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CONSTRUCTION OF DOUBLY-CONNECTED WANDERING
DOMAINS

MASASHI KISAKA (木坂 正史) AND MITSUHIRO SHISHIKURA(宍倉 光広)

ABSTRACT. We investigate the connectivity conn(D) of a wandering domain $D$ of a
transcendental entire function $f$ . First we show that conn$(f^{n}(D))$ is constant for large $n$

and it is either 1, 2 or oo (Theorem $\mathrm{A}$). Next we construct an example of an $f$ with doubly
connected wandering domain (Theorem $\mathrm{B}$ ), which is the main result of this paper. For
this purpose we establish a slightly different version of quasiconformal surgery (Theorem
3.1). Also we construct following examples by the similar method:. An entire function $f$ having a wandering domain $D$ with conn(D) $=p$ for a given

$p\in \mathrm{N}$ (Theorem $\mathrm{C}$ ).. An entire function $f$ having a doubly connected wandering domain and all its sin-
gular values are contained in preperiodic Fatou components (Theorem $\mathrm{D}$ ).. An entire function $f$ such that the set $\overline{f(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f^{-1}))}$ is equal to the whole plane $\mathbb{C}$

but $f$ has a wandering domain, hence $J_{f}\neq \mathbb{C}$ (Theorem $\mathrm{E}$).. An entire function $f$ with infinitely many grand orbits of wandering domains. Fur-
thermore, this $f$ can be constructed so that the Lebesgue measure of the Julia set
$J_{f}$ is positive (Theorem $\mathrm{F}$).

1, INTRODUCTION

Let $f$ be a transcendental entire function and $f^{n}$ denote the n-th iterate of $f$ . Recall
that the Fatou set $F_{f}$ and the Julia set $J_{f}$ of $f$ are defined as follows:

$F_{f}$ $=$ { $z\in \mathbb{C}|\{f^{n}\}_{n=1}^{\infty}$ is a normal family in a neighborhood of $z$},
$J_{f}$ $=$ $\mathbb{C}\backslash F_{f}$ .

A connected component $D$ of $F_{f}$ is called a Fatou component of $f$ . A Fatou component
$D$ is called a wandering domain if $fm(D)\cap fm(D)=\emptyset$ for every $m$ , $n\in \mathrm{N}(m\neq n)$ . If
there exists a $p\in \mathrm{N}$ with $f^{p}(D)\underline{\subset}D$ , then $D$ is called a periodic component of period $p$

and it is either an attracting basin, a parabolic basin, a Siegel disk or a Baker domain. In
particular, if $p=1$ , $U$ is called an invariant component

Here we briefly explain the history of wandering domains. For more details, see [R],
It was I. N. Baker who proved the existence of wandering domains for the first time. In
1963 he proved the following:

Theorem 1.1 (Baker, 1963 [Bal, p.206 Statement (A), p.210 Theorem 1]). There is an
entire function $g(z)$ given by the canonical product

$g(z)=Cz^{2} \prod_{n=1}^{\infty}(1+\frac{z}{r_{n}})$

such that $g(z)$ has at least one multiply connected Fatou component, where $C>0$ is $a$

constant and $r_{n}$ is defined by some recursive formula and satisfies $1<r_{1}<r_{2}<\cdots$ .
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More precisely, let $A_{n}$ be the annulus

$A_{n}$ : $r_{n}^{2}<|z|<r_{n+1}^{\frac{1}{2}}$ ,

then there is an integer $N>0$ such that for all $n>N$ the mapping $zarrow g(z)$ maps $A_{n}$

into $A_{n+1}$ and $g^{n}(z)arrow$ oo uniformly in $A_{n}$ . For each $n>N$ , $A_{n}$ belongs to a multiply
connected component $G_{n}$ of $F_{g}$ .

At this moment, he did not assert that the above Fatou component was a wandering
domain, because there was a possibility that $G_{n}$ were equal for any $n>N$ and hence it
was an invariant component. That is, it might be a Baker domain, on which, by definition,
every point goes to oo under the iterate of $g$ . But about ten years later, he proved the
following result.

Theorem 1.2 (Baker, 1976 (Received 1 November 1974) [Ba2, p.174, Theorem]). For
$n>N$ the components $G_{n}$ of $F_{g}$ described above are all different and each is a wan-
dering domain of $g$ .

More generally he proved

Theorem 1.3 (Baker, 1975 (Received 26 May 1975) [Ba3, p.278, Theorem 1]). if $f$ is
transcendental and entire, then $F_{f}$ has no unbounded multiply connected component. That
is, any unbounded Fatou component is simply connected

Thus the first example of a wandering domain was multiply connected, On the other
hand, the example of simply connected wandering domains are known by M. Herman
(see [Ba4, p.567, Example 5.1]). In this paper we consider the connectivity of a Fatou
component, which is defined as follows:

Definition. For a domain D of $\mathbb{C}$ , the connectivity conn(D) is defined to be the number
of connected components of $\hat{\mathbb{C}}\backslash D$ , which may be $\infty$ .

Note that conn(D) $=1$ if and only if $D$ is simply connected, and conn(D) $=2$ if and only

if $D$ is doubly connected and conformally equivalent to a round annulus
$\{z|0 \leq r_{1}<|z|<r_{2}\leq\infty\}$ .

By density of periodic points in the Julia set and Theorem 1.3, it is easily shown that if
a Fatou component $D$ is multiply connected, then it must be a wandering domain and
$f^{n}|_{D}arrow\infty$ $(narrow\infty)$ . In 1985, Baker constructed an example of a transcendental entire
function $g$ with a wandering domain $D$ of infinite connectivity.

Theorem 1.4 (Baker, 1985 [Ba5, p.164, Theorem 2]). There is an entire function $g(z)$

given by the canonical product

$g(z)=C^{2} \prod_{j=1}^{\infty}(1+\frac{z}{r_{j}})^{2}$ , $1<r_{1}<r_{2}<\cdots$ , $C>0$

such that $g(z)$ has a wandering domain with infinite connectivity.

So the following is a natural question to ask;

Question: Is there a wandering domain D with finite connectivity, or more precisely,
with conn(D) $=p,$ p $\in \mathrm{N}$?
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This question was raised by Baker in [Ba5] and is also explicitly stated as “Question 7” in
[Ber, p. 167]. Main purpose of this paper is to construct such an example. Incidentally, the
connectivity of the wandering domain discussed in Theorem 1.1 and 1.2 is still unknown.

In this paper we first show the following:

Theorem $\mathrm{A}$ , For a wandering domain $D$ of a transcendental entire function $f$ , the con-
nectivity $\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{n}(f^{n}(D))$ is constant for large $n$ and it is either 1, 2 or $\infty$ . If it is 1, then
conn(D ) $=1$ . if it is 2, then $f$ : $f^{n}(D)arrow f^{n+1}(D)$ is a covering of annuli for every
sufficiently large $n$ .

According to this theorem, we make the following:

Definition. We define the eventual connectivity of a wandering domain $D$ to be
ca $\mathrm{n}(f^{n}(D))$ for sufficiently large $n$ .

Main result of this paper is as follows:

Theorem B. There exists a transcendental entire function $f$ with a wandering domain
$D$ such that $f^{n}(D)$ are doubly connected for all $n\geq 0$ , $\mathrm{i}.e$ . the eventual connectivity of $D$

is 2. Moreover $f$ has no asymptotic values and all critical values are mapped to 0 which
is a repelling fixed point

Theorem $\mathrm{B}$ gives a negative answer to the following open problem raised by W. Bergweiler.

Problem (Bergweiler, 1994 [YWLC, p.354]): Let $f$ be an entire transcendental function.
Suppose that $f^{n}|_{U}arrow$ oo as $narrow$ oo for some connected component $U$ of the Fatou set of
$f$ . Does there exist ( $\in$ sing $(f^{-1})$ such that $f^{n}(\zeta)arrow\infty$? If not, does there exist at least
$\zeta\in \mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f^{-1})$ such that $f^{n}(\zeta)$ is unbounded7

Main technique to construct this kind of examples is the quasiconformal surgery. By using
the same technique and some additional arguments, we can also show the following:

Theorem C. For every p $\in \mathrm{N}$ with p $\geq 3$ there exists a transcendental entire function $f$

with a wandering domain D with conn(D) $=p$ and ca $\mathrm{n}(f^{n}(D))=2$ for every n $\geq 1$ .

Theorem D. There exists a transcendental entire function $f$ with a wandering domain
$D$ such that the eventual connectivity of $D$ is 2. Moreover $f$ has no asymptotic values
and all critical values are mapped to 0 which is an attracting fixed point

Theorem E. There exists a transcendental entire function f such that the set $f(\mathrm{s}\mathrm{i}\mathrm{n}\mathrm{g}(f^{-1}))$

is equal to the whole plane $\mathbb{C}$ but f has a wandering domain, hence $J_{f}\neq \mathbb{C}$ .

Theorem F. There exists a transcendental entire function $f$ with infinitely many grand
orbits of doubly connected wandering domains. That is, there exist doubly connected wart-

dering domains $D_{i}(\mathrm{i}\in \mathrm{N})$ such that if $\mathrm{i}\neq j$ , then $f^{m}(D_{i})\cap f^{n}(D_{j})$ $=\emptyset$ for any $m$ , $n\in$ N.
Furthermore, this $f$ can be constructed so that the Lebesgue measure of the Julia set $J_{f}$ is
positive.

Theorem $\mathrm{D}$ answers the following question also by W. Bergweiler:

Question (”Question 10” in [Ber, p.170]): Can a meromorphic function $f$ have wandering
domains if all (or all but finitely many) points of sing$(f^{-1})$ are contained in preperiodic
domains?
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Incidentally, Baker constructed an example of an entire function with infinitely many
grand orbits of simply connected wandering domains in [Ba4, p.567, Theorem 5.2]. Also
Baker, Kotus and Lii considered the similar problem of existence of multiply connected Fa-
tou components for transcendental meromorphic functions with at least one pole ([BKLI],
[BKL2] ).

Jn \S 2, we prove Theorem A and \S 3 is devoted to the explanation of the quasiconformal
surgery, which is a main tool for the proof of the main Theorem B. We give a proof of
Theorem $\mathrm{B}$ in \S 4.

2. Proof OF THEOREM $\mathrm{A}$

We need some lemmas.

Lemma 2.1 (Baker, 1984 [Ba4, p.565, Theorem 3.1]). Let $D$ be a multiply connected
wandering domain of an entire function $f$ ancl $\gamma\subset D$ is a nontrivial curve in D. Then
$f^{n}arrow$ op $(narrow\infty)$ in $D$ and for every sufficiently large $n$ the winding number of $f^{n}(\gamma)$

with respect to the origin is positive.

Lemma 2.2 (cf. Baker, 1984 [Ba4, p.565, Corollary]). If f has an asymptotic value,

then every Fatou component of $F_{f}$ is simply connected.

Proof of Theorem A. By Lemma 2.1 and Lemma 2.2, we may assume that $f$ has no as-
ymptotic values and $D$ is bounded. Then $f$ : $Darrow f(D)$ is a branched covering. If
conn(D) $=\infty$ , then conn$(f^{n}(D))=\infty$ for every $n\in$ N. So we assume that conn(D ) $<\infty$ .
By Riemann-Hurwitz Theorem, we have

2- conn(D) $=(\deg f|_{D})$ ( $2$ -conn(D) (D)) $)$
$-\#$ {critical points in $D$ }. (2.1)

Then it easily follows that conn(D) $\geq$ conn$(f(D))$ and hence conn$(f^{n}(D))$ is constant for

large $n$ . Let us denote it by $p$ . Suppose that $3\leq p<\infty$ , then by replacing $D$ with $f^{n}(D)$

in (2.1) it follows that $\deg f|_{f^{n}(D)}=1$ and hence $f$ : $f^{n}(D)arrow f^{n+1}(D)$ is conformal
By the Argument Principle, $f$ is also 1 to 1 on the bounded components of $\mathbb{C}\backslash f^{n}(D)$ .
Then from Lemma 2.1, $f$ must be 1 to 1 on whole $\mathbb{C}$ , which is a contradiction, since $f$ is

transcendental. Therefore if $p$ is finite, then $p=1$ or 2. If $p=1$ , then it is easy to see
that conn(D) $=1$ . If $p=2$ , then from (2.1) we have $\#$ {critical points in $f^{n}(D)$ } $=0$ and

hence the result follows. $\square$

3. SURGERY AND CONFORMAL STRUCTURE

In this section, we recall the definition of quasiconformal map and explain the quasi-

conformal surgery (Theorem 3.1).

Definition 3.1. An orientation preserving homeomorphism $\varphi$ : $Darrow D’$ between two

domains $D$ and $D’$ is called a quasiconformal map if it is absolutely continuous on lines

on any rectangle $R=\{z=x+iy|a\leq x\leq b, c\leq y\leq d\}\subset D$ , that is,

(i) $\varphi(x+\mathrm{i}y)$ is absolutely continuous as a function of $x\subset-[a, b]$ for almost every $y$ , and
$\varphi(x+\mathrm{i}y)$ is absolutely continuous as a function of $y\in[c, d]$ for almost every $x$

and moreover
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(ii) $|\mu_{\varphi}(z)|\leq k$ $<1$ $\mathrm{a}.\mathrm{e}$ . $z\in D$ ,

where $\mu_{\varphi}=\varphi_{\overline{z}}/\varphi_{z}$ and $k$ is some constant with $0\leq k<1$ . If $k=0$ , then $\varphi$ is conformal.
If $k\neq 0$ , we set $K=(1+k)/(1-k)$ and call $\varphi$ a $K$ -quasiconformal (K-qc for short) map.

The constant
$K_{\varphi}= \inf${ $K|\varphi$ is K-qc}

is called the maximal dilatation of $\varphi$ . A map 9 : $Darrow D’$ is called a $K$ -quasiregular map
if $g$ can be written as $g=f\circ\varphi$ with a $K$-quasiconformal map $\varphi$ and an analytic map $f$ .

For properties of quasiconformal maps, see [A1].

In order to construct an entire function with doubly-connected wandering domains, we
first construct a quasiregular map $g$ with the similar properties as what we really want
to construct by gluing suitable polynomials together by using interpolation. Then we
choose a suitable quasiconformal map $\varphi$ so that $\varphi\circ g\circ\varphi^{-1}$ is a desired entire function.
We call this procedure the quasiconformal surgery. More precisely, we can formulate this
procedure as follows, which is slightly different from the one discussed in [Sh]:

Theorem 3.1 (quasiconformal surgery). Let $g$ be a quasiregular mapping from $\mathbb{C}$ to C.
Suppose that there are (disjoint) measurable sets $E{}_{j}\mathrm{C}\mathbb{C}(j=1, 2, \ldots)$ satisfying:

(i) For almost every $z\in \mathbb{C}$ , the $g$ -orbit of $z$ passes $E_{j}$ at most once for every $j$ ;

(ii) $g$ is $K_{j^{-}}$quasiregular on $E_{j}$ ;
(iii) $K_{\infty}= \prod_{j=1}^{\infty}K_{j}<\infty$ ;

(iv) $g$ is holomorphic $a.e$ . outside $\bigcup_{\mathrm{j}=1}^{\infty}E_{j}$ ( $\mathrm{i}.e$ . $\frac{\partial g}{\partial\overline{z}}=0a$ . $e$ . on $\mathbb{C}\backslash \bigcup_{j=1}^{\infty}Ej$ ).

Then there exists a $K_{\infty}$ -quasiconformal mop $\varphi$ such that $f=\varphi\circ g\circ\varphi^{-1}$ is an entire
function.

Proof. A measurable conform $al$ structure is the measurable conformal equivalence of mea-
surable Riemannian metrics, and can be represented by the metric of the form

$ds=|dz+\mu(z)d\overline{z}|$ ,

where $\mu(z)$ is a $\mathbb{C}$-valued measurable function with
$|| \mu||_{\infty}=\mathrm{e}\mathrm{s}\mathrm{s}.\sup|\mu(z)|<1$ .

The distance between two measurable conformal structures a $=[|dz+\mu(z)d\overline{z}|]$ and $\sigma’=$

$[|dz+\mu’(z)d\overline{z}|]$ is defined by
$d( \sigma, \sigma’)=\mathrm{e}\mathrm{s}\mathrm{s}.\sup d_{\mathrm{D}}(\mu(z), \mu’(z))$,

where $d_{\mathrm{D}}$ denotes the Poincare distance on the unit disk D. A quasiregular map defines
the pull-back $g^{*}(\sigma)$ of the measurable conformal structure $\sigma$ , and the pull-back preserves
the above distance. Let $\sigma_{0}=[|dz|]$ denote the standard conformal structure. If $g$ is
$K$-quasiregular, then we have $d(g^{*}(\sigma_{0}), \sigma_{0})\leq\log K$ .

Now define the conformal structures
$\sigma_{n}(z)=(g^{n})^{*}(\sigma_{0}(g^{n}(z)))$ ,

which are defined almost everywhere. The pointwise distance (when defined) satisfies
$d_{\mathrm{D}}(\sigma_{n+1}(z), \sigma_{n}(z))=d_{\mathrm{D}}(g^{*}(\sigma_{0}(g^{n+1}(z))), \sigma_{0}(g^{n}(z)))\leq\log K_{m}$
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if $g^{n}(z)$ is in some $E_{m}$ and it is 0 otherwise.
By the hypotheses (i) and (iii), $\{\sigma_{n}(z)\}_{n=0}^{\infty}$ is defined and a Cauchy sequence for almost

all $z$ . Therefore the pointwise limit $\sigma(z)=\lim_{narrow\infty}\sigma_{n}(z)$ exists $\mathrm{a}.\mathrm{e}$ . and satisfies

$d( \sigma, \sigma_{0})\leq\sum_{j=1}^{\infty}\log K_{j}=\log K_{\varpi}$ .

Then a can be written as
$\sigma(z)=[|dz+\mu(z)d\overline{z}|]$

with
$| \mu(z)|\leq\frac{K_{\infty}-1}{K_{\infty}+1}$ $\mathrm{a}.\mathrm{e}$ .

By Measurable Riemann Mapping Theorem ([Al, p.98, Theorem 3]), there exists a $K_{\infty}-$

quasiconformal mapping $\varphi$ : $\mathbb{C}arrow \mathbb{C}$ such that $\frac{\partial\varphi}{\partial\overline{z}}/\frac{\partial\varphi}{\partial z}=\mu(z)\mathrm{a}.\mathrm{e}.$ , in other words $\varphi^{*}(\sigma_{0})=$

$\sigma$ . Then $f=\varphi\circ g\circ\varphi^{-1}$ is quasiregular and satisfies $f^{*}(\sigma_{0})=\sigma_{0}$ . This implies that $f$ is
locally conformal except at critical points, hence it is analytic. $\square$

Remark. Theorem 3.1 also follows from the idea by Sullivan ([Su, p.750, Theorem 9]).

4. CONSTRUCTION ( $\mathrm{p}_{\mathrm{R}\mathrm{O}\mathrm{O}\mathrm{F}}$ OF THEOREM B)

Part I : Construction of a model map $f_{0}$ .
Definition 4.1. For a closed concentric annulus $A$ with center 0, we use a notation

$A=A(r_{1}, r_{2})=\{z|r_{1}\leq|z|\leq r_{2}\}$ , $(0<r_{1}<r_{2})$

and
$\partial_{\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}A=\{z||z|=r_{1}\}$ , $\partial_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}A=\{z||z|=r_{2}\}$ ,

which denote the inner boundary and the otiier boundary of $A$ , respectively. We define
the modulus of $A$ by

mod (A) $= \frac{1}{2\pi}\log\frac{r_{2}}{r_{1}}$ .

The core curve Core (A) is the unique closed geodesic of $A$ and given by

Core (A) $=\{z||z|=\sqrt{r_{1}r_{2}}\}$ .

We first construct a model map $f_{0}$ which roughly describes the dynamics of what we
really want to construct. Let $k_{n}\in \mathrm{N}$ be given integers with $k_{0}\leq k_{1}\leq\cdots\leq k_{n}\leq\cdots$ . In

what follows we choose suitable $R_{n}\in \mathbb{R}$ with $0=R_{0}<R_{1}<R_{2}<\cdots$ and set

$A_{n}=A(R_{n}, R_{n+1})$ $(n\geq 0)$ .

(Note that here we abuse the notation $-A_{0}$ is a disk, not an annulus). Then we want to

construct a map $f_{0}$ : $\mathbb{C}arrow \mathbb{C}$ with the following dynamical properties:

Zo(z) $=a_{0}z^{k_{0}}$ , $z\in A_{0}\backslash \partial_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}A_{0}$

such that $f_{0}(A_{0})=A_{0}\cup A_{1}$ and
$f_{0}(z)=a_{n}z^{k_{n}}$ , $z\in A_{n}\backslash \partial_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}A_{n}$
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$a_{0}z^{k_{0}}$ $a_{1}z^{k_{1}}$ $a_{2}\mathrm{z}^{k_{2}}$ $a_{n}z^{k_{n}}$ $a_{n+1}z^{kn+1}$

$R_{0}$

FIGURE 1. The model map $f_{0}$ . Note that this is only a schematic picture
and in reality, mod $(A_{n})$ rapidly increases as $n$ tends to 00. The same is
also true for the following figures,

such that $f_{0}$ : $A_{n}arrow A_{n+1}$ is a covering map of degree $k_{n}$ . (See Figure 1, where we describe
the annuli $A_{n}$ as subsets of an infinite cylinder, instead of round annuli in the complex
plane.)

For this purpose, we have to choose appropriate $a_{n}\in \mathbb{C}^{*}$ and $R_{n}>0$ . So first we take
$a_{0}$ and $R_{1}$ so that $R_{2}=|a_{0}|R_{1}^{k_{0}}>R_{1}$ holds and $M_{1}=\exp$ ( $2\pi$ mod $(A_{1})$ ) is large enough
to be able to apply Proposition 4.1 in the next part. (Actually we have to choose so that
mod $(A_{1})>m_{0}$ , where $m_{0}$ is the constant in Proposition 4.1.) Once the constants $a_{0}$ , $R_{1}$

and $k_{n}$ $(n \in \mathrm{N})$ are chosen, then the constants $a_{n}\in$ C’ $(n\geq 1)$ and $R_{n}>0(n\geq 2)$ are
determined inductively as follows: Define $M_{n}>0$ by

$M_{1}=\exp(2\pi \mathrm{m}\mathrm{o}\mathrm{d} (A_{1}))$ , $M_{n+1}=M_{n^{n}}^{k}/(n\geq 1)$

and set
$R_{n+1}=M_{n}R_{n}(n\geq 1)$ .

Also take $a_{n}\in \mathbb{C}^{*}$ with the condition
$R_{n+1}=|a_{n}|R_{n}^{k_{n}}$ .

Note that only $|a_{n}|$ is determined by the condition above and we can choose $\arg a_{n}$ freely.
Then it is easy to see that

$\lim_{|z\nearrow R_{n}}|f_{0}(z)|=\lim_{|z|[searrow] R_{n}}|f_{0}(z)|$ ,

because
$|f_{0}(z)|=|a_{n-1}z^{k_{n-1}}|arrow|a_{n-1}|R_{n}^{k_{n-1}}$ $(|z|\nearrow R_{n})$

and
$|a_{n-1}|R_{n^{n-1}}^{k}=|a_{n-1}|R_{n-1}^{k_{n-1}}M_{n-1}^{k_{n-1}}=R_{n}M_{n}=R_{n+1}$ ,

on the other hand we have
$|f_{0}(z)|=|a_{n}z^{k_{n}}|arrow|a_{n}|R_{n^{n}}^{k}=R_{n\cdot\vdash 1}$ $(|z|[searrow] R_{n})$ .

Hence $f_{0}$ itself is discontinuous on $|z|=R_{n}$ but the map $|f_{0}|$ : $\mathbb{C}arrow \mathbb{R}$ is continuous.
According to Lemma 2.1, in general, $f^{n}$ goes to oo on a multiply connected wandering
domain $D$ and $f^{n}(D)$ is mapped to an “outer” region by $f$ . So our $f_{0}$ indeed satisfies this
situation.

Part II : Construction of a quasiregular map $f_{1}$ from the model map $f_{0}$ .
Now we modify the map $f_{0}$ to construct a new quasiregular map $f_{1}$ and then perform

the quasiconformal surgery to obtain the desired map $f$ . First we put $k_{n}=n+1$ . For



115
MASASHI KISAKA $(*\Re \mathrm{i}\mathrm{E}\mathfrak{B})$ AND MITSUHIRO SHISHIKURA $(_{\backslash }^{\wedge},’\ovalbox{\tt\small REJECT}\Leftrightarrow;^{\backslash }*\ulcorner \mathrm{A})$

each $n$ we replace $f_{0}$ with some different polynomial around some annulus containing the
circle $|z|=R_{n}$ and glue this polynomial and the original map $f_{0}$ together by interpolation.
More precisely we prepare the following proposition.

Proposition 4.1. (1) $Lei$ $A$ , $A’$ and $\hat{A},\hat{A}’$ be two pairs of concentric round annuli with
center 0 which satisfy

$\partial_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}A=\partial_{\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}A’=\{z||z|=R\}$, $\partial_{\mathrm{o}\mathrm{u}\mathrm{t}\mathrm{e}\mathrm{r}}\hat{A}=\partial_{\mathrm{i}\mathrm{n}\mathrm{n}\mathrm{e}\mathrm{r}}\hat{A}’=\{z||z|=\hat{R}\}$ ,

and
$\mathrm{m}\mathrm{o}\mathrm{d} (\hat{A})=k\cdot$ $\mathrm{m}\mathrm{o}\mathrm{d} (A)$ , $\mathrm{m}\mathrm{o}\mathrm{d} (\hat{A}’)=(k+1)\cdot$ $\mathrm{m}\mathrm{o}\mathrm{d} (A’)$ .

Let $F_{A}$ : $Aarrow\hat{A}$ , $F_{A}(z)=c_{A}z^{k},$ $(k\geq 2)$ be a covering map of degree $k$ which maps $A$ onto
A. Similarly let $F_{A’}$ : $A’arrow\hat{A}’$ , $F_{A’}(z)=c_{A’}z^{k+1}$ , $(k\geq 2)$ be a covering map of degree
$k+1$ which maps $A’$ onto $\hat{A}’$ . For the annulus $A$ , take annuli $B^{\mathfrak{g}}(A)$ , $E\#(A)$ , $E^{\mathrm{b}}(A)$ and
$B^{\mathrm{b}}(A)$ as in Figure 2 such that

mod $(B^{8}(A))=$ mod $(E^{\mathfrak{g}}(A))=$ mod $(E^{\mathrm{b}}(A))=$ mod $(B^{\mathrm{b}}(A))=\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (A)}$ (4.1)

and define
$A^{-}=A\backslash (B^{\beta}(A)\cup E^{\mathfrak{p}}(A)\cup E^{\mathrm{b}}(A)\cup B^{\mathrm{b}}(A))$ .

Take similar annuli for each $A’,\hat{A}$ and $\hat{A}^{J}$ . Then there exists a constant $m_{0}>0$ such
that if mod $(A)>m_{0}$ and mod $(A’)>m_{0}$ , then there exists a quasiregular map

$g$ : $A^{-}\cup E^{\mathrm{b}}(A)\cup B^{\mathrm{b}}(A)\cup B^{\mathfrak{g}}(A’)\cup E\#(A’)\cup A^{\prime-}arrow \mathbb{C}$

which satisfies the following conditions (I) $\sim(\mathrm{I}\mathrm{I}\mathrm{I})$ :

(I-a) $g=F_{A}$ on $A^{-}$ and $g=F_{A’}$ on $A^{\prime-}$

(1-a) $g$ is holomorphic on int $B=$ int(B $\mathrm{b}(A)$ $\cup B\#(A’)$ ) with a unique critical point
$\zeta\in B^{\mathrm{b}}(A)$ . Also $g$ satisfies $g(()=\hat{R}$ and $g(R)=0$ .

(I-c) $g$ is $K$ quasiregular on iut $E=\mathrm{i}\mathrm{n}\mathrm{t}(E^{\mathrm{b}}(A)\cup E\#(A’))$ and the maximal dilatation
$K_{g}$ satisfies

$K=K_{g}$ $\leq$ $\max$ ( $1+ \frac{2}{\sqrt{k\cdot \mathrm{m}\mathrm{o}\mathrm{d} (A)}}$ , $1+ \frac{2}{\sqrt{(k+1)\cdot \mathrm{m}\mathrm{o}\mathrm{d} (A’)}}$) (4.2)

$=$ $\max$ ( $1+ \frac{2}{\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (\hat{A})}}$

,
$1+ \frac{2}{\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (\hat{A}’)}}$ ).

(I-a) $g$ Core $(A^{-}))$ $=$ Core $(\hat{A}^{-})$ . Similarly, $g$ Core $(A^{\prime-}))$ $=$ Core $(\hat{A}^{\prime-})$ .

(Il-b) $g(A^{-})$
$\subset\hat{A}^{-}$ and this inclusion is essential That is, $g(A^{-})$ is an annulus

in $\hat{A}^{-}$ anci its core curve is not 0-homotopic in $\hat{A}^{-}$ Similarly, $g(A^{\prime-})\subset\hat{A}^{\prime-}$

essentially.

(III-a) $g(E\#(A’))\subset E\#(\hat{A}’)\cup\hat{A}^{\prime-}$ essentially.

(III-b) $g(E^{\mathrm{b}}(A))$ $\subset A^{-}\cup E^{\mathrm{b}}(\hat{A})$ essentially.

(2) In the case of $k=1$ , the same conclusion holds if we replace the condition (4.1) for
the annulus $A$ with

mod $(E^{\mathrm{b}}(A))=\mathrm{m}\mathrm{o}\mathrm{d} (B^{\mathrm{b}}(A))=\mathrm{m}\mathrm{o}\mathrm{d}$
$(B^{\#}(A))=\mathrm{m}\mathrm{o}\mathrm{d} (E^{\#}(A))=2\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (A)}$ . (4.3)

(Note that we need not change the conditions (4.1) for the annuli $A’$
)

$A\wedge and$ $\hat{A}’.)$
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FIGURE 2. Interpolation between the two maps $F_{A}$ and $F_{A’}$ . We glue these
two maps together in a neighborhood of the circle $\{z||z|=R\}$ .

Remark. Note that $g(B)$ covers not only a neighborhood of $\{|z|=\hat{R}\}$ but also both $\hat{A}$

and the bounded component of $\mathbb{C}\backslash \hat{A}$.

Now we apply Proposition 4.1 (1) to each pair of annuli $(A, A’)=(A_{n-1}, A_{n})$ and maps
$F_{A}(z)=a_{n-1}z^{n}$ , $\mathrm{F}\mathrm{A}(\mathrm{z})=a_{n}z^{n+1}(n=2,3, \cdots)$ to obtain a new map $g(z)=g_{n}(z)$ . In
this case, of course, $\hat{A}=A_{n}$ and $\hat{A}’=A_{n+1}$ . We use the following notations:

$B_{n}^{8}=B^{\mathfrak{g}}(A_{n})$ , $E^{\oint_{n}}=E^{\beta}(A_{n})$ , $E_{n+1}^{\mathrm{b}}=E^{\mathrm{b}}(A_{n})$ , $B_{n+1}^{\mathrm{b}}=B^{\mathrm{b}}(A_{n})$ .

Also we define
$B_{n}=B_{n}^{\mathfrak{d}}\cup B_{n}\#=B^{\mathrm{b}}(A_{n-1})\cup B^{\#}(A_{n})$ .

See Figure 3. Note that these notations are somehow different from what we have defined
in Proposition 4.1. Here we use “

$\#$
” and $” \mathrm{b}$

” with respect to the circle $\{z||z|=R_{n}\}$ so,
for example, the annuli $E_{n}^{\mathrm{b}}$ , $B_{n}$ and $E_{n}\#$ are located in this order as in Figure 3.

For $n=1$ , we consider the pair $(A_{0}^{0}, A_{1})$ rather than $(A_{0}, A_{1})$ . More precisely, we take
$A_{0}^{0}$ to be a preimage of $A_{1}$ by the map $a_{0}z$ . Then we have mod $(A_{0}^{\phi})=$ mod $(A_{1})$ . Define
subannuli $B\#$ , $E^{\oint_{0}}$ , $A_{0}^{-}$ , $E_{1}^{\mathrm{b}}$ and $B_{1}^{\mathrm{b}}$ such that

$A_{0}^{\theta}=B_{0}^{\#}\cup E_{0}^{\#}\cup A_{0}^{-}\cup E_{1}^{\mathrm{b}}\cup B_{1}^{\mathrm{b}}$,

mod $(E_{1}^{\mathrm{b}})=$ mod $(B_{1}^{\mathrm{b}})=$ mod $(B^{\oint_{0}})=$ mod $(E_{0}^{\#})=2\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (A_{0}^{0})}(=2\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (A_{1}}))$.

Then we apply Proposition 4.1 (2) instead of (1) to the pair $(A_{0}^{0}, A_{1})$ to construct $g_{1}(z)$ .
Erom the condition (I-b), it follows that the critical point $\zeta_{n}$ of $g_{n}$ satisfies $g_{n}(\zeta_{n})=R_{n+1}$

and $g_{n+1}(R_{n+1})=0$ . Also $g_{n}$ satisfies an estimate on its maximal dilatation which is
obtained from (4.2) in Proposition 4.1. Since we take $a_{0}$ so that $R_{2}=|a_{0}|R_{1}>R_{1}$ , $z=0$

is a repelling fixed point of $f_{0}$ .
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FIGURE 3. Construction of $f_{1}$ from $f_{0}$ by interpolation.

Then define a new map $f_{1}$ by

$f_{1}(z)=\{$

$f_{0}(z)$ $z\in A_{0}\backslash (E_{1}^{\mathrm{b}}\cup B_{1}^{\mathrm{b}})$

$f_{0}(z)$ $z\in A_{n}^{-}$ $n=1$ , 2, $\cdots$

$gn(z)$ $z\in E_{n}^{\mathrm{b}}\cup B_{n}\cup E_{n}\#$ $n=1,2$ , $\cdots$

Part III : Application of the quasiconformal surgery to $f_{1}$ .
The new map $f_{1}$ is a quasiregular map with the desired dynamical properties. Hence

we can apply the quasiconformal surgery (Theorem 3.1) to obtain a transcendental entire
function $f$ with the desired properties. More precisely, the following holds:

Proposition 4.2. The new map $f_{1}$ satisfies the following conditions (I) $\sim(\mathrm{I}\mathrm{V})$ :

(I-a) $f_{1}(z)=a_{n}z^{n+1}$ on $A_{n}^{-}$ .

(I-b) $f_{1}$ is holomorphic on $B_{n}$ .

(I-c) $f_{1}$ is $K_{n}$ - quasiregular on $E_{n}=E_{n}^{\mathrm{b}}\cup E_{n}\#$ with

$K_{n} \leq 1+\frac{2}{\sqrt{n!\cdot \mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}}$ .

(I-d) $f_{1}$ has a critical point $\zeta_{n}\in B_{n}^{\mathrm{b}}$ uthich satisfies $f_{1}(\zeta_{n})$ $=R_{n+1}$ and $f_{1}^{2}(\zeta_{n})=0$

$(n=1, 2, \cdots)$ . $\{\zeta_{n}\}_{n=1}^{\infty}$ is the set of all critical points of $f_{1}$ .

(I-a) $f_{1}$ (Core $(A_{n}^{-})$ ) $=\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{e}(A_{n+1}^{-})$ .
(II-b) $f_{1}(A_{n}^{-})\subset A_{n+1}^{-}$ and this inclusion is essential

(III-a) $f_{1}(E_{n}\#)\subset E^{\oint_{n}}+1\cup A_{n+1}^{-}$ essentially.

(II-b) $f_{1}(E_{n}^{\mathrm{b}})\subset A_{n}^{-}\cup E_{n+1}^{\mathrm{b}}$ essentially.

(IV) $f_{1}(B_{n}) \subset\bigcup_{j=0}^{n+1}A_{j}$ .

Hence there exists a quasiconformal mapping $\varphi$ such that $f=\varphi\circ f_{1}\circ\varphi^{-1}$ is holomorphic

and entire.

Proof All the conditions (I) $\sim$ (III) are obtained by applying Proposition 41 to each pair
of annuli $(A, A’)=(A_{n-1}, A_{n})$ and maps $F_{A}(z)=a_{n-1}z^{n}$ , $F_{A’}(z)=a_{n}z^{n+1}(n=1, 2, \cdots)$ .
Note that

$K_{n} \leq 1+\frac{2}{\sqrt{\mathrm{m}\mathrm{o}\mathrm{d} (A_{n})}}=1+\frac{2}{\sqrt{n!\cdot \mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}}$.
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Condition (IV) holds from the construction. Then (Il-b), (Ill-a) and (III-b) show that
for any $z\in \mathbb{C}$ the $f_{1}$-orbit of $z$ passes $E_{n}$ at most once for every $n$ . Also from (I-c), $f_{1}$ is
$K_{n}$-quasiregular on $E_{n}$ with

$K_{\infty}= \prod_{n=1}^{\infty}K_{n}\leq\prod_{n=1}^{\infty}(1+\frac{2}{\sqrt{n!\cdot \mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}})<\infty$ .

Finally $f_{1}$ is holomorphic outside $\bigcup_{n=1}^{\infty}E_{n}$ by (Iv) and (i-b). Therefore we can apply
Theorem 3.1 to the map $f_{1}$ and hence there exists a $K_{\infty}$-quasiconformal map $\varphi$ such that
$f=\varphi\circ g\circ\varphi^{-1}$ is a transcendental entire function. $\square$

Part IV : The map f has the desired properties.

Let $\overline{A}_{n}=\varphi(A_{n}),\tilde{B}_{n}=\varphi(B_{n})$ , $\cdots$ etc. Then $f$ satisfies exactly the same conditions
for $\tilde{A}_{n\}}\tilde{B}_{n}$ etc in Proposition 4.2 as $f_{1}$ satisfies for An, $B_{n}$ , etc.

Lemma 4.3. The annuli $\tilde{A}_{n}^{-}$ (n $=1,$ 2, \cdots ) are contained in the Fatou set $F_{f}$ .

Proof. By the construction, we have $f(\tilde{A}_{n}^{-})\subset\tilde{A}_{n+1}^{-}$ and the iterates tend to $\infty$ uniformly

on $\overline{A}_{n}^{-}$ , hence $\tilde{A}_{n}^{-}$ is contained in $F_{f}$ . $\square$

Let us denote by $D_{n}$ the Fatou component containing $\tilde{A}_{n}^{-}(n\geq 1)$ .

Lemma 4.4. $D_{n}\neq D_{n+1}$ .

FIGURE 4
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Proof. Suppose $\tilde{A}_{n}^{-}$ and $\tilde{A}_{n+1}^{-}$ belong to the same Fatou component $D=D_{n}=D_{n+1}$ .
Take $z_{1}\in$ Core $(\tilde{A}_{n}^{-})$ and $z_{2}\in$ Core $(\overline{A}_{n+1}^{-})$ . See Figure 4. Then $f^{k}(z_{1})\in$ Core $(\tilde{A}_{n+k}^{-})$ and
$f^{k}(z_{2})\in$ Core $(\tilde{A}_{n+k+1}^{-})$ from Proposition 4.2 (Il-a). By the construction 0 ( $D$ , since 0 is
a repelling fixed point. Also for $m\geq 1$ , the critical point $\zeta_{m}$ of $f$ satisfies $\zeta_{m}\in B_{m}\backslash D$ ,
since $f^{2}(\zeta_{m})=0$ . Let $\psi_{m}(z)=z/\zeta_{m}$ then

$\psi_{n+k+1}\circ f^{k}(D)\subset\Omega\equiv\hat{\mathbb{C}}\backslash \{0,1, \infty\}$.

Therefore
$d_{\Omega}(\psi_{n+k+1}\circ f^{k}(z_{1}), \psi_{n+k+1}\circ f^{k}(z_{2}))\leq d_{D}(z_{1}, z_{2})$ ,

where $d_{\Omega}$ and $d_{D}$ are the Poincare distances of $\Omega$ and $D$ , respectively. By the construction
we have

$\psi_{n+k+1}\circ f^{k}(z_{1})arrow 0$ $(karrow\infty)$ .

In fact, $\{0, f^{k}(z_{1})\}$ and $\{\zeta_{n+k+1}, \infty\}$ are separated by an annulus which is the outer half of
$\overline{A}_{n+k}^{-}\backslash$ Core $(\overline{A}_{n+k}^{-})$ , and its modulus tends to oo as $karrow\infty$ . Similarly $\psi_{n+k+1}\mathrm{o}f^{k}(z_{2})arrow\infty$

holds. Hence it follows that
$d_{\Omega}(\psi_{n+k+1}\mathrm{o}f^{k}(z_{1}), \psi_{n+k+1}\mathrm{o}f^{k}(z_{2}))arrow\infty$ .

This contradicts with the previous statement, $\square$

Remark. This Lemma also follows immediately from the general result Theorem 1.3 by
Baker, His proof of Theorem 1.3 is based on the construction of the hyperbolic metric
and so the main idea of our proof of Lemma 4.4 is very similar to his.

Proposition 4.5. The Fatou component $D_{n}$ containing $\tilde{A}_{n}^{-}$ can be written as

$D_{n}=\mathrm{U}^{\tilde{A}_{n,k)}^{-}}k=0\infty$ (4.4)

where $\tilde{A}_{n,k}^{-}$ is the component of $f^{-k}(\tilde{A}_{n+k}^{-})$ containing $\overline{A}_{n}^{-}$ . Moreover if all $D_{n}$ do not

contain critical points, then they are doubly connected, $\mathrm{i}.e$ . the eventual connectivity of
$D_{n}$ is 2.

Note that (4.4) is an increasing union, since $f(\tilde{A}_{n+k}^{-})\subseteq\overline{A}_{n+k+1}^{-}$ . In order to prove Propo-

sition 4.5 we need some lemmas.

Lemma 4.6. Let $a$ , $b>0$ and $A=\{z\in \mathbb{C}|0<{\rm Re} z<a\}/\sim$ , where $z\sim z+nb\mathrm{i}(n\in \mathbb{Z})$ .

Suppose that $\varphi$ is a quasiconformal mapping from $A$ onto another annulus $A’$ . Denote

ps $= \frac{\partial\varphi}{\partial\overline{z}}/\frac{\partial\varphi}{\partial z}$ . (In other words, $A’$ can be considered as an annulus $A$ with the conformal
structure $|dz+\mu(z)d\overline{z}|.)$ Then the moduli of $A$ and $A’$ satisfy

$\frac{\int\int_{A}1dxdy}{\int\int_{A}K_{\mu}(z)dxdy}\leq\frac{\mathrm{m}\mathrm{o}\mathrm{d} (A’)}{\mathrm{m}\mathrm{o}\mathrm{d} (A)}\leq\frac{\int\int_{A}K_{\mu}(z)dxdy}{\int\int_{A}1dxdy}$,

where $K_{\mu}(z)= \frac{1+|\mu(z)|}{1-|\mu(z)|}$ .

In particular, if $K_{\mu}(z)=1$ outside a measurabte set $X\subset A$ and $K_{\mu}(z)\leq K$ on $X$ ,

then
$\frac{\mathrm{m}\mathrm{o}\mathrm{d} (A’)}{\mathrm{m}\mathrm{o}\mathrm{d} (A)}\leq K\frac{|X|}{|A|}+(1-\frac{|X|}{|A|})$ ,

where $|X|$ (resp. $|A|$ ) denotes the Lebesgue measure of $X$ (resp. $A$ ).
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The first half is called Grotzsch inequality and the second half is an easy consequence.
See [GL] \S 1.4, the proof of Proposition 3. (The proof was for a rectangle but it can be
easily adapted for annuli of the above form.)

In the construction in Part III, we had

$\frac{|A_{n}^{+}|}{|A_{n}^{-}|}arrow 1$ $(.narrow\infty)$ ,

where
$A_{n}^{+}=B_{n}^{\mathrm{b}}\cup A_{n}\cup B_{n+1}^{\#}$

and $|\cdot|$ denotes the Lebesgue measure in the cylinder model $\mathbb{C}/2\pi \mathrm{i}\mathbb{Z}$ . Since $\varphi$ is conformal
on $A_{n}^{-}$ , it follows from Lemma 4.6 that

$\frac{\mathrm{m}\mathrm{o}\mathrm{d} (\tilde{A}_{n}^{+})}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{n}^{+})}arrow 1$ $(narrow\infty)$ .

Combining with mod $(\overline{A}_{n}^{-})=$ mod $(A_{n}^{-})$ and mod $(A_{n}^{+})/\mathrm{m}\mathrm{o}\mathrm{d} (A_{n}^{-})$ $arrow 1(narrow\infty)$ , we have:

Corollary 4.7.

$\frac{\mathrm{m}\mathrm{o}\mathrm{d} (\tilde{A}_{n}^{+})}{\mathrm{m}\mathrm{o}\mathrm{d} (\tilde{A}_{n}^{-})}arrow 1$ (n $arrow\infty)$ .

Lemma 4.8. For $m>0$ and $L>0$ , there exists an $\epsilon=\epsilon(m, L)>0$ such that if $A_{1}$ is an
essential subannulus of an annulus A2 with $m\leq$ mod $(A_{1})\leq\infty$ and mod $(A_{2})/\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})<$

$1+\epsilon$ , then any point $z\in A_{2}$ with $d_{A_{2}}$ ( $z$ , Core $(A_{1})$ ) $\leq L$ belongs to $A_{1}$ .

Proof. Fix constants $m>0$ and $L>0$ . Suppose that $A_{1}$ is an essential subannulus of
an annulus $A_{2}$ with $m\leq$ mod $(A_{1})\leq$ oo and that there exists a point $z_{0}\in A_{2}\backslash A_{1}$ with
$d_{A_{2}}$ ( $z_{0}$ , Core $(A_{1})$ ) $\leq L$ . We want to show that mod $(A_{2})/\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})$ cannot be arbitrarily
close to 1.

Choose $z_{1}\in$ Core $(A_{1})$ such that $d_{A_{2}}(z_{0}, z_{1})=d_{A_{2}}$ ( $z_{0}$ , Core $(A_{1})$ ). There exist universal
covering maps $\pi_{j}$ : $\mathrm{D}$ $arrow A_{j}$ with $\pi_{j}(0)=z_{1}(j=1, 2)$ . Since $A_{1}$ is essential in $A_{2}$ , there
exists a lift $\psi$ : $\mathrm{D}$ $arrow \mathrm{D}$ of the inclusion map $\iota$ : $A_{1}\mathrm{c}arrow A_{2}$ such that $\pi_{2}\circ\psi=\iota\circ\pi_{1}=\pi_{1}$ and
$\psi(0)=0$ . There exists a point $\zeta_{1}\in \mathrm{D}$ such that the segment $[0, \zeta_{1}]$ maps onto Core $(A_{1})$

by $\pi_{1}$ , $d_{\mathrm{D}}(0, \zeta_{1})=$ lengthy (Core $(A_{1})$ ) and $\pi_{1}(\zeta_{1})=z_{1}$ . Let $\zeta_{2}=\psi((_{1})$ , then $\pi_{2}((_{2})=z_{1}$

and $|\zeta_{2}|\leq|\zeta_{1}|$ . There is also a point $\zeta_{0}\in \mathrm{D}$ such that $\pi_{2}(\zeta_{0})=z_{0}$ , $d_{\mathrm{D}}(0, \zeta_{0})\leq L$ and
$\zeta_{0}\not\in$ Image $\pi_{2}\circ\psi$ .

It is well known [$\mathrm{M}$ , p.12] that

$1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{A_{j}}$(Core $(A_{j})$ ) $= \frac{\pi}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{j})}$ $(j=1,2)$ .

It follows from the Schwarz-Pick Theorem ([A2, p.3 Theorem 1-1]) and the definition of
geodesies that

$\frac{\pi}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{2})}=1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{A_{2}}$(Core $(A_{2})$ ) $\leq d_{\mathrm{I})}(\mathrm{O}, \zeta_{2})\leq 1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{A_{2}}$ (Core $(A_{1})$ )

$\leq 1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{A_{1}}$ (Core $(A_{1})$ ) $=d_{\mathrm{D}}(0, \zeta_{1})=\frac{\pi}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}$ .
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Hence we have
$\frac{\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{2})}\leq\frac{d_{\mathrm{D}}(0,\zeta_{2})}{d_{\mathrm{D}}(0,\zeta_{1})}\leq 1$ and $d_{\mathrm{D}}(0, \zeta_{1})\leq\frac{\pi}{m}$ .

Define $\psi_{0}(0)=\psi’(0)$ and $\psi_{0}(z)=\psi(z)/z(0\neq z\in \mathrm{D})$ . The Schwarz Lemma applied
to $\psi$ implies $|\psi_{0}(z)|<1$ since $\psi$ is not surjective. We have

$| \psi_{0}(\zeta_{1})|=\frac{|\zeta_{2}|}{|\zeta_{1}|}\geq\frac{d_{\mathrm{D}}(0,\zeta_{2})}{d_{\mathrm{D}}(0,\zeta_{1})}\geq\frac{\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})}{\mathrm{m}\mathrm{o}\mathrm{d} (A_{2})}$ ,

where the left inequality follows from the fact that the coefficient $\frac{2}{1-|z|^{2}}$ of the Poincare’
metric in $\mathrm{D}$ is increasing in $[0, 1)$ . Since

$d_{\mathrm{D}}( \psi_{0}(0), \psi_{0}(\zeta_{1}))\leq d_{\mathrm{D}}(0, \zeta_{1})\leq\frac{\pi}{m}$,

there exists a function $\delta(\epsilon, m)>0$ such that if mod (A2) $/\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})<1+\epsilon$ then $|\psi’(0)|=$

$|\psi_{0}(0)|>1-\delta(\epsilon, m)$ and $\delta(\epsilon, m)arrow \mathrm{O}$ as $\epsilon$ $arrow 0$ .

Now decompose $\psi$ as $\psi=\psi_{3}\circ\psi_{2}\circ\psi_{1}$ , where

$\psi_{3}(z)=\frac{z+\zeta_{0}}{1+\overline{\zeta_{0}}z}$ : I$[)$ $arrow \mathrm{D}$

is a Mobius transformation sending $-\zeta_{0\}}0$ to 0, $\zeta_{0}$ ,
$\psi_{2}$ : $\mathrm{D}^{*}\equiv \mathrm{D}$ $-\{0\}\mathrm{L}arrow$ ID

is the inclusion and $\psi_{1}$ : $\mathrm{D}$ $arrow \mathrm{D}$’ is a holomorphic map sending 0 to $-\zeta_{0}$ and its image

avoids 0. By the Schwarz-Pick Theorem, we have
$|\psi’(0)|$ $=$ $||\psi’(0)||_{\mathrm{D},\mathrm{D}}$

$=$ $||\psi_{3}’(-\zeta_{0})||_{\mathrm{D},\mathrm{D}}\cdot||\psi_{2}’(-\zeta_{0})||_{\mathrm{D}^{*},\mathrm{D}}$ . $||\psi_{1}’(0)||_{\mathrm{D},\mathrm{D}^{*}}$

$\leq$ $||\psi_{2}’(-\zeta_{0})||_{\mathrm{D}^{*},\mathrm{D}}$ ,

where $||\cdot$ $||_{X,Y}$ denotes the norm of the derivative with respect to the Poincare’ metric of

the domain $X$ and that of the range $Y$ . Since the Poincare’ metric of $\mathrm{D}^{*}$ is $\frac{|dz|}{|z|\log(1/|z|)}$ , we
can write down explicitly as

$|| \psi_{2}’(-\zeta_{0})||_{\mathrm{D}^{\mathrm{r}},\mathrm{D}}=\frac{2|\zeta_{0}|\log(1/|\zeta_{0}|)}{1-|\zeta_{0}|^{2}}=\frac{t}{\sinh t}$ with $t=\log(1/|\zeta_{0}|)$ .

Hence there exists $\lambda(L)<1$ such that if $d(0, \zeta_{0})\leq L$ then $|\psi’(0)|\leq||\psi_{2}’(-\zeta_{0})||_{\mathrm{D}^{*},\mathrm{D}}\leq\lambda(L)$ .

Finally, choose $\epsilon>0$ so that $1-\delta(\epsilon, m)>\lambda(L)$ . If $\mathrm{m}\mathrm{o}\mathrm{d} (A_{2})/\mathrm{m}\mathrm{o}\mathrm{d} (A_{1})<1+\epsilon$, we
have a contradiction, therefore we have thus proved the lemma. $\square$

Proof of Proposition 4.5. The connected component of $f^{-k}(\tilde{A}_{n+k}^{-})$ containing $\tilde{A}_{n}^{-}$ must be

contained in $D_{n}$ . Hence the right hand side is contained in the left hand side.

In order to show the converse, take any point $z_{0}\in D_{n}$ . Join $z_{0}$ with Core $(\tilde{A}_{n}^{-})$ by $\mathrm{a}$

smooth curve $\gamma$ in Dn. See Figure 5. Let $L=1\mathrm{e}\mathrm{n}\mathrm{g}\mathrm{t}\mathrm{h}_{D_{n}}(\gamma)$ . Note that $f^{k}(\mathrm{C}\mathrm{o}\mathrm{r}\mathrm{e}(\tilde{A}_{n}^{-}))=$

Note $(\tilde{A}_{n+k}^{-})$ by Proposition 4.2 (II)(i) and that $D_{n+k}\subset\tilde{A}_{n+k}^{+}$ by Lem ma 4,4. Then by

the Schwarz-Pick Theorem again, for $z_{0}\in\gamma$ , we have

$d_{\tilde{A}_{n+k}^{+}}$ ( $f^{k}(z_{0})$ , Core $(\tilde{A}_{n+k}^{-})$ ) $\leq d_{D_{n+k}}$ ( $f^{k}(z_{0})$ , Core $(\tilde{A}_{n+k}^{-})$ ) $\leq L$ , $(k\geq 0)$ .

Since obviously mod $(\tilde{A}_{n+k}^{-})arrow$ oo $(karrow\infty)$ , we can apply Lemma $4.\mathrm{S}$ with $A_{1}=\overline{A}_{n+k}^{-}$

and $A_{2}=\tilde{A}_{n+k}^{+}$ together with Corollary 4.7 and conclude that there exists $k_{0}\geq 0$ such
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that $f^{k}(\gamma)\subset\tilde{A}_{n+k}^{-}$ for $k\geq k_{0}$ . This implies that for large $k$ , $\gamma$ (and hence $z_{0}$ ) is contained
in $\tilde{A}_{n,k}^{-}$ . Thus $D_{n}$ is contained in $\bigcup_{k=0}^{\infty}\tilde{A}_{n,k}^{-}$ .

Moreover, if all $D_{n}$ do not contain critical points, then $\tilde{A}_{n,k}^{-}$ is doubly connected.

Since $\tilde{A}_{n,k}^{-}\subset\tilde{A}_{n,k+1}^{-}$ essentially, $D_{n}$ is also doubly connected as an increasing union of
annuli. $\square$

$1^{f^{k}}$

FIGURE 5

By the construction, all the critical points of $f$ are mapped to 0 by $f^{2}$ . Since 0 is a
repelling fixed point, which is in $J_{f)}$ all the critical points are in $J_{f}$ and hence all $D_{n}$ do
not contain critical points. Therefore $D_{n}$ is doubly connected for every $n$ from Proposition
4.5. This completes the proof of Theorem B. $\square$
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