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Holomorphic Solutions of a Functional Equation
愛知学園大学 経営学部 経営情報学科 鈴木麻美 (Mami Suzuki) 1

Department of Management Informatics,
Aichi Gakusen Univ.

1 Introduction
We consider a functional equation

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (1.1)

where $X(x, y)$ and $Y(x, y)$ are holomorphic functions in $|x|<\delta_{1}$ , $|y|<\delta_{1}$ . In Theorem
1 and Theorem 2, we suppose that $X(x, y)$ and $Y(x, y)$ are expanded there as

$\{$

$X(x, y)=$ Ar
$+y+ \sum_{i+j\geq 2}c_{ij}x^{i}y^{j}=\lambda x$

$+X_{1}(x, y)_{7}$

$Y(x, y)=$ Ay
$+ \sum_{i+j\geq 2}d_{ij}x^{i}y^{j}=\lambda y+Y_{1}(x, y)$

.
(1.2)

On the other hand, in Theorem 3 and Theorem 4, we suppose that $X(x, y)$ and $Y(x, y)$

are expanded there as

$\{$

$X(x, y)=$ Ax
$+ \sum_{i+j\geq 2}c_{ij}x^{i}y^{j}=$

Ax $+X_{1}(x, y)$ ,

$Y(x, y)= \lambda y+\sum_{i+j\geq 2}d_{ij}x^{i}y^{j}=\lambda y+Y_{1}(x, y)$
.

(1 .3)

Our aim in this paper is to show the following 4 theorems.

Theorem 1 Suppose $X(x, y)$ and $Y(x, y)$ be holomorphic in $|x|<\delta_{1\mathit{1}}|y|<\delta_{1;}$ and
expanded as shown in (L2) with $|\lambda|>1$ , There exists uniquely a function $\Psi(x)$ ,
holomorphic in a disc $|x|<\delta$ and satisfying the equation (1.1):

$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ . (1.2)

Theorem 2 Suppose that $0<|\lambda|<1$ in (1,2). There exists uniquely a function
$\Psi(x)_{f}$ holomorphic in a disc $|x|<\delta$ and satisfying the equation (Ll).

Theorem 3 Suppose $X(x, y)$ and $Y(x, y)$ be holomorphic in $|x|<\delta_{1}$ , $|y|<\delta_{1}$ , and
expanded as shown in (1.3) with $|\lambda|>1$ . There exists uniquely a function $\Psi(x)$ ,
holomorphic in a disc $|x|<\delta$ and satisfying the equation (1.1).
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Theorem 4 Suppose thai $0<|\lambda|<1$ in (1 . 3). There exists uniquely a function
$\Psi(x)$ , holomorphic in a disc $|x|<\delta$ and satisfying the equation (1.1).

In the papers [4] and [7], we considered the functional equation (1.1), in which $X$

and $Y$ were expanded as

$\{$

$X(x, y)=$ Ax
$+ \sum_{i+J\geq 2}\mathrm{q}_{j}.x^{i}y^{j}=$

Ax $+X_{1}(x,y)$ ,

$Y(x, y)= \mu y\dashv-\sum_{i+j\geq 2}d_{ij}x^{i}y^{j}=\mu y+Y_{1}(x,y)$
,

(1.4)

with the condition A $\neq\mu$ . In the paper [6], we consider it with the condition A $=$ pa $=1$ .
and in the paper [7] we consider it with the condition A $=1|\mu|=1$ , $(\mu\neq 1)$ .
(Furthermore in [5] we considered systems involving $n$ functions $X_{1}(x_{1}, \cdots, x_{n})$ , $\cdots$ ,
$X_{n}(x_{1}, \cdots, x_{n})$ , $n\geqq 2$ with the conditions $\lambda_{1}\neq\lambda_{i}$ , $\mathrm{i}=2$ , $\cdots$ , $n$ ). In the present
paper, (we restrict to $n=2$ and) consider the cases $\lambda=\mu$ and also the cases where
the coefficient matrix are not diagonalizable, as shown in (1.2). Thus our results of
this paper may be applied to other results.

Now we will consider the meaning of the equation (1.1).
Consider a simultaneous system of difference equations:

$\{$

$x(t+1)=X(x(t), y(t))$ ,
$y(t+1)=Y(x(t), y(t))$ .

(1.5)

Suppose (1.5) admits a solution $(x(t), y(t))$ . If $\frac{dx}{dt}\neq 0$ , then we can write $t=\psi(x)$

with a function $\psi$ in a neighborhood of $x_{0}=x(t_{0})$ , and we can write

$y=y(t)=y(\psi(x))=\Psi(x)$ , (1.6)

as far as $\frac{dx}{dt}\neq 0$ . Then the function $\Psi$ satisfies equation $(1,1)$ .
Conversely we assume that a function I is a solution of the functional equation

(1.1). If the first order difference equation

$x(t+1)=X(x(t), \Psi(x(t)))$ , (1.7)

has a solution $x(t)\rangle$ then we put $y(t)=\Psi(x(t))$ and have a solution $(x(t), y(t))$ of
(1.5).

This relation is important to derive general solutions of nonlinear second order
difference equations which are written such that,

$\{$

$u(t+1)=U(u(t), v(t))$ ,
$v(t+1)=V(u(t),v(t))$ ,

(1. S)

where $U(u, v)$ and $V(u, v)$ are entire functions for $u$ and $v$ . We give an example later
in this paper. We studied analytic solutions of the nonlinear second order difference
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equation (1.8) in [8], where, we have treated cases in which the coefficient matrix of
linear terms of (1.8) has two different eigenvalues. But in the example of the present
paper, we consider the case where the coefficient matrix of linear terms of (1.8) has
only one eigenvalue.

2 Proof of Theorem 1

2.1 A formal solution
At first, we put a formal solution to (1.1) $\Psi(x)$ $= \sum_{m=1}^{\infty}a_{m}x^{m}$ . To determine coeffi-
cients $a_{m}$ , we substitute $\Psi(x)=\sum_{m=1}^{\infty}a_{m}x^{m}$ into (1.1) with (1.2). We compare the
coefficients of $xm$ , $(m=1,2, \cdots)$ , then we have

$\{$

$a_{1}^{2}=0$ ,
$a_{2}(\lambda^{2}-\lambda)=d_{20}$ ,
$a_{3}(\lambda^{3}-\lambda)=a_{2}\{-2\lambda(a_{2}+c_{20})+d_{11}\}+d_{30}$,
$a_{4}(\lambda^{4}-\lambda)=-a_{2}\{2\lambda(a_{3}+c_{11}a_{2})+(a_{2}+c_{20})^{2}\}-a_{3}\{3\lambda^{2}(a_{2}+c_{20})\}$

$+d_{11}a_{3}+d_{02}a_{2}^{2}+d_{21}a_{2}+d_{40}$

,
$a_{k}(\lambda^{k}-\lambda)=C_{k}(\lambda,$ $a_{1}$ , $\cdot$ . . , $a_{k-1}$ , $c_{i,j}$ , $d_{ij}\rangle$ ,

where $C_{k}(\lambda, a_{1}, \cdots, a_{k-1}, c_{i,j}, d_{ij})$ are polynomials for $\lambda$ , $a_{1}$ , $\cdots$ , $a_{k-1}$ , $c_{i,j}$ , $d_{ij}$ , $2\leqq \mathrm{i}+$

$j\leqq k$ , $i\geqq 0,j\geqq 0$ .
Since we assume $|\lambda|>1$ , we have $\lambda^{k}-\lambda\neq 0$ for any $k\geqq 2$ . Thus we can

determine the coefficients $a_{k}$ , $(k=1,2_{7}\cdots)$ with $\lambda$ , $a_{1}$ , $\cdots$ , $a_{k-1_{2}}c_{i,j}$ , $d_{ij}$ , $2\leqq \mathrm{i}+j\leqq k$ ,
$\mathrm{i}\geqq 0$ , $j\geqq 0$ . Especially we have $a_{1}=0$ . Therefore we can determine formal solu tion
$\Psi(x)$ of (1.1) as follows

$\Psi(x)=\sum_{m=\mathit{2}}^{\infty}a_{m}x^{m}$ . (2.1)

2.2 A map $T_{1}$ and its fixed point
Take an integer $N$ so large that $| \lambda^{1-N}|<\frac{1}{2}$ . Put $\Psi_{N}(x)=a_{2}x^{2}+a_{3}x^{3}+\cdots+a_{N}x^{N}$

and define a family $F$ to be
$F=$ { $\phi(x)$ : holomorphic and $|\phi(x)|\leqq K|x|^{N+1}$ in $|x|\leqq\delta$ },

where $\delta$ and $I\acute{\mathrm{t}}$ are positive constants to be determined later.
Take $\phi(x)\in F$ and put

$z=\lambda x+X_{1}(x, \Psi_{N}(x)+\phi(x))=X(x, \Psi_{N}(x)+\phi(x))$ . (2.2)

Since the expansion of $\Psi(x)$ begins with $x^{2}$ , if we take $\delta$ suficiently small, then we
have that for $|x|\leqq\delta$

$|X_{1}(x, \Psi_{N}(x)+\phi(x))|=|\Psi_{N}(x)+\phi(x)+\sum_{i+j\geqq 2}c_{ij}x^{i}(\Psi_{N}(x)+\phi(x))^{\mathrm{i}}|<\frac{|x|}{2}$ ,



Ial

and $| \frac{d}{dx}X_{1}(x, \Psi_{N}(x)+\phi(x))|<1$ , where 5 can be chosen independently of $\phi(x)$ . Since
$|\lambda|>1$ , we have $\frac{dz}{dx}=\lambda+\frac{d}{dx}X_{1}(x, \Psi_{N}(x)+\phi(x))\neq 0$ in $|x|\leqq\delta$ . Thus we obtain inverse
function $\zeta$ such that $x=\zeta(z)$ for $|z|\leqq\delta_{1}$ , where $\delta_{1}$ can be chosen independently of
$\phi(x)$ . We also have that

$|z|\geqq|\lambda x|-|X_{1}(x, \Psi_{N}(x)+\phi(x))|>\lambda_{1}|x|$ , (2.3)

for a $\lambda_{1},1<\lambda_{1}<|\lambda|$ . Hence $\phi(\zeta(z))$ is defined if ( $(\mathrm{z})$ is defined for $|z|\leqq\delta_{1}$ .
Furthermore, we assume that $\alpha=|\frac{\lambda}{\lambda_{1}^{N}}|<1$ .

For $\phi(x)\in F$ , we pu $\mathrm{t}$

$T_{1}[\phi](z)=Y(\zeta(z),$ $\Psi_{N}(\zeta(z))+\phi(\zeta(z)))-\Psi_{N}(z)$ . (2.4)

We will prove the existence of a fixed point $\phi_{N}(x)\in F$ for the map $T_{1}$ . If it should
be done, then Theorem 1 would be proved, since $\Psi(x)=\Psi_{N}(x)+\phi_{N}(x)$ would be a
solution of (1.1). Then we can have constants $K_{1}$ , $K_{\mathit{2}}$ and $\mathrm{A}_{3}^{r}$ such that

$|T_{1}[\phi](z)|<(K_{1}+(\alpha+(K_{2}+K_{3})\delta_{1})I\mathrm{f})$ $|z|^{N+1}$ .

We can take $\delta_{1}$ to be sufficiently small such that $0<\alpha+(I\acute{\iota}_{\mathit{2}}+I\mathrm{f}_{3})\delta_{1}=A<1$ . Then
we take $I\acute{\mathrm{t}}$ so large such that

$I \mathrm{f}>\frac{\mathrm{A}_{1}^{\nearrow}}{1-A}$ ,

and 6 is taken as $\delta\leqq\delta_{1}$ . If the family $F$ is defined by means of thus determined
numbers $l\mathrm{i}’$ and $\delta$ , then the operator $T_{1}$ in (2.4) maps $F$ into itself. $F$ is clearly convex,
and a normal family by the theorem of Montel. Since $T_{1}$ is obviously continuous, we
obtain a fixed point $\phi_{N}(x)$ by Schauder’s fixed point Theorem [3].

The fixed point $\phi(x)$ of $T_{1}$ is holomorphic function in $F$ on $|x|\leqq\delta$ . Therefore the
fixed point exists uniquely. Therefore we have a solution $\Psi(x)=\Psi_{N}(x)+\phi_{N}(x)$ of
(1.1) such that

$\Psi(x)=\sum_{m=\mathit{2}}^{\infty}a_{m}x^{m}$ . (2.5)

[Il

3 Proofs of Theorem 2 and Theorem 3

In this note, we omit the proofs of Theorem 2 and Theorem 3.

4Proof of Theorem 4

4.1 A formal solution
At first, we put a formal solution to (1.1) $\Psi(x)$ $= \sum_{m=1}^{\infty}a_{m}x^{m}$ . To determine coefii-
cients $a_{m}$ , we substitute $\Psi(x)=\sum$; $a_{m}x^{m}$ into (1.1) with (1.3). We compare the
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coefficients of $x^{m}$ , $(m=1,2, \cdot -)$ , then we have

$\{$

$a_{1}\lambda=a_{1}\lambda$ ,

a2 $(\lambda^{2}-\lambda)=-a_{1}(c_{20}+c_{11}a_{1}+c_{\mathit{0}2}a_{1}^{2})+(d_{20}+d_{11}a_{1}+d_{\mathit{0}2}a_{1}^{2})$ ,
$a_{3}(\lambda^{3}-\lambda)=-a_{1}(c_{30}+c_{21}a_{1}+c_{12}a_{1}^{2}+\underline{\mathrm{r}}_{03}a_{1}^{3}+c_{11}a_{2}+c_{\mathit{0}\mathit{2}}2a_{1}a_{2})$

$-a_{2}$ . $2\lambda(c_{20}+c_{11}a_{1}+c_{0\mathit{2}}a_{1}^{2}$

$+(d_{30}+d_{21}a_{1}+d_{12}a_{1}^{2}+d_{03}a_{1}^{3})+(d_{11}a_{2}+d_{02}2a_{1}a_{2})$ ,
,

$a_{k}(\lambda^{k}-\lambda)=D_{k}(\lambda, a_{1}, \cdots, a_{k-1}, c_{i,j}, d_{ij})$ ,

where $D_{k}$ ( $\lambda,$
$a_{1}$ , $\cdots$ , \^a $-\mathrm{i},$ c,-j, $d_{ij}$ ) are polynomials for $\lambda$ , $a_{1}$ , $\cdots$ , $a_{k-1}$ , $c_{i,\gamma}$ , $d_{ij}$ , $2\leqq \mathrm{i}+$

$j\leqq k$ , $\mathrm{i}\geqq 0,j\geqq 0$ .
Since we assume $0<|\lambda|<1$ , we have $\lambda^{k}$

- A $\neq 0$ for any $k\geqq 2$ . Thus we can
determine the coefficients $a_{k}$ , $(k=2, \cdots)$ with $\lambda,a_{1}$ , $\cdots$ , \^a-i, $c_{i,j}$ , $d_{ij}$ , $2\leqq \mathrm{i}+j\leqq k$ ,
$\mathrm{i}\geqq 0,j\geqq 0$ . Especially we have $a_{1}$ to be arbitrary. Therefore we can determine
formal solution $\Psi(x)$ of (1.1), which begins with $x$ , as follows

$\Psi(x)=\sum_{m=1}^{\infty}a_{m}x^{m}$ . (4.1)

Put $z=Y(x,y)=\lambda y+Y_{1}(x,y)$ and $Q(x, y, z)=z-\lambda y-Y_{1}(x, y)$ . Then $\frac{\partial Q(0,0,0)}{\partial y}=$

$-\lambda\neq 0$ and $Q(0, 0, 0)=0$ . From implicit function theorem, we have a holomorphic
function $R$ such that

$y=R(x, z)=( \frac{1}{\lambda})z+R_{1}(x, z)$ , for $|x|$ , $|z|\leqq\delta_{2}$ ,

where $R_{1}$ is higher order terms for $x$ , $z$ such that $R_{1}(x, z)= \sum_{i+j\geqq 2}d_{ij}’x^{i}z^{j}$ , $d_{i_{\dot{J}}}^{\prime/}$ are
constants, 62 is a positive constant.

Thus the equation (1.1) is equivalent to

$\Psi(x)=R(x, \Psi(X(x, \Psi(x))))$ . (4.1)

Take integer $N$ so large that $| \lambda^{N-1}|<\frac{1}{\mathit{2}}$ , and put $\Psi_{N}(x)$ $=a_{1}x+a_{2}x^{2}+\cdots+a_{N}x^{N}$ .
Further we define a family $F$ to be

$F=$ { $\phi(x)$ : holomorphic and $|\phi(x)|\leqq K|x|^{N+1}$ in $|x|\leqq\delta$ },

where $\delta$ and If are positive constants to be determined later.
For $\phi(x)\in F$ , since $X_{1}(x,y)= \sum_{i+j\geqq 2}\mathrm{c}_{ij}x^{i}y^{j}$ , we have $|X(x, \Psi_{N}(x)+\phi(x))|\leqq$

$\lambda_{\mathit{2}}|x|$ , with a constant A2, $|\lambda|<\lambda_{2}<1$ . Therefore $\phi(X(x, \Psi_{N}(x)+\phi(x)))$ can be
defined at $|x|\leqq\delta_{2}$ . Furthermore, we assume that $\beta=|_{\lambda}^{\underline{\lambda}_{\mathrm{Z}_{-}}^{N}}|<1$ .

Take $\phi(x)$ $\in F$ and put

$T_{4}[\phi](x)=R$ $(x,$ $\Psi_{N}(X(x, \Psi_{N}(x)+\phi(x)))+\phi(X(x, \Psi_{N}(x)+\phi(x))))-\Psi_{N}(x)$

(4.3)
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As in the proof of Theorem 1, we see that a fixed point $\phi_{N}(x)$ of the map $T_{4}$ in $F$

gives a solution of (1.1) as $\Psi(x)$ $=\Psi_{N}(x)+\phi_{N}(x)$ . Thus we will prove the existence
a fixed point of $T_{4}$ . Then we can have constants $K_{1}$ , $K_{2}$ , and $K_{3}$ such that

$|T_{4}[\phi](x)|<(I\mathrm{f}_{1}+((K_{\mathit{2}}+K_{3})\delta+\beta)I\mathrm{f})$ $\cdot$ $|x|^{N+1}$ .

We take $\delta$ sufficiently small such that $A_{4}=\beta+(K_{2}+K_{3})\delta<1$ , and If is taken so
large that

$K> \frac{I\mathrm{f}_{1}}{1-A_{4}}$ ,

therefore the Map $T_{4}$ in (4.3) maps $F$ into $F$ , and we have the existen ce of the fixed
point as in the proof of Theorem 1. Hence we have a solution $\Psi(x)=\Psi_{N}(x)$ $+\phi_{N}(x)$

of (1.1). $\square$

5 An example of nonlinear second order difference
equations

We consider the following second order nonlinear difference equation,

$u(t+2)=f(u(t),u(t+1))$ , (5.1)

where $f(x, y)$ is an entire function of $(x, y)\in \mathbb{C}^{2}$ .
We suppose that the equation (5.1) admits an equilibrium point $u^{*}:$ $u^{*}=f(u^{*}, u^{*})$ .

We can assume, without losing generality, that $u^{*}=0$ . Then $f(x,y)$ can be written
as

$f(x, y)=-\beta x-\alpha y+g(x, y)$ , (5.2)

in which $g(x, y)= \sum_{i+j\geq 2}b_{ij}x^{i}y^{j}$ , $b_{xj}$ are constants. We assume that ! 4 0. Our
purpose is to obtain analytic general solutions of difference equation (5.1). Analytic
solutions of nonlinear difference equation have been studied for a long time. For exam-
ple, in [1], Harris derived analytic general solutions, which have asymptotic expansion
with $\mathrm{i}$ , of nonlinear first order difference equation $u(t+1)=F(t_{2}u(t))$ under some
conditions. But for general nonlinear difference equations, we can not use the $\mathrm{H}\mathrm{a}\mathrm{r}\mathrm{r}\mathrm{i}\mathrm{s}^{7}\mathrm{s}$

methods. Especially, for characteristic values $\lambda^{*}$ of linear terms of the difference equa-
tion, if $|\lambda^{*}|=1$ for all $\lambda^{*}$ , then it is difficult to prove a existence of analytic solution
of it. Kimura [2], and Yanagihara [9] studied the cases $|\lambda^{*}|=1$ in nonlinear general
first order difference equations. Here we seek analytic general solutions of nonlinear
second order difference equation such that (5.1). In [8] we consider (5.1) under an
assumption. But we seek general solutions of the system without the assumptions in
this example.

The characteristic matrix of (5.1) is

$M=(\begin{array}{ll}0 1f_{x}(0,0) f_{y}(0,0)\end{array})$ $=(\begin{array}{ll}0 1-\beta -\alpha\end{array})$ .
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Let $\lambda_{1}$ , $\lambda_{2}$ be roots of the following characteristic equation of $M$

$D(\lambda)=|_{-\beta}^{-\lambda}$ $-cx-1$ $\lambda|=\lambda^{2}+\alpha\lambda$ $ $\beta=0$ . (5.3)

In [8], we consider under the condition $\lambda_{1}\neq$ A2 making use of a theorem in [4], but
could not treated under the condition $\lambda_{1}=$ A2 in it. But in this example, we can seek
analytic general solutions of (5.1) under the condition A $=\lambda_{1}=$ A2 making use of
Theorem 1 and Theorem 2 in the present paper.

Hereafter we consider $t$ to be a complex variable.

5.1 An analytic solution.
We consider following two cases, i) $|\lambda|>1$ and $\mathrm{i}\mathrm{i}$ ) $|\lambda|<1$ .

In case i) we consider solutions such that $u(t+n)arrow 0$ , as $narrow-\infty$ . In case $\mathrm{i}\mathrm{i}$ )
we consider solutions such that $u(t +n)arrow \mathrm{O}$ , as $narrow+\infty$ .

In the both cases, we can determine a formal solution of (5.1),

$u(t)= \sum_{n=1}^{\infty}\gamma_{n}\lambda^{ni}$ , (5.4)

where $\gamma_{1}\neq 0$ can be arbitrarily prescribed, and $\gamma_{k)}k\geq 2$ , are determined by $\gamma_{1}$ , see
[8].

Similarly in [8], we have following Theorem 5.

Theorem 5 Let $\lambda_{1}$ and $\lambda_{2}$ be roots of $D(\lambda)=0$ in (2.1), with A $=\lambda_{1}=$ A2, Suppose
$0<|\lambda|<1$ or $|\lambda|>1$ . Then there is a $\eta>0$ such that we have a holomorphic
solution $u(t)= \sum_{n=1}^{\infty}\gamma_{n}\lambda^{nt}$ in $S(\eta)=\{t;|\lambda^{t}|<\eta\}$ .

When $|\lambda|>1,\cdot$ the solution $u(t)$ can be analytically continued to the whole plane,
by making use of the equation (5.1).

When $0<|\lambda|<1$ , the function $\phi(w, z)$ such that $u(t)=\phi(u(t+1), u(t+2))$

is defined only locally, though we can also analytically continue $u(t)$ , keeping out of
branch points. The solution obtained is multi-valued.

The analytic solution $u$ obtained in Theorem 5 is “A Particular Solution” of (5.1).

5.2 Analytic General Solutions
Let $u(t)$ be an analytic solution of (5.1) which we have in Theorem 5, and $w(t)=$

$u(t+1)$ . Then (5.1) can be written as a system of simultaneous equations

$(\begin{array}{l}u(t+1)w(t+1)\end{array})=(\begin{array}{ll}0 1-\beta -\alpha\end{array})(\begin{array}{l}u(t)w(t)\end{array})$ $+$ $(\begin{array}{l}0g(u(t),w(t))\end{array})$ . (5.5)
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From the assumption that A $=\lambda_{1}=$ A2, we can not transform the matrix $(\begin{array}{ll}0 1-\beta -\alpha\end{array})$

into diagonal form. Let $P=(\begin{array}{lll}1 1\lambda \lambda +1\end{array})$ , and put

$(\begin{array}{l}uw\end{array})=P$ $(\begin{array}{l}xy\end{array})$ . (5.6)

We can transform the coefficient matrix of linear terms of (5.5) into Jordan normal
form, i.e., (5.5) is transformed to a following system with respect to $x$ , $y$ :

$\{$

$x(t+1)=$ Ar $(t)+y(t)+ \sum_{i+j\geq 2}c_{ij}x(t)^{i}y(t)^{j}=X(x(t)_{)}y(t))$
,

$y(t+1)= \lambda y(t)+\sum_{i+j\geq 2}d_{ij}x(t)^{i}y(t)^{j}=Y(x(t), y(t))$
,

(5.7)

where $c_{i_{J}}$ and $d_{ij}$ are constants.

At first we consider the case i) $|\lambda|>1$ . We suppose $\wedge \mathrm{f}(t)$ be a solution of (5.1)
such that $\mathrm{Y}(t+n)arrow 0$ as $narrow-\infty$ uniformly on any compact subset of t–plane.
Then we have follow ing Lemma 6 from Theorem 1.

Lemma 6 Let $\lambda_{1}$ , A2 be roots of the characteristic equation of (5.3) and $\lambda=\lambda_{1}=\lambda_{2}$ .

Furthermore we assume that $|\lambda|>1$ (case $\mathrm{i}\mathrm{i}$). Suppose that $\mathrm{T}(t)$ be an analytic
solution of (5.1) such that $\prime \mathrm{r}(t+n1,$ $arrow 0$ as $narrow-\infty$ uniformly on any compact
subsets of the $t$ -plane, then we have $\frac{\mathrm{T}(t+1+n\}}{1(t+n)}arrow\lambda$ , as $narrow-\infty$ .

From Lemma 6, we have following Theorem 7 and we obtain analytic general
solution of (5.1).

Theorem 7 Let Ai, A2 be roots of the characteristic equation of (5.3) and $\lambda=\lambda_{1}=$

$\lambda_{\mathit{2}}$ . We assume $|\lambda|>1_{f}$ and $u(\tau)$ is the solution of (5.1) which has the expansion
$u(t)$ $= \sum_{n=1}^{\infty}\gamma_{n}$ A$nf$ in $S(\eta)=\{t;|\lambda^{t}|<\eta\}$ with some constant $\eta>0$ . Further suppose
that $\prime \mathrm{r}(t)$ is an analytic solution of (5.1) such $that\prime \mathrm{r}(t+n)arrow 0$ as $narrow-\infty_{\mathit{1}}$

uniformly on any compact subsets of the $t$ -plane. Then there is a periodic entire

function $\pi(t)$ , $(\pi(t+1)=\pi(t))_{f}$ such that

$1(t)= \sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})\lambda^{n(t+\pi(t))}+\Psi(\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})\lambda^{n(l+\pi(t)))},$ (5.8)

in $S(\eta)_{f}$ where $\Psi$ is a solution of
$\Psi(X(x, \Psi(x)))=Y(x, \Psi(x))$ , (1.1)

and $X$ , $Y$ are defined in (5.6) and (5.7). Furthermore we have $\frac{1,\langle t+1+n]}{\mathrm{r}(t+n)}arrow\lambda$ as
$narrow-\infty$ .
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Conversely, a function $\wedge \mathrm{f}(t)$ which is represented as (5.8) in $S(\eta)$ for some $\eta>0_{f}$

where $\pi(t)$ is a periodic function with the period one, is a solution of (5.1) such that
$\prime \mathrm{r}(t+n)arrow \mathrm{O}$ and $. \frac{\mathrm{r},[t+1+n]}{\mathrm{r}(t+n)}arrow$ A as $narrow-\infty$ .

Proof. Let $u(t)$ be the analytic solution of (5.1) which we have in Theorem 5.
And suppose $\mathrm{Y}(t)$ be a solution of (5.1) such that $\prime \mathrm{r}(t+n)arrow 0$ as $narrow-\infty$ uniformly
on any compact subsets of t-plane.

As above arguments in Section 1, if a solution $(x, y)$ of (5.7) exists, then we can
put $t=\psi(x)$ for a function $\psi$ and we can write

$y(t)=y(\psi(x))=\Psi(x)$ , (1.6)

when $\frac{dx}{dt}\neq 0$ . Then the function $\Psi$ satisfies equation (1.1).
Conversely we assume that a function $\Psi$ is a solution of the functional equation

(1.1). If the first order difference equation

$x(t+1)=X(x(t), \Psi(x(t)))$ , (5.7)

has a solution $x(t)$ , then we put $y(t\}, =\Psi(x(t))$ and have a solution $(x(t), y(t))$ of
(5.7).

Put $\omega(t)=\mathrm{T}(t+1)$ , from (5.6), then we have $\chi(t)=(1+\lambda)’\Gamma(t)-\omega(t))$ . Since
$\wedge \mathrm{f}(t+n)arrow 0$ and $\omega(t+n)arrow 0$ as $narrow-\infty$ , we have $\chi(t+n)arrow 0$ as $narrow-\infty$ .

Since the solution $u(t)= \sum_{n=1}^{\infty}\gamma_{n}\lambda^{nl}$ of (5.7) is a function of $\lambda^{t}$ ,

$x(t)=(1+ \lambda)u(t)-u(t+1)=(1+\lambda)\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})(\lambda^{t})^{n}=U(\lambda^{t})$ . (5.9)

where ( $=U(\tau)$ is a function of $\tau=\lambda^{t}$ and $U’(0)=a_{1}\neq 0$ and $U(0)=0$ . Since $U(\tau)$ is
an open map, for any $\eta_{1}>0$ there is an $\eta_{2}>0$ such that $U(\{|\tau|<\eta_{1}\})\supset\{|\zeta|<\eta_{2}\}$ .

Since $\chi(t+n)arrow 0$ as $narrow\infty$ , supposed that $t$ belongs to a compact set $I\mathrm{t}^{\Gamma}$ , there
is a $n_{0}\in \mathrm{N}$ such that $|\chi(t’+n)|<\eta_{2}$ $(n\geqq n_{0})$ for $t’\in I\mathrm{f}$ . Thus there is a $\tau’$ such
that $\chi(t’+n)=U(\tau’)$ . We can write $\tau’=\lambda^{\sigma}$ , and

$\chi(t’+n)=U(\tau’)=U(\lambda^{\sigma})$ . (5.10)

Since $U’(0)=\gamma_{1}\neq 0$ , using the theorem on implicit function we have the $U^{-1}$ such
that $\lambda^{\sigma}=U^{-1}(\chi(t’+n))$ . Put $t=t’+n$ , then $\lambda^{\sigma}=U^{-1}(\chi(t))$ , and we write

$\sigma=\log_{\lambda}U^{-1}(\chi(t))=l(t)$ . (5.11)

When there is a solution $\chi(t)$ of $(5,7)$ , from (1.7), (5.9) and (5.10) we have

$\chi(t+1)=X(\chi(t), \Psi(\chi(t)))=X(x(\sigma), \Psi(x(\sigma)))=x(\sigma+1)=U(\lambda^{\sigma+1})$ .

Hence $\sigma+1=l(t+1)$ , $l(t)+1=l(t+1)$ . If we put $\pi(t)=l(t)-t$ , then we obtain
$\pi(t+1)$ $=\ell(t+1)-(t+1)=l(t)-t=\pi(t)$ . and we can write as

$1(t)=t+\pi(t)$ , (5.1)
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$\pi(t)$ defined for a compact set $K$ with $\Re[t]$ sufficiently large, which we can continue
analytically as a periodic function with the period 1. Then $\sigma=t+\pi(t)$ . Thus we have
$\sigma=t+\pi(t)$ . From (5.9), (5.10), (5.11) and (542), $\chi(t)$ can be written as

$\chi(t)=U(\lambda^{t+\pi(t)})=x(t+\pi(t))=\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})(\lambda^{\neq+\pi(t)})^{n}$. (5.13)

From (5.6) and (5. 13), we have

$\wedge \mathrm{f}(t)=\chi(t)+\nu(t)=\sum_{n=1}^{\infty}\gamma_{n}$( $1+$ A $-\lambda^{n}$ ) $\lambda^{n(t+\pi(t)\rangle}+\Psi(\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})\lambda^{n(t+\pi(t))})$ ,

where $\pi(t)$ is defined for $t \in\bigcup_{n\in \mathbb{Z}}(K+n)$ with a compact set If. Since Is’ is arbitrary,
we can continue $\pi(t)$ analytically to a periodic entire function with period 1, and $\Psi$

is a solution of (1.1), as in (2.5),

$\Psi(x)=\sum_{m=2}^{\infty}a_{m}x^{m}$ , (2.6)

From Lemma 6, we obtain $\frac{1(t+n+1)}{1(t+n)}arrow\lambda$ , as $narrow-\infty$ .
Conversely, if we put $\wedge \mathrm{f}(t)$ such that in (5.8), where $\pi$ is an arbitrary periodic

entire function, and $\Psi$ is a solution of (5.1). Then we can have $\cap \mathrm{f}(t)$ is a solution
of (1.1) such that $\mathrm{Y}(t+n)arrow 0$ as $narrow-\infty$ . Hence, from Lemma 6, we have
$\frac{\prime \mathrm{r},(i+1+n\}}{\mathrm{r}(t+n)}arrow\lambda$ as $narrow-\infty$ . $\square$

When $0<|\lambda|<1$ , we have follow ing similar results. Here we omit the proofs.

Lemma 8 Let $\lambda_{1}$ , A2 be roots of the characteristic equation of $(5,3)$ and $\lambda=\lambda_{1}=\lambda_{2}$

(case $\mathrm{i}i$). And we assume that $|\lambda|<1$ . $Let\mathrm{f}\wedge(t)$ be an analytic solution of (5.1) such
that $\mathrm{Y}(t+n)arrow 0$ as $narrow+\infty$ uniformly on any compact subsets of the $t$ -plane, then

$\prime \mathrm{r}(t+1+n]$we $have$ $\overline{\prime \mathrm{r}(t+n)}arrow\lambda$ , as $narrow+\infty$ .

Theorem 9 Let Ai, A2 be roots of the characteristic equation of (5. 3) and $\lambda=\lambda_{1}=$

$\lambda_{2}$ . We assume that $|\lambda|<1$ and $u(t)$ is a solution of (5.1) which has the expansion
$\mathrm{x}(\mathrm{t})=\sum_{n=1}^{\infty}\gamma_{n}\lambda^{nt}$ in $S(\eta)=\{t;|\lambda^{t}|<\eta\}$ with some constant $\eta>0$ .

Suppose that $\mathrm{T}(\mathrm{t})$ is an analytic solution of (5.1) such that $\prime \mathrm{r}(t+n)arrow 0$ as
$narrow+\infty$ , unifo rmly on any compact subsets of the $t$ -plane. Then there is a periodic
entire function $\pi(t)$ , $(\pi(t+1)=\pi(t))_{f}$ such that

$\wedge \mathrm{f}(t)=\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})\lambda^{n(t+\pi(t))}+\Psi(\sum_{n=1}^{\infty}\gamma_{n}(1+\lambda-\lambda^{n})\lambda^{n(t+\pi(t)))},$ (5.14)

in $S(\eta)$ , where $\Psi$ is a solution of (1.1) and $X$ , $Y$ are defined in $(\mathit{5}.\theta)$ and (5.7).
Furthermore we have $\frac{\prime \mathrm{r}\{t+1+n\}}{\prime \mathrm{r}(t+n)}arrow\lambda$ as $narrow+\infty$ .

Conversely, a function $1(t)$ which is represented as shown in (5.14) in $S(\eta)$ for
some $\eta>0$ , where $\pi(t)$ is a periodic function with the period one, is a solution of
(5.1) such that $\mathrm{T}(t+n)arrow 0$ and $\frac{1(t+1+n)}{\prime \mathrm{r}(t+n\}}arrow$ A as $narrow+\infty$ .
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