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Mathematical approach to biological outbreak and crash
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1 Introduction
The outbreak and crash of population has been observed in many

species; plankton in sea water, which is known as a red water, insect
and fish [6], and small animals [4], Moreover several known reseaches in
biology may be penetrated from this view-point; for example the famous
data of fishing studied by U.D’Anconna and V.Volterra [10], Cause’s
experiment [3] and Luckenbill’s experiment [7].

The purpose of this note is to propose a mathematical model repre-
senting the outbreak and crash of population. Any species, which causes
the outbreak and crash, may be considered as not only the predator from
one hand but also the prey from another hand, and hence we shall ap-
peal the predator-prey system model which has homoclinic orbits to null
state ; this orbit starts from null state for some time, goes to the max-
imal state as the time increases, which implies the outbreak, and then

backs to the null state as the time furthermore increases, which implies

the crash. Our system is the follow ing :

$\dot{x}=ax-b\sqrt{xy}$ , $\dot{y}=-cy+d\sqrt{xy}$ , $( \cdot=\frac{d}{dt})$ (1)

where $a$ , $b$, $c$ and $d$ are positive constants and $x$ $=x(t)$ and $y=y(t)$

denote the populations of prey and predator, respectively. We may see
that (1) is reduced to Malthusian law in the case where either $x(t)$ $\equiv 0$

or $y(t)\equiv 0$ , and to the ratio dependent model in the case where $x(t)$ $>0$

and $y(t)>0$ :
$\frac{\dot{x}}{x}=a-b\sqrt{\frac{y}{x}}$ , $\frac{\dot{y}}{y}=-c+d\sqrt{\frac{x}{y}}$ , (2)

although this model is different from the known ratio dependent model
[1]. The solution $(x(t), y(t))$ is said to be homoclinic to origin if $x(t)$ $arrow 0$
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and $y(t)arrow 0$ as $tarrow\pm\infty$ , where either $x(t)\not\equiv 0$ or $y(t)\not\equiv 0$ . The mean-
ing of (2) is the following [8]. Whenever the prey and the predator en-
counter each other, $x(t)$ decreases and $y(t)$ increases. The relative ratio

of $x(t)$ , $\frac{1}{x(t)}\frac{dx(t)}{dt}$ , which is an increment of the number of individuals

of prey per unit of the population of prey, may depend on the number of

individuals of predator per unit of the population of prey, $\frac{y(t)}{x(t)}$ , but not

on $y(t)$ . Similarly the relative ratio of $y(t)$ , $\frac{1}{y(t)}\frac{dy(t)}{dt}$ , may depend on

the number of individuals of prey per unit of the population of predator,

$\frac{x(t)}{y(t)}$ , but not on $x(t)$ .
Our first result is the following,

Theorem 1
Assume either that $(a+c)^{2}<4bd$ or that $(a+c)^{2}\geq 4bd$ and $bd>$

$ae$ . Then solution $(x(t), y(t))$ , where either $x(t)\not\equiv 0$ or $y(t)\not\equiv 0$ , is
homoclinic to origin.

Next we shall treat the exceptional case of Theorem 1:

$bd<ac$ . (3)

In this case we shall require the existence of saturation term $g(x)$ for
the prey equation of (1); that is ,

$\dot{x}=(a-g(x))x$ $-b\sqrt{xy}$ , $\dot{y}=-cy+d\sqrt{xy}$ , (4)

where $g(x)$ is differentiable with respect to $x>0$ , $g^{l}(x)>0$ , $g$ (0) $=0$

and $g(x)$ is bounded for $x\geq 0$ , and hence clearly $g(\infty)$ exists.
Our second result is the following.

Theorem 2
We assume that (3) holds and furthermore that $c^{2}\geq bd$ and $g(\infty)>a+\mathrm{c}$ .
Then there exist the unique equilibrium point $E$, which is asymptotically
stable, and a solution $(x(t), y(t))$ such that $x(t)arrow 0$ , $y(t)arrow 0$ as $tarrow\infty$ ,
$w$ here $x(0)>x^{*}$ and $y(0)=y^{*}for$ $E=(x^{*}, y^{*})$ .

Remark 1 The conclusion of Theorem 2 may explain the paradox
of enrichment (cf.see [5], [9])
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2 Proof of Theorem 1
We shall consider the solution $(x(t), y(t,))$ of (1) with initial condition

$x(0)=x_{0}$ and $y(0)=0$ , where $x_{0}$ is an arbitrary positive number and
$y(t)>0$ for $0<t<\epsilon$ and for a positive number $\epsilon$ . We shall set
$X(t)=\sqrt{x(t)}$ and $\mathrm{Y}(t)=\sqrt{y(t)}$ as long as $x(t)>0$ and $y(t)>0$ , and
hence reduce (1) to the linear system :

2 $(\begin{array}{l}\dot{X}(t)\dot{\mathrm{Y}}(t)\end{array})=(\begin{array}{ll}a -bd -c\end{array})(\begin{array}{l}X(t)\mathrm{Y}(t)\end{array})$ , (5)

where $X(0)=\sqrt{x_{0}}$ and $\lim_{tarrow+0}\mathrm{Y}(t)=0$ .
First of all we shall consider the case where $(a+c)^{2}<46\mathrm{d}$ , which

implies that the eigenvalues of coefficient matrix is not real. Therefore
solution curve $(X(t), \mathrm{Y}(t))$ rotates around origin counter-clockwisely as $t$

increases, and hence there exists a positive number $T$ such that $X(t)>0$
for $0<t<T$ , $\mathrm{Y}(t)>0$ for $0<t\leq T$ and $X(T)=0$. Now we
shall construct a special solution $(x(t), y(t))$ of (1) with $x(0)=x_{0}$ and
$y(0)=0$:

$x(t)=x_{0}e^{at}$ , $y(t)\equiv 0$ for $t\leq 0$ ,
$x(t)=X^{2}$ (?), $y(t)=\mathrm{Y}^{2}(t)$ for $0<t<T$,
$x(t)\equiv 0$ , $y(t)=\mathrm{Y}^{2}(T)e^{-c(l-T)}$ for $t\geq T$.

Then we can verify that both $x(t)$ and $y(t)$ are continuously differen-
tiable for $t$ and satisfies (1). Clearly $(x(t), y(t))$ satisfies the property of
homoclinic orbit to origin.

Next we shall consider the remaining case where $(a+c)^{2}\geq 4bd$ and
$bd>acj$ which implies that both eigenvalues of the coefficient matrix of
(5) are real and of the same sign. We may assume that the eigenvalues
are negative, if necessary, by changing the direction of $t$ ; the definition
of homoclinic orbit is invariant to this change. Considering the solution
$(X(t),\mathrm{Y}(t))$ of (5) with $X(0)>0$ and $\mathrm{Y}(0)=0$ , we may see either that
$X(t)>0$ , $\mathrm{Y}(t)>0$ for $t>0$ and $X(t)arrow 0$ , $\mathrm{Y}(t)arrow 0$ as $tarrow\infty$ or
that there exists a positive number $T$ such that $X(t)>0$ for $0<t<T$ ,
$X(T)=0$ and $\mathrm{Y}(t)>0$ for $0<t\leq T$ . To the both cases we may
construct the homoclinic orbit to origin, $(x(t),y(t))$ with $x(0)=X^{2}(0)$

and $y(0)=0$, by the same way as the first part of this proof. The proof
of Theorem 1 is completed
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3 Proof of Theorem 2

The system (4) has the unique equilibrium point $E=(x^{*}, y^{*})$ such

that $x^{*}$ is the unique solution of the equation $g(x)=a- \frac{bd}{c}$ and $y*=$

$( \frac{d}{c})^{2}x^{*}$ , wliere we used tliat $g(0)=0$ and $g(\infty)>a$ .
The variational system of (4) with respect to $E$ is the following :

$(\begin{array}{l}\dot{\xi}\dot{\eta}\end{array})=($ $\frac{bd}{2c}-g’(x^{*})x^{*}\frac{d^{2}}{2c}$ $- \frac{bc}{\frac{2c}{2}d}-$ ) $(\begin{array}{l}\xi\eta\end{array})$ ,

and hence the equation of $\lambda$ , the eigenvalues of the coefficient matrix,

is the following :

$\lambda^{2}+\{g’(x^{*})x^{*}+.\frac{c}{2}-\frac{bd}{2c}\}\lambda+\frac{c}{2}g’(x^{*})x^{*}=0$.

Since $g’(x^{*})>0$ , it follows from our assumption that the real part of A is
negative, which implies the asymptotic stability of $E$ . Setting $X=\sqrt{x}$

and $\mathrm{Y}=\sqrt{y}$ for $x>0$ and $y>0$ , we reduce (4) to the equation :

$2\dot{X}=(a-g(X^{2}))X-b\mathrm{Y}$ , (6)
$2\dot{\mathrm{Y}}=dX-c\mathrm{Y}$ .

Clearly the point $P$, $P=(\sqrt{x^{*}}, \sqrt{y^{*}})$ , is an equilibrium point of this
system, which is asymptotically stable. The linear part of (6) is the
following :

2 $(\begin{array}{l}\dot{X}\dot{Y}\end{array})=(\begin{array}{ll}a -bd -c\end{array})(\begin{array}{l}XY\end{array})$ ,

Since $a\mathrm{c}>bd$, one of the eigenvalues of coefficient matrix is negative, say
$\lambda_{1}$ , and furthermore, since $g(X^{2})X=o(X)$ as $Xarrow \mathrm{O}$ , it follows from
[2] that (6) has a solution $(X(t), \mathrm{Y}(t))$ such that $X(t)arrow 0$ , $\mathrm{Y}(t)arrow 0$

as $tarrow$ oo and that $\frac{Y(t)}{X(t)}arrow\frac{a--\lambda_{4_{-}}}{b}\mathrm{a}\mathrm{s}$ $tarrow\infty$ . Since the tangent line
of $C_{1}$ for origin has the slope $\frac{a}{b}$ , curve $(X(t),y(t))$ is located above $C_{1}$

for large $t$ , say $t\geq 0$ . Now we shall show that there is a $t_{0}$ such that
$X(t_{0})>\sqrt{x^{*}}$ and $\mathrm{Y}(t_{0})=\sqrt{y^{*}}$ , which implies the conclusion of Theorem
2 by translation of $t$ . Let $A$ and $E$ be positive constants such that
$g(A^{2})>a+c$ and $B> \frac{d}{c}A$, and hence it is seen that $\dot{X}<0$ for $X>A$

and $\dot{\mathrm{Y}}<0$ for $0<X<A$ and $\mathrm{Y}>B$ , and that $P$ is contained in the
domain : $0<X<A$ and $0<\mathrm{Y}<B$ . The isoclines of $\dot{X}=0$ and $\dot{\mathrm{Y}}=0$

are represented by $b\mathrm{Y}=aX-g(X^{2})X$ and $c\mathrm{Y}=dX$ , respectively,
which meet at $P$ each other. Let $e$ be the number such that $g(e^{2})=a$
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and set $k$ $=\sqrt{x^{*}}$ and $q= \frac{d}{\mathrm{c}}A$ . The $C_{1}$ , $C_{2}$ and $l_{i}$ , $0\leq \mathrm{i}\leq 4$ , are defined
by the equations, respectively

$C_{1}$ $:b\mathrm{Y}=aX-g(X^{2})X$, $0<X<k$ ,
$C_{2}$ : $b\mathrm{Y}=aX-g(X^{2})X$, $k<X<e$ ,

$l_{0}$ : $X=0$ , $0<\mathrm{Y}<B$ ,
$l_{1}$ : $\mathrm{Y}=B$ , $0<X<A$ ,

$l_{2}$ : $X=A$, $q<\mathrm{Y}<B$ ,

$l_{3}$ : $c\mathrm{Y}=dX$ , $k<X<A$ ,

$l_{4}$ : $X=A$, $0<\mathrm{Y}<q$ .

We shall illustrate these lines in Figure 1. In the following argument, it is

assumed that $t$ is decreasing. First of all it is seen that curve $(X(t), \mathrm{Y}(t))$

never crosses $l_{0}$ , becaus$\mathrm{e}$

$\dot{X}<0$ on $l_{0}$ , and furthermore that this curve
never approaches $P$ , because of the stability of $P$ . We can verify that
$(X(t), \mathrm{Y}(t))$ cannot cross $C_{1}$ without crossing previously one of $l_{1}$ , $l_{2}$

and $l_{3}$ , because $\dot{\mathrm{Y}}<0$ on $C_{1}$ . Assume that $(X(t),\mathrm{Y}(t))$ crosses $l_{2}$ for
some $t_{1}<0$ , which implies that $X(t)>A$ for $t<t_{1}$ , because $\dot{X}<0$ for

$X>A$ . Setting $X=r\cos\theta$ , $\mathrm{Y}=r\sin\theta$ , we get

$\dot{\theta}$

$=$ $b\sin^{2}\theta+$ $(g(X^{2})-a-c)\sin\theta\cos\theta+d\cos^{2}\theta$,
$\dot{r}$ $=$ $-f(\theta,r)r$ ,

where $f(r, \theta)=(g(X^{2})-a)\cos^{2}\theta+(b-d)\sin\theta\cos\theta+c\sin^{2}\theta$ , which is

bounded. The second equation of the above implies that $r(t)<$ oo for
$t<\infty$ , that is, $(X(t), \mathrm{Y}(t))$ never blows up for finite time. Moreover,

since $g(X^{2})>a+c$ for $X>\backslash A$ , it follows from the first equation that

$\dot{\theta}>b\sin^{2}\theta+d\cos^{2}\theta$ ,

which implies that $(X(t),\mathrm{Y}(t))$ rotates around origin negatively as $t$

decreases, and that this curve intersects the line $\mathrm{Y}=0$ for some $t3$ ,

$t_{2}>t_{3}$ . Thus there exists a number $t_{4}$ , $t2>t_{4}>t_{3}$ , such that $X(t4)$ $>k$

and $\mathrm{Y}(t_{4})=\sqrt{y^{*}}$. Next assume that $(X(t),\mathrm{Y}(t))$ crosses $l_{1}$ for some
$t_{1}<0$ . Since $2\dot{\mathrm{Y}}<0$ and $2\dot{X}<aA-bB<0$ for $0<X<A$ and
$\mathrm{Y}>B$ , it follows that $(X(t), \mathrm{Y}(t))$ crosses the line $X=A$ for some
$t_{2}<t_{1}$ , which is contained in the argument of $l_{2}$ . The remaining case
is that $(X(t), \mathrm{Y}(t))$ crosses $l_{3}$ for some $t_{1}<0$ . Since $\dot{X}<0$ on $l_{3}$ ,
$(X(t),\mathrm{Y}(t))$ never crosses $l_{3}$ from tthe right hand side to the left hand
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side as $t$ decreases, and above all $(X(t), \mathrm{Y}(t))$ must cross one of $l_{4}$ , the
line $\mathrm{Y}=0$ , and $C_{2}$ for some $t_{2}$ , $t_{1}>t_{2}$ . The case of $l_{4}$ is the same as in
the case of $\iota_{2}$ , and these two cases guaratee the existence of that number
$t_{4}$ . This completes the proof.

$\mathrm{Y}$

$X$

Figure 1
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