. As in the proof of ‘if -part, we see that system (1.1)

is equivalent to system (2.1) with (2.6). We will show that if $\beta>\gamma^{2}/8$ , then conditions (2.11)-

(2.14) in Theorem $\mathrm{B}$ are satisfied.
Since $\beta>\gamma^{2}/8$ , there exists a $\rho>0$ such that

$\frac{\gamma}{2}+\rho=\sqrt{2\beta}$ .

Let $\epsilon$ be chosen so that $0<\epsilon$ $< \min\{1, \gamma/2,2\rho/(\gamma+4)\}$ . Since

$\frac{d}{dy}h(y)|_{y=0}=\beta$ ,

condition (2.11) is satisfied with $m=\beta$ - $\epsilon^{2}/2$ . Define $\psi(\sigma)=\epsilon\sigma$ . Then $\psi(\sigma)$ is nonnegative
and continuous for $\sigma>0$ and satisfies conditions (2.13) and (2.14). We have only to show that
condition (2.12) also holds. From the same manner as in the proof of ‘if-part, we can estimate
that

$|x|<\sqrt{G(x)}$ for $-\alpha<x<0$ .

Hence, we have

$\sqrt{m}\{2\sqrt{2G(x)}-\psi$ $(\sqrt{2G(x)})\}=\sqrt{m}(2-\epsilon)\sqrt{2G(x)}=\sqrt{2\beta-\epsilon^{2}}(2-\epsilon)\sqrt{G(x)}$

$>(\sqrt{2\beta}-\epsilon)(2-\epsilon)\sqrt{G(x)}>(\gamma/2+\rho-\in)(2-\epsilon)|x|$

$>\{(2-\epsilon)\rho-(\gamma/2+2)\epsilon+\gamma\}|x|>(\rho-\rho+\gamma)|x|$

$=\gamma|x|=F(x)$
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$\mathrm{f}\mathrm{o}\mathrm{r}-\alpha<x<0$, namely, condition (2.12) is satisfied for $x<0$ , $|x|$ sufficiently small.
Thus, by Theorem $\mathrm{B}$ we see that system (2.1) with (2.6) has no homoclinic orbits, and neither

has system (1.1). This completes the proof. $\square$

3Discussion

Let us return to the Gause model (1.1). Recall that system (1.1) has three density-dependent
rates $p(u)$ , $q(u)$ and $r(u)$ . We here suppose that $p(u)$ and $q(u)$ satisfy the assumptions (iii)

and (ii) in Sec. 1, respectively; and $r(u)$ is continuous on $[0, \infty)$ with $r(u^{*})>0$ , where $u^{*}$

is a constant given in the assumption (ii). Note that this condition of $r(u)$ is easier than the
assumption (i) in Sec. 1. Let $v’=u^{*}r(u^{*})/p(u^{*})$ . Then system (1.1) has a unique positive
equilibrium $E’(u^{*}, v^{*})$ .

By putting
$x=u-u^{*}$ , $y=\log v^{*}-\log v$ and $ds=p(u)dt$ ,

system (1.1) is transformed into the system

.
$= \frac{(x+u^{*})r(x+u^{*})}{p(x+u^{*})}-v^{*}e^{-y}$ , $\dot{y}=-\frac{q(x+u^{*})-D}{p(x+u^{*})}$ . (3.1)

Let
$F(x)=v^{*}- \frac{(x+u^{*})r(x+u^{*})}{p(x+u^{*})}$ and $g(x)= \frac{q(x+u^{*})-D}{p(x+u^{*})}$

for $x>-u^{*}$ and let
$h(y)=v^{*}(1-e^{-y})$

for $y\in$ R. It is clear that $F(0)=0$ and $yh(y)>0$ if $y\neq 0$ . From the assumption (ii) we also
see that $xg(x)>0$ for $x>-u$’ and $x\neq 0$ . Hence, system (3.1) is of Li\’enard type.

For the sake of simplicity, we denote

$\Gamma(x)=\frac{(x+u^{*})r(x+u^{*})}{\sqrt{v^{*}}p(x+u^{*})}$

and

$\Delta(x)=\sqrt{2\int_{0}^{x}\frac{q(\xi+u^{*})-D}{p(\xi+u^{*})}d\xi}$

for $x>-u^{*}$ . Then, from Theorems A and $\mathrm{B}$ , we obtain the following results.

Theorem 3.1. Suppose that

$\Gamma(0)-\Gamma(x)\geq 2\Delta(x)-\phi(\Delta(x))$ (3.2)

for $|x|$ sufficiently small, where $\phi(\sigma)$ is a nonnegative continuous function satisfying conditions
(2.4) and (2.5). Then system (3.1) has homoclinic orbits, and so has system (1.1).
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Theorem 3.2. Suppose that there exists a constant c with $0<c<1$ such that

$\Gamma(0)-\Gamma(x)\leq c\{2\Delta(x)-\psi(\Delta(x))\}$ (3.3)

for $x>0$ or $x<0$ , $|x|$ sufficiently small, where $\psi(\sigma)$ is a nonnegative continuous fiAnction
satisfying conditions (2.13) and (2.14). Then system (3.1) does not have homoclinic orbits, and

neither has system (1.1).

In single-species population dynamics, the equation

$u’= \lambda u(1-\frac{u}{K})$ (3.4)

is very famous as the logistic growth model. The parameters A and $K$ are positive, and they are
called the intrinsic rate of increase and the carrying capacity for the Prey density, respectively.

The AUee effect is taken no account in $\mathrm{B}\mathrm{q}$ . (3.4).

As mentioned in Sec. 1 we can reduce system (1.2) to Eq. (1.3) in case of absence of any
predators. To contrast with system (1.2) and Eq. (1.3), we consider the system

$u’=u(\beta-\gamma(u-\alpha))-uv$ , $v’=v(u^{2}-\alpha^{2})$ (3.5)

and the equation
$u’=u(\beta-\gamma(u-\alpha))$ . (3.6)

Arranging the right-hand side of (3.6), we see that this equation becomes the logistic-type equa-
tion (3.4) with $\lambda=\beta+$ ay and $K=\alpha+\beta/\gamma$ . System (3.5) naturally belongs to the Gause
model (1.1). In case of (3.5),

$\Gamma(x)=\sqrt{\beta}-\frac{\gamma}{\sqrt{\beta}}x$ and $\Delta(x)=$ 0

for $x>-\alpha$ , because $p(u)=u$, $q(u)=u^{2}$ , $r(u)=\beta+\alpha\gamma-\gamma u$ , $D=\alpha^{2}$ and $(u^{*}, v^{*})=(\alpha, \beta)$ .
Since $\Gamma(0)-\Gamma(x)=\gamma x/\sqrt{\beta}$ for $x>-u’$, it turns out that for -a $<x<0$ , conditions (2.13),

(2.14) and (3.3) are satisfied with $c=1/2$ and $\psi(\sigma)=\sigma$ , but condition (3.2) fails to hold for an
arbitrary function $\phi(\sigma)$ satisfying conditions (2.4) and (2.5). Thus, by virtue of Theorem 3.2,

we conclude that system (3.5) does not have homoclinic orbits. As a matter of fact, it is easy to

prove that there exist no limit cycles in system (3.5). Hence, the positive equilibrium $E^{*}(\alpha, \beta)$

is always globally asymptotically stable for any parameters or, $\beta$ and $\gamma$ . But, to argue this point
would carry us too far away from the purpose of this paper, and so we omit the details.

4 Numerical Example

To illustrate our results, we give an example and a series of figures. System (1.2) has three
parameters. We fix the value of $\gamma$ at 2 and consider the system

$u’=u(\beta-2|u-\alpha|)-uv$ , $v’=v(u^{2}-\alpha^{2})$ , (3.1)
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whose positive equilibrium $E^{*}$ is the point $(\alpha, \beta)$ . The origin $E_{0}(\mathrm{O}, 0)$ and the point $E_{1}(\alpha+$

$\beta/2,0)$ are also equilibria of (4.1). We say that an equilibrium is a boundary equilibrium if it is
on the u-axis.

In Figures 1-4 below, we classify some orbits in five types according to the properties as
follows:

(i) an orbit starting at a point $P_{i}(\mathrm{i}=1,2, \ldots , 6)$ rotates in a counterclockwise direction
about $E^{*}$ infinitely many times and approaches $E^{*};$

(ii) an orbit starting at a point $Q_{i}(\mathrm{i}=1,2, 3)$ tends to the origin as $t$ increases;

(iii) an orbit starting at a point $R_{i}(\mathrm{i}=1_{7}2, \ldots, 6)$ approaches $E^{*}$ without rotating about $E^{*}$

perpetually ;

(iv) an orbit passing through a point $S_{i}(\mathrm{i}=1,2, \ldots, 6)$ makes a loop together with $E^{*}$,

namely, a homoclinic orbit;

(v) an orbit passing through a point $T_{i}(\mathrm{i}=1,2,3)$ connects $E^{*}$ and the origin, in other
words, its $\alpha$-limit set is $E^{*}$ and its $\omega$-limit set is the origin.

An orbit of type (v) is said to be heteroclinic. The broken line in each figure indicates the graph

of $v=\beta-2|u-\alpha|$ . For this reason, if an orbit meets the broken line, then it passes across the

line in the vertical direction.
From Theorem 1.1 we see that system (4.1) has homoclinic orbits if and only if $0<\beta\leq$

$1/2$ . In Figures 1-4, we describe global phase portraits of (4.1) in the cases that $(\alpha, \beta)=$

$(1/8,3/4)$ , 1/2. 3/4), (1/8, 1/3), (1/2, 1/3), respectively. Hence, homoclinic orbits exist only

in Figures 3 and 4.
The first case: In Figure 1 we draw orbits of tyPe (i). Each of them starts from one of the

points $P_{1}(0.6,0.12)$ , $P_{2}(0.6,0.27)$ , $P_{3}(0.6,0.42)$ , $P_{4}(0.6,0.57)$ , $P_{5}(0.6,0.72)$ and $P_{6}(0.6,0.87)$ .
This figure shows that two boundary equilibria $E_{0}$ and $E_{1}$ are unstable and the positive equi-

librium $E^{*}$ is globally asymptotically stable. This means that the Prey and the predator always

exist together.
The second case: As sketched in Figure 2, another boundary equilibrium appears at the point

$E_{2}(\alpha-\beta/2,0)$ . The boundary equilibria $E_{1}$ and $E_{2}$ are unstable, and the origin $E_{0}$ and the

positive equilibrium $E^{*}$ are locally asymptotically stable. There are orbits of two types (i) and

(ii); each orbit starting at the point $P_{1}(4.1)$ $0.08)$ , $P_{2}(1.2,0.18)$ or $P_{3}(1.2,0.28)$ approaches $E^{*}$

and each orbit starting at the point $Q_{1}(1.2_{7}0.32)$ , $Q_{2}(1.2,0.42)$ or $Q_{3}(1.2,0.52)$ tends to $E_{0}$ .
Hence, $E^{*}$ is not globally asymptotically stable. Both species may become extinct.

The third case: There are nine orbits in Figure 3. Each orbit passing through the point
$S_{1}$ (0.125, 0.05), $S_{2}$ (0.125, 0.14) or $S_{3}$ (0.125, 0.23) is homoclinic. $\mathfrak{M}\mathrm{e}$ other orbits are not ho-

moclinic, but they also tend to the positive equilibrium $E^{*}$ . Each of them starts at the point
$R_{1}$ (0.5, 0.02), $R_{2}(0.5,0.1)$ , $R_{3}(0.5,0.18)$ , $R_{4}(0.5,0.26)$ , $R_{5}(0.5, 0.34)$ or $R_{6}(0.5, 0.42)$ . The

boundary equilibria $E_{0}$ and $E_{1}$ are unstable Since homoclinic orbits exist, needless to say, the
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positive equilibrium $E^{*}$ is not even stable. Although $E^{*}$ is unstable, it is globally attractive
because every orbit approaches it. Hence, the prey coexists with the predator.

The fourth case: Figure 4 is more complicated than Figures 1-3. A remarkable feature

of this case is the appearance of heteroclinic orbits joining the positive equilibrium $E^{*}$ and the

boundary equilibrium $E_{0}$ . Such heteroclinic orbit passes through one of the points $T_{1}(0.2,0.03)$ ,

$T_{2}(0.2,0\backslash 09)$ and $T_{3}(0.2,0.15)$ . Each orbit passing through the point $S_{1}(0.5,0.05)$ , $S_{2}(0.5,0.15)$

or $S_{3}(4.1)0.25)$ is homoclinic. There are orbits of two types (ii) and (iii) besides hetero-
clinic orbits and homoclinic orbits; each orbit starting at the point $Q_{1}$ (1, 0.21), $Q_{2}(10.27)\}$

or $Q_{3}(1,0.33)$ tends to $E_{0}$ and each orbit starting at the point $R_{1}(1, 0.02)$ , $R_{2}(1,0.08)$ or
$R_{3}(1,0.14)$ approaches $E^{*}$ . As in the second case, the boundary equilibria $E_{1}$ and E2 are
unstable. Since orbits of type (ii) or (v) appear, there is a high risk of extinction of the prey and
the predator.

$v$

$u$

Fig. 1. Phase portrait for system (44) with
$\alpha=1/8$ and $\beta=3/4$ .

Fig. 2. Phase portrait for system (4.1) with
$\alpha=1/2$ and $\beta=3/4$ .

$v$
$v$

Fig. 4. Phase portrait for system (4.1 ) with
$\alpha=1/2$ arrd $\beta=1/3$ .
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