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1. INTRODUCTION

We consider the second order ordinary differential equation

(1.1) $u’+ \frac{N-1}{r}u’+K(r)f(u)=0$ , $0<r$ $<1$ ,

with the boundary condition

(1.2) $u’(0)=u(1)=0$,

where $N\geq 2$ , $K\in C^{2}[0,1]$ , $K(r)>0$ for $0\leq r\leq 1$ , $f\in C^{1}(\mathrm{R})$ , $sf(s)>0$ for
$s\neq 0$ . Assume moreover that the following sublinear condition is satisfied:

(1.3) $\frac{f(s)}{s}>f’(s)$ for $s\neq 0$ .

Note that a solution of problem (1.1)-(1.2) is a radial solution $u(r)(r=|x|)$ of
the Dirichlet problem of

$\{$

$\Delta u+K(|x|)f(u)=0$ in $B$ ,

$u=0$ on $\partial B$ ,

where $B=\{x\in \mathrm{R}^{N} : |x|<1\}$ .
We consider solutions $u$ of problem (1.1)-(1.2) satisfying $u(0)>0$ only. If $u$ is a

solution of problem (1.1)-(1.2) with $u(0)<0$ , then it can be treated similarly as in
the case where $u(0)>0$ , since $v\equiv-u$ satisfies $v(0)>0$ and is a solution of

$\{$

$v’+ \frac{N-1}{r}v’+K(r)f_{0}(v)=0$ , $0<r<1$ ,

$v’(0)=v(1)=0$ ,

where $f_{0}(s)=-f(-s)$ .
In this paper we study the uniqueness of solutions of the problem (1.1)-(1.2)

having exactly $k-1$ zeros in $(0, 1)$ , where $k\in$ N.
Hence we consider the following problem:

$(\mathrm{P}_{k})$ $\{$

$u’+ \frac{N-1}{r}u’+K(r)f(u)=0$ , $0<r<1$ ,

$u’(0)=u(1)=0$ , $u(0)>0$ ,

$u$ has exactly k–l zeros in $(0, 1)$ .
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It is known that there exists at least one solution of $(\mathrm{P}_{k})$ under a certain condition.
For example, in the case where $f(u)=|u|^{p-1}u$ , $p>0$ , $p\neq 1$ and $N\geq 3$ , the
existence results of solutions of $(\mathrm{P}_{k})$ were obtained by Y. Naito [4]. Assume that
there exists limits $f_{0}$ and $f_{\infty}$ such that

$f_{0}= \lim_{uarrow 0}\frac{f(u)}{u}$ , $f_{\infty}= \lim_{uarrow\infty}\frac{f(u)}{u}$ $(0\leq f_{0}, f_{\infty}\leq\infty)$ .

In the case where there is a sufficiently large gap between $f_{0}$ and $f_{\infty}$ , the existence
of solutions of $(\mathrm{P}_{k})$ was established by Dambrosio [1],

Now we consider the uniquness of solutions of $(\mathrm{p}_{k})$ . For the superlinear case
$\mathrm{f}(\mathrm{u})=|u|^{p-1}u(p>1)$ , Yanagida [6] showed that, for each $k\in \mathrm{N}$ , $(\mathrm{P}_{k})$ has at
most one solution if $rK’(r)/K(r)$ is nonincreasing and $N\geq 3$ . For the subliear
case where (3), $f_{0}=$ oo and $f_{\infty}=0$ , Kajikiya [2] proved that, for each $k\in \mathrm{N}$ ,
the solution of $(\mathrm{P}_{k})$ exists and is unique if $K(r)\equiv 1$ . However very little is known
about the uniquness of solutions of $(\mathrm{P}_{k})$ for the sublinear case and $K(r)\not\equiv 1$ .

The main result of this paper is as follows.

Theorem 1.1. Suppose that (1.3) holds. If
(1.4) $3r^{2}(K’)^{2}-2r^{2}KK’+2(N$ – $1)rKK’$ $+4(N-1)K^{2}\geq 0$ , $0\leq r\leq 1$ ,

then, for each $k\in \mathrm{N}$ , $(\mathrm{P}_{k})$ has at most one solution.

In view of the following equality

$3r^{2}(K’)^{2}-2r^{2}KK’+2$(A -l)rKK’ $+4(N-1)K^{2}$

$=K^{2} \ovalbox{\tt\small REJECT}(\frac{rK’}{K}+2)(\frac{rK’}{K}+2(N-1))-2r(\frac{rK’}{K})’\ovalbox{\tt\small REJECT}$ ,

we have the following corollary of Theorem 1.1.

Corollary 1.1. Suppose that (1.3) holds, Assume moreover that one of the follow-
ing (1.5)-(1.7) is satisfied:
(1.5) $K’\leq 0$ , $K’\geq 0$ for $0\leq r\leq 1$ ,

(1.6) $N=2_{2}$ $( \frac{rK’}{K})’\leq 0$ for $0\leq r\leq 1$ ,

(1.7) $N>2$ , $\frac{rK’}{K}\geq-2$ , $( \frac{rK’}{K})’\leq 0$ for $0\leq r\leq 1$ .

Then, for each $k\in \mathrm{N}_{J}(\mathrm{P}_{k})$ has at most one solution.

2. LEMMAS

In this section we give several lemmas.
First we note that (1.1) can be rewritten as follows:

(2.1) $(r^{N-1}u’)’+r^{N-1}K(r)f(u)=0$ , $0<r<1$ .
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The proof of Theorem 1.1 is based on the method of Kolodner [3]. Namely we
consider the solution $u(r, \alpha)$ of (1.1) satisfying the initial condition

(2.2) $u(0)=\alpha$ $>0$ , $u’(\mathrm{O})=0$ ,

where $\alpha>0$ is a parameter. Since $K\in C^{2}[0,1]$ and $f\in C^{1}(\mathrm{R})$ , we see that $u(r, \alpha)$

exists on $[0, 1]$ is unique and satisfies $u$ , $u’\in C^{1}([0, 1] \mathrm{x} (0, \infty))$ , and that $u_{\alpha}(r, \alpha)$

is a solution of linearized problem

(2.3) $\{$

$(r^{N-1}w’)’+r^{N-1}K(r)f’(u(r, \alpha))w=0$ , $r\in(0, 1]$ ,

$w(0)=1$ , $w’(0)=0$ .
(See, for example, [5, \S 6 and 13].)

Hereafter we assume that $u(r, \alpha)$ is a solution of $(\mathrm{P}_{k})$ . Let $z_{i}$ be the i-th zero of
$u(r, \alpha)$ . Let $t_{1}=0$ . For each $\mathrm{i}\in\{2,3, \ldots, k\}$ , there exists $t_{i}\in(z_{i-1)}z_{i})$ such that
$u’(t_{i}, \alpha)=0$ , since $u(r, \alpha)(r^{N-1}u’(r, \alpha))’<0$ for $r\in(z_{i}, z_{i+1})$ . Therefore we find
that

$0=t_{1}<z_{1}<t_{2}<z_{2}<\cdots<t_{k-1}<z_{k-1}<t_{k}<z_{h}=1$ ,

$u(z_{\dot{f}}, \alpha)=0$ , $u’(t_{i}, \alpha)=0$ , $\mathrm{i}=1,2$ , $\ldots$ , $k$ ,

$u(r, \alpha)>0$ for $r\in[t_{1}, z_{1})$ ,

(2.4) $(-1)^{i}u(r, \alpha)>0$ for $r\in(z_{i}, z_{i+1})$ , $\mathrm{i}=1,2$ , $\ldots$ , $k-1$ ,

(2.5) $(-1)^{i}u’(r, \alpha)>0$ for $r\in(t_{i}, t_{i+1})$ , $\mathrm{i}=1,2$ , $\ldots$ , $k-1$ ,

(2.6) $(-1)^{k}u’(r, \alpha)>0$ for $r\in(t_{k}, z_{k}]$ .

$r$

Lemma 2.1. Assume that (1.3) holds. Let $w$ be the solution of (2.3). Tften $w(r)>$

$0$ for $x\in[0, z_{1}]$ .

Proof. Note that $w(0)=1$ and $w’(0)=0$ . Assume to the contrary that there
exists a number $r_{1}\in$ $(0, z_{1}]$ such that $w(r)>0$ for $r\in[\mathrm{O}, r_{1})$ and $w(r_{1})=0$ . Then
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we see that $w’(r_{1})<0$ . Let $u\equiv u(r, \alpha)$ . An easy computation shows that

(2.7) $[r^{N-1}(w’u-wu’)]’=r^{N-1}K(r)[ff(u)-f’(u)u]w$ .
Recall that $u(r)>0$ for $r\in[0, z_{1})$ . Integrating of (2.7) over $[0, r_{1}]$ and using $(1,3)$ ,
we have

$r_{1}^{N-1}w’(r_{1})u(r_{1})= \oint_{0}^{r_{1}}r^{N-1}K(r)[f(u)-f’(u)u]w$dr $>0$ ,

which implies $w’(r_{1})>0$ . This is a contradiction. Consequently we find that
$w(r)>0$ for $r\in(0, z_{1}]$ .

Lemma 2.2. Assume that (L3) holds. For each i $\in$ {1,2, \ldots , k–1}, the solution
w of (2.3) has at most one zero in $[z_{i}, z_{i+1}]$ .

Proof Note that $u\equiv u(r, \alpha)$ is a solution of

$(r^{N-1}u’)’+r^{N-1}K(r) \frac{f(u)}{u}u=0$ , $r\in(z_{i}, z_{i+1})$

and satisfies $u(z_{i})=u(z_{i+1})=0$ and $u(r)\neq 0$ for $r\in(z_{i}, z_{i+1})$ . From (1.3) it
follows that

$r^{N-1}K(r)f’(u)<r^{N-1}K(r) \frac{f(u)}{u}$ , $r\in(z_{i}, z_{\iota+1})$ .

Assume to the contrary that there exist numbers $r_{0}$ and $r_{1}$ such that $z_{i}\leq r_{0}<r_{1}\leq$

$z_{i+1}$ and $w(r_{0})=w(r_{1})=0$ . Then Sturm’s comparison theorem implies that $u$ has
at least one zero in $(r_{0}, r_{1})$ . This is a contradiction. The proof is complete.

The following identity plays a crucial part in the proof of Theorem 1.1.

Lemma 2.3. Leiu $\equiv u(r, \alpha)$ and let w be the solution of (2.3). Then

(2.8) $[r^{N-1}K^{-\frac{1}{2}}[w’u’-wu’]-r^{N-1}(K^{-\frac{1}{2}})’wu’]’$

$=- \frac{r^{N-2}}{4K^{\frac{5}{2}}}[3r^{2}(K’)^{2}-2r^{2}KK’+2(N-1)rKK’$ $+4(N-1)K^{2}]w \frac{u’}{r}$ .

for $0<r\leq 1$ .

$Proo/$. A direct calculation shows that (2.8) follows immediately.

Remark 2.1. We note that

(2.9) $u’(0, \alpha)=\lim_{rarrow+0}\frac{u’(r,\alpha)}{r}=-\frac{K(0)f(\alpha)}{N}$ ,

and hence, the right side of (2.8) is continuous for $0\leq r\leq 1$ . In fact, by integrating
(2.1) over $[0, r]$ , we see that

$u’(r, \alpha)=-r^{-(N-1)}\int_{0}^{r}t^{N-1}K(t)f(u(t, \alpha))dt$ , $r\in[0, 1]$ ,

so that
$- \frac{r}{N}\max_{t\in[0,r]}K(t)f(u(t, \alpha))\leq u’(r, \alpha)\leq-\frac{r}{N}\min_{t\in[0,r]}K(t)f(u(t, \alpha))$, $r\in[0, 1]$ .

Then we obtain (2.9)
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Lemma 2.4. Assume that (1.4) holds. Then the solution w of (2.3) has at least
one zero in $(t_{i}, t_{i+1}]$ for each i $\in$ {1, 2, \ldots , k–1}.

Proof. Suppose that $w(r)\neq 0$ for $r\in(t_{i}, t_{i+1}]$ . We may assume that $w(r)>0$ for
$r\in(t_{i}, t_{i+1}]$ , since the case where $w(r)<0$ for $r\in(t_{i}, t_{i+1}]$ can be treated similarly.
Then we have $w(t_{i})\geq 0$ , $w(t_{i+1})>0$ . In view of (1.1) we have

$u’(t_{j})=-K(t_{i})f(u(t_{j}))_{7}$ $j=2,3$, . . . , $k$ .

From (2.4) and (2.9) it follows that $(-1)^{j}u’(t_{j})>0$ for $j=1$ , 2, $\ldots$ , $k$ . Consequently
we have

$(-\mathrm{l})^{}$ $(-g(t_{i+1})w(t_{i+1})u’(t_{i+1})+g(t_{i})w(t_{i})u’(t_{i}))>0$ ,

where $g(r)$ $=r^{N-1}[K(r)]^{-\frac{1}{2}}$ . On the other hand, integrating (2.8) over $[t_{i}, t_{i+1}]$ and
using (1.4) and (2.5), we find that

$(-\mathrm{l})^{}$ $(-g(t_{i+1})w(t_{i+1})u’(t_{i+1})+g(t_{i})w(t_{i})u’(t_{i}))\leq 0$ .

This is a contradiction. The proof is complete.

Lemma 2.5. Let w be the solution of (2.3). Assume that (1.3) and (1.4) hold.
Then $(-1)^{i}w(z_{i})<0$ for i $=1,$ 2, \ldots , k.

Proof. Lemma 2.1 implies that $w(z_{1})>0$ . By Lemmas 2.1 and 2.4, there exists
a number $c_{1}\in$ $(z_{1}, t_{2}]$ such that $w(r)>0$ for $r\in[0, c_{1})$ and $w(c_{1})=0$ . Then
Lemma 2.2 implies that $w(r)<0$ for $r\in(c_{1}, z_{2}]$ . Hence we have $w(z_{2})<0$ . Prom
Lemma 2.4 it follows that there exists a number $c_{2}\in(z_{2}, t_{3}]$ such that $w(r)<0$ for
$r\in(c_{1}, c_{2})$ and $w(c_{2})=0$ . By Lemma 2.2 we see that $w(r)>0$ for $r\in(c_{2}, z_{3}]$ , so
that $w(z_{3})>0$ . By continuing this process, we conclude that $(-1)^{i}w(z_{i})<0$ for
$\mathrm{i}=1,2$ , $\ldots$ , $k$ . The proof is complete.
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3. Proof OF THEOREM 1.1

In this section we give the proof of Theorem 1.1. To this end we employ the Pr\"ufer
transformation for the solution $u(r, \alpha)$ of problem (1.1)-(2.2). For the solution
$u(r, \alpha)$ with $\alpha>0$ , we define the functions $\rho(r, \alpha)$ and $\theta(r, \alpha)$ by

$u(r, \alpha)=\rho(r, \alpha)\sin\theta(r, \alpha)$ ,

$r^{N-1}u’(r, \alpha)=\rho(r, \alpha)\cos\theta(r_{l}\alpha)$ ,
where $’=d/dx$ . Since $u(r, \alpha)$ and $u’$ ($r$ , or) cannot vanish simultaneously, $\rho(r, \alpha)$ and
$\theta(r, \alpha)$ are written in the forms

$\rho(r, \alpha)=([u(r, \alpha)]^{2}+r^{2(N-1)}[u’(r, \alpha)]^{2})^{\frac{1}{2}}>0$

and
$\theta(r, \alpha)=\arctan\frac{u(r,\alpha)}{r^{N-1}u(r,\alpha)}$,,

respectively. Therefore, since $u$ , $u’\in C^{1}([0, 1] \mathrm{x} (0, \infty))$ , we find that $\rho$
)

$\theta\in$

$C^{1}([0, 1] \mathrm{x} (0, \infty))$ . From the initial condition (2.2) it follows that $\rho(0, \alpha)=\alpha$

and $\theta(0, \alpha)\equiv\pi/2$ (mod $2\pi$). For simplicity we take $\theta(0, \alpha)=\pi/2$ . By a simple
calculation we see that

$\theta’(r, \alpha)=\frac{1}{r^{N-1}}\cos^{2}\theta(r, \alpha)+r^{N-1}K(r)\frac{\sin\theta(r,\alpha)f(\rho(r,\alpha)\sin\theta(r,\alpha))}{\rho(r,\alpha)}>0$

for $r\in(0,1]$ , which shows that $\theta(r, \alpha)$ is strictly increasing in $r\in(0,1]$ for each
fixed $\alpha>0$ . It is easy to see that $u(r, \alpha)$ is a solution of $(\mathrm{P}_{k})$ if and only if

(3.1) $\theta(1, \alpha)=k\pi_{7}$

Hence the number of solutions of $(\mathrm{P}_{k})$ is equal to the number of roots $\alpha>0$ of
(3.1).

Proposition 3.1. Let k $\in \mathrm{N}$ and let $u(r, \alpha_{0})$ be a solution of $(\mathrm{P}_{k})$ for some $\alpha_{0}>0$ .
Suppose that (1.3) and (1.4) hold. Then $\theta_{\alpha}(1, \alpha_{0})<0$ .

Proof. Observe that

$\theta_{\alpha}(r, \alpha)=\frac{u_{\alpha}(r,\alpha)r^{N-1}u’(r,\alpha)-u(r,\alpha)r^{N-1}u_{\alpha}’(r,\alpha)}{[u(r,\alpha)]^{2}+[u’(r,\alpha)]^{2}}$.

Since $u(1, \alpha_{0})=0$ and $z_{k}=1$ , we obtain

$\theta_{\alpha}(1, \alpha_{0})=\frac{u_{\alpha}(z_{k},\alpha_{0})}{u’(z_{k},\alpha_{0})}$ .

Note that $(-1)^{k}u’(z_{k}, \alpha_{0})>0$ , because of (2.6). From Lemma 2.5, it follows that
$(-1)^{k}u_{\alpha}(z_{k\}\alpha_{0})<0$ , which implies that $\theta_{\alpha}$ ( $1$ , a $0$ ) $<0$ . The proof is complete.

Proof of Theorem 1.1. Assume to the contrary that there exist numbers $\alpha_{1}>0$

and $\alpha_{2}>0$ such that $u$ ( $r$ , a1) and $u(r, \alpha_{2})$ are solutions of $(\mathrm{P}_{k})$ and $\alpha_{1}\neq\alpha_{2}$ .
Then $\theta(1, \alpha_{1})=\theta(1, \alpha_{2})=k\pi$. We may assume without loss of generality that
$0<\alpha_{1}<\alpha_{2}$ and $\theta(1, \alpha)\neq k\pi$ for cu $\in(\alpha_{1}, \alpha_{2})$ . In view of Proposition 3.1, we
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conclude that $\theta_{\alpha}(1, \alpha_{1})<0$ and $\theta_{\alpha}(1, \alpha_{2})<0$ . The intermediate value theorem
implies that there is a number $\alpha_{0}\in$ Comm. $\alpha_{2}$ ) such that $\theta$ ( $1$ , a o) $=k\pi$ . This is a
contradiction. Consequently, $(\mathrm{P}_{k})$ has at most one solution. The proof of Theorem
1.1 is complete.
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