On the uniqueness of nodal radial solutions of sublinear elliptic equations in a ball

岡山理科大学・理学部 田中 敏 (Satoshi Tanaka) Department of Applied Mathematics Faculty of Science Okayama University of Science

1. INTRODUCTION

We consider the second order ordinary differential equation

(1.1)
$$u'' + \frac{N-1}{r}u' + K(r)f(u) = 0, \quad 0 < r < 1,$$

with the boundary condition

$$(1.2) u'(0) = u(1) = 0$$

where $N \ge 2$, $K \in C^2[0,1]$, K(r) > 0 for $0 \le r \le 1$, $f \in C^1(\mathbf{R})$, sf(s) > 0 for $s \ne 0$. Assume moreover that the following sublinear condition is satisfied:

(1.3)
$$\frac{f(s)}{s} > f'(s) \quad \text{for } s \neq 0.$$

Note that a solution of problem (1.1)–(1.2) is a radial solution u(r) (r = |x|) of the Dirichlet problem of

$$\begin{cases} \Delta u + K(|x|)f(u) = 0 & \text{in } B, \\ u = 0 & \text{on } \partial B, \end{cases}$$

where $B = \{x \in \mathbf{R}^N : |x| < 1\}.$

We consider solutions u of problem (1.1)-(1.2) satisfying u(0) > 0 only. If u is a solution of problem (1.1)-(1.2) with u(0) < 0, then it can be treated similarly as in the case where u(0) > 0, since $v \equiv -u$ satisfies v(0) > 0 and is a solution of

$$\begin{cases} v'' + \frac{N-1}{r}v' + K(r)f_0(v) = 0, & 0 < r < 1, \\ v'(0) = v(1) = 0, \end{cases}$$

where $f_0(s) = -f(-s)$.

In this paper we study the uniqueness of solutions of the problem (1.1)-(1.2) having exactly k-1 zeros in (0,1), where $k \in \mathbb{N}$.

Hence we consider the following problem:

(P_k)
$$\begin{cases} u'' + \frac{N-1}{r}u' + K(r)f(u) = 0, \quad 0 < r < 1, \\ u'(0) = u(1) = 0, \quad u(0) > 0, \\ u \text{ has exactly } k - 1 \text{ zeros in } (0, 1). \end{cases}$$

It is known that there exists at least one solution of (P_k) under a certain condition. For example, in the case where $f(u) = |u|^{p-1}u$, p > 0, $p \neq 1$ and $N \geq 3$, the existence results of solutions of (P_k) were obtained by Y. Naito [4]. Assume that there exists limits f_0 and f_{∞} such that

$$f_0 = \lim_{u \to 0} \frac{f(u)}{u}, \quad f_\infty = \lim_{u \to \infty} \frac{f(u)}{u} \quad (0 \le f_0, \ f_\infty \le \infty).$$

In the case where there is a sufficiently large gap between f_0 and f_{∞} , the existence of solutions of (P_k) was established by Dambrosio [1].

Now we consider the uniqueess of solutions of (P_k) . For the superlinear case $f(u) = |u|^{p-1}u$ (p > 1), Yanagida [6] showed that, for each $k \in \mathbb{N}$, (P_k) has at most one solution if rK'(r)/K(r) is nonincreasing and $N \ge 3$. For the subliear case where (3), $f_0 = \infty$ and $f_{\infty} = 0$, Kajikiya [2] proved that, for each $k \in \mathbb{N}$, the solution of (P_k) exists and is unique if $K(r) \equiv 1$. However very little is known about the uniqueess of solutions of (P_k) for the sublinear case and $K(r) \not\equiv 1$.

The main result of this paper is as follows.

Theorem 1.1. Suppose that (1.3) holds. If (1.4) $3r^2(K')^2 - 2r^2KK'' + 2(N-1)rKK' + 4(N-1)K^2 \ge 0, \quad 0 \le r \le 1,$

then, for each $k \in \mathbb{N}$, (\mathbb{P}_k) has at most one solution.

In view of the following equality

$$3r^{2}(K')^{2} - 2r^{2}KK'' + 2(N-1)rKK' + 4(N-1)K^{2}$$

= $K^{2}\left[\left(\frac{rK'}{K} + 2\right)\left(\frac{rK'}{K} + 2(N-1)\right) - 2r\left(\frac{rK'}{K}\right)'\right],$

we have the following corollary of Theorem 1.1.

Corollary 1.1. Suppose that (1.3) holds. Assume moreover that one of the following (1.5)-(1.7) is satisfied:

(1.5)
$$K'' \le 0, \quad K' \ge 0 \quad \text{for } 0 \le r \le 1,$$

(1.6)
$$N = 2, \quad \left(\frac{rK'}{K}\right) \le 0 \quad \text{for } 0 \le r \le 1,$$

(1.7)
$$N > 2, \quad \frac{rK'}{K} \ge -2, \quad \left(\frac{rK'}{K}\right)' \le 0 \quad \text{for } 0 \le r \le 1.$$

Then, for each $k \in \mathbb{N}$, (P_k) has at most one solution.

2. Lemmas

In this section we give several lemmas.

First we note that (1.1) can be rewritten as follows:

(2.1)
$$(r^{N-1}u')' + r^{N-1}K(r)f(u) = 0, \quad 0 < r < 1.$$

The proof of Theorem 1.1 is based on the method of Kolodner [3]. Namely we consider the solution $u(r, \alpha)$ of (1.1) satisfying the initial condition

(2.2)
$$u(0) = \alpha > 0, \quad u'(0) = 0,$$

where $\alpha > 0$ is a parameter. Since $K \in C^2[0, 1]$ and $f \in C^1(\mathbf{R})$, we see that $u(r, \alpha)$ exists on [0, 1] is unique and satisfies $u, u' \in C^1([0, 1] \times (0, \infty))$, and that $u_{\alpha}(r, \alpha)$ is a solution of linearized problem

(2.3)
$$\begin{cases} (r^{N-1}w')' + r^{N-1}K(r)f'(u(r,\alpha))w = 0, \quad r \in (0,1], \\ w(0) = 1, \quad w'(0) = 0. \end{cases}$$

(See, for example, $[5, \S 6 \text{ and } 13]$.)

Hereafter we assume that $u(r, \alpha)$ is a solution of (P_k) . Let z_i be the *i*-th zero of $u(r, \alpha)$. Let $t_1 = 0$. For each $i \in \{2, 3, \ldots, k\}$, there exists $t_i \in (z_{i-1}, z_i)$ such that $u'(t_i, \alpha) = 0$, since $u(r, \alpha)(r^{N-1}u'(r, \alpha))' < 0$ for $r \in (z_i, z_{i+1})$. Therefore we find that

$$0 = t_1 < z_1 < t_2 < z_2 < \dots < t_{k-1} < z_{k-1} < t_k < z_k = 1,$$

$$u(z_i, \alpha) = 0, \quad u'(t_i, \alpha) = 0, \quad i = 1, 2, \dots, k,$$

$$u(r, \alpha) > 0 \quad \text{for } r \in [t_1, z_1),$$

(2.4)
$$(-1)^{i}u(r,\alpha) > 0 \text{ for } r \in (z_{i}, z_{i+1}), \quad i = 1, 2, \dots, k-1,$$

(2.5)
$$(-1)^{i}u'(r,\alpha) > 0 \text{ for } r \in (t_i, t_{i+1}), \quad i = 1, 2, \dots, k-1$$

(2.6)
$$(-1)^k u'(r,\alpha) > 0 \text{ for } r \in (t_k, z_k].$$

Lemma 2.1. Assume that (1.3) holds. Let w be the solution of (2.3). Then w(r) > 0 for $x \in [0, z_1]$.

Proof. Note that w(0) = 1 and w'(0) = 0. Assume to the contrary that there exists a number $r_1 \in (0, z_1]$ such that w(r) > 0 for $r \in [0, r_1)$ and $w(r_1) = 0$. Then

we see that $w'(r_1) < 0$. Let $u \equiv u(r, \alpha)$. An easy computation shows that

(2.7)
$$[r^{N-1}(w'u - wu')]' = r^{N-1}K(r)[f(u) - f'(u)u]w.$$

Recall that u(r) > 0 for $r \in [0, z_1)$. Integrating of (2.7) over $[0, r_1]$ and using (1.3), we have

$$r_1^{N-1}w'(r_1)u(r_1) = \int_0^{r_1} r^{N-1}K(r)[f(u) - f'(u)u]w\,dr > 0,$$

which implies $w'(r_1) > 0$. This is a contradiction. Consequently we find that w(r) > 0 for $r \in (0, z_1]$.

Lemma 2.2. Assume that (1.3) holds. For each $i \in \{1, 2, ..., k-1\}$, the solution w of (2.3) has at most one zero in $[z_i, z_{i+1}]$.

Proof. Note that $u \equiv u(r, \alpha)$ is a solution of

$$(r^{N-1}u')' + r^{N-1}K(r)\frac{f(u)}{u}u = 0, \quad r \in (z_i, z_{i+1})$$

and satisfies $u(z_i) = u(z_{i+1}) = 0$ and $u(r) \neq 0$ for $r \in (z_i, z_{i+1})$. From (1.3) it follows that

$$r^{N-1}K(r)f'(u) < r^{N-1}K(r)\frac{f(u)}{u}, \quad r \in (z_i, z_{i+1})$$

Assume to the contrary that there exist numbers r_0 and r_1 such that $z_i \leq r_0 < r_1 \leq z_{i+1}$ and $w(r_0) = w(r_1) = 0$. Then Sturm's comparison theorem implies that u has at least one zero in (r_0, r_1) . This is a contradiction. The proof is complete.

The following identity plays a crucial part in the proof of Theorem 1.1.

Lemma 2.3. Let $u \equiv u(r, \alpha)$ and let w be the solution of (2.3). Then

$$(2.8) \quad \left[r^{N-1} K^{-\frac{1}{2}} \left[w'u' - wu'' \right] - r^{N-1} (K^{-\frac{1}{2}})' wu' \right]' \\ = -\frac{r^{N-2}}{4K^{\frac{5}{2}}} \left[3r^2 (K')^2 - 2r^2 KK'' + 2(N-1)rKK' + 4(N-1)K^2 \right] w \frac{u'}{r}.$$

for $0 < r \le 1$.

Proof. A direct calculation shows that (2.8) follows immediately.

Remark 2.1. We note that

(2.9)
$$u''(0,\alpha) = \lim_{r \to +0} \frac{u'(r,\alpha)}{r} = -\frac{K(0)f(\alpha)}{N},$$

and hence, the right side of (2.8) is continuous for $0 \le r \le 1$. In fact, by integrating (2.1) over [0, r], we see that

$$u'(r,\alpha) = -r^{-(N-1)} \int_0^r t^{N-1} K(t) f(u(t,\alpha)) dt, \quad r \in [0,1],$$

so that

$$\frac{r}{N}\max_{t\in[0,r]}K(t)f(u(t,\alpha)) \le u'(r,\alpha) \le -\frac{r}{N}\min_{t\in[0,r]}K(t)f(u(t,\alpha)), \quad r\in[0,1].$$

Then we obtain (2.9).

Lemma 2.4. Assume that (1.4) holds. Then the solution w of (2.3) has at least one zero in $(t_i, t_{i+1}]$ for each $i \in \{1, 2, ..., k-1\}$.

Proof. Suppose that $w(r) \neq 0$ for $r \in (t_i, t_{i+1}]$. We may assume that w(r) > 0 for $r \in (t_i, t_{i+1}]$, since the case where w(r) < 0 for $r \in (t_i, t_{i+1}]$ can be treated similarly. Then we have $w(t_i) \geq 0$, $w(t_{i+1}) > 0$. In view of (1.1) we have

$$u''(t_j) = -K(t_j)f(u(t_j)), \quad j = 2, 3, \dots, k.$$

From (2.4) and (2.9) it follows that $(-1)^j u''(t_j) > 0$ for j = 1, 2, ..., k. Consequently we have

$$(-1)^{i} \left(-g(t_{i+1})w(t_{i+1})u''(t_{i+1}) + g(t_{i})w(t_{i})u''(t_{i}) \right) > 0,$$

where $g(r) = r^{N-1}[K(r)]^{-\frac{1}{2}}$. On the other hand, integrating (2.8) over $[t_i, t_{i+1}]$ and using (1.4) and (2.5), we find that

$$(-1)^{i} \left(-g(t_{i+1})w(t_{i+1})u''(t_{i+1}) + g(t_{i})w(t_{i})u''(t_{i}) \right) \leq 0.$$

This is a contradiction. The proof is complete.

Lemma 2.5. Let w be the solution of (2.3). Assume that (1.3) and (1.4) hold. Then $(-1)^i w(z_i) < 0$ for i = 1, 2, ..., k.

Proof. Lemma 2.1 implies that $w(z_1) > 0$. By Lemmas 2.1 and 2.4, there exists a number $c_1 \in (z_1, t_2]$ such that w(r) > 0 for $r \in [0, c_1)$ and $w(c_1) = 0$. Then Lemma 2.2 implies that w(r) < 0 for $r \in (c_1, z_2]$. Hence we have $w(z_2) < 0$. From Lemma 2.4 it follows that there exists a number $c_2 \in (z_2, t_3]$ such that w(r) < 0 for $r \in (c_1, c_2)$ and $w(c_2) = 0$. By Lemma 2.2 we see that w(r) > 0 for $r \in (c_2, z_3]$, so that $w(z_3) > 0$. By continuing this process, we conclude that $(-1)^i w(z_i) < 0$ for $i = 1, 2, \ldots, k$. The proof is complete.

3. Proof of Theorem 1.1

In this section we give the proof of Theorem 1.1. To this end we employ the Prüfer transformation for the solution $u(r, \alpha)$ of problem (1.1)–(2.2). For the solution $u(r, \alpha)$ with $\alpha > 0$, we define the functions $\rho(r, \alpha)$ and $\theta(r, \alpha)$ by

$$u(r, \alpha) = \rho(r, \alpha) \sin \theta(r, \alpha),$$

 $r^{N-1}u'(r, \alpha) = \rho(r, \alpha) \cos \theta(r, \alpha),$

where ' = d/dx. Since $u(r, \alpha)$ and $u'(r, \alpha)$ cannot vanish simultaneously, $\rho(r, \alpha)$ and $\theta(r, \alpha)$ are written in the forms

$$\rho(r,\alpha) = \left([u(r,\alpha)]^2 + r^{2(N-1)} [u'(r,\alpha)]^2 \right)^{\frac{1}{2}} > 0$$

and

$$\theta(r, \alpha) = \arctan \frac{u(r, \alpha)}{r^{N-1}u'(r, \alpha)}$$

respectively. Therefore, since $u, u' \in C^1([0,1] \times (0,\infty))$, we find that $\rho, \theta \in C^1([0,1] \times (0,\infty))$. From the initial condition (2.2) it follows that $\rho(0,\alpha) = \alpha$ and $\theta(0,\alpha) \equiv \pi/2 \pmod{2\pi}$. For simplicity we take $\theta(0,\alpha) = \pi/2$. By a simple calculation we see that

$$\theta'(r,\alpha) = \frac{1}{r^{N-1}} \cos^2 \theta(r,\alpha) + r^{N-1} K(r) \frac{\sin \theta(r,\alpha) f(\rho(r,\alpha) \sin \theta(r,\alpha))}{\rho(r,\alpha)} > 0$$

for $r \in (0, 1]$, which shows that $\theta(r, \alpha)$ is strictly increasing in $r \in (0, 1]$ for each fixed $\alpha > 0$. It is easy to see that $u(r, \alpha)$ is a solution of (P_k) if and only if

(3.1)
$$\theta(1,\alpha) = k\pi,$$

Hence the number of solutions of (P_k) is equal to the number of roots $\alpha > 0$ of (3.1).

Proposition 3.1. Let $k \in \mathbb{N}$ and let $u(r, \alpha_0)$ be a solution of (P_k) for some $\alpha_0 > 0$. Suppose that (1.3) and (1.4) hold. Then $\theta_{\alpha}(1, \alpha_0) < 0$.

Proof. Observe that

$$heta_lpha(r,lpha)=rac{u_lpha(r,lpha)r^{N-1}u'(r,lpha)-u(r,lpha)r^{N-1}u'_lpha(r,lpha)}{[u(r,lpha)]^2+[u'(r,lpha)]^2}.$$

Since $u(1, \alpha_0) = 0$ and $z_k = 1$, we obtain

$$heta_{lpha}(1,lpha_0)=rac{u_{lpha}(z_k,lpha_0)}{u'(z_k,lpha_0)}.$$

Note that $(-1)^k u'(z_k, \alpha_0) > 0$, because of (2.6). From Lemma 2.5, it follows that $(-1)^k u_\alpha(z_k, \alpha_0) < 0$, which implies that $\theta_\alpha(1, \alpha_0) < 0$. The proof is complete.

Proof of Theorem 1.1. Assume to the contrary that there exist numbers $\alpha_1 > 0$ and $\alpha_2 > 0$ such that $u(r, \alpha_1)$ and $u(r, \alpha_2)$ are solutions of (P_k) and $\alpha_1 \neq \alpha_2$. Then $\theta(1, \alpha_1) = \theta(1, \alpha_2) = k\pi$. We may assume without loss of generality that $0 < \alpha_1 < \alpha_2$ and $\theta(1, \alpha) \neq k\pi$ for $\alpha \in (\alpha_1, \alpha_2)$. In view of Proposition 3.1, we conclude that $\theta_{\alpha}(1, \alpha_1) < 0$ and $\theta_{\alpha}(1, \alpha_2) < 0$. The intermediate value theorem implies that there is a number $\alpha_0 \in (\alpha_1, \alpha_2)$ such that $\theta(1, \alpha_0) = k\pi$. This is a contradiction. Consequently, (P_k) has at most one solution. The proof of Theorem 1.1 is complete.

References

- [1] W. Dambrosio, Nodal solutions to semilinear elliptic equations in a ball, Differential Integral Equations 15 (2002), 945–972.
- [2] R. Kajikiya, Necessary and sufficient condition for existence and uniqueness of nodal solutions to sublinear elliptic equations, Adv. Differential Equations 6 (2001), 1317–1346.
- [3] I. I. Kolodner, Heavy rotating string—a nonlinear eigenvalue problem, Comm. Pure Appl. Math. 8 (1955), 395-408.
- [4] Y. Naito, Bounded solutions with prescribed numbers of zeros for the Emden-Fowler differential equation, Hiroshima Math. J. 24 (1994), 177–220.
- [5] W. Walter, Ordinary Differential Equations, Springer Verlag, New York, 1998.
- [6] E. Yanagida, Structure of radial solutions to $\Delta u + K(|x|)|u|^{p-1}u = 0$ in \mathbb{R}^n , SIAM J. Math. Anal. 27 (1996), 997–1014.