
164

Non-landing of stretching rays for real cubic
polynomials and real biquadratic polynomials

東京工芸大学 中根 静男 (Shizuo Nakane)
Tokyo Polytechnic University

This is a joint work with Yohei Komori and details will be published in Komori-
Nakane [KN] .

1 Stretching rays
Let $P_{d}$ be the family of monic centered polynomials of degree $d\geq 2$ . For $P\in P_{d}$ ,
let $\varphi_{P}$ be its Bottcher coordinate and $h_{P}(z)=\log_{+}|\varphi_{P}(z)|$ be the Green function
for $P$. For a complex number $u\in \mathbb{H}_{+}=\{u=s-hit\in \mathbb{C}, s>0\}$ , put $f_{u}(z)=z|z|^{u-1}$

and we define a $P$-invariant ahnost complex structure $\sigma_{u}$ by

$\sigma_{u}=\{$

$(f_{u}\circ\varphi_{P})^{*}\sigma_{0}$ on $U_{P}$ ,
$\sigma_{0}$ on $K(P)$ .

Then, by the Measurable Riemann Mapping Theorem, $\sigma_{u}$ is integrated by a qc-map
$F_{u}$ and $P_{u}=F_{u}\circ P\circ F_{u}^{-1}\in P_{d}$ . Thus we define a holomorphic map $W_{P}$ : $\mathbb{H}_{+}\prec \mathcal{P}_{d}$

by $W_{P}(u)=P_{u}$ . This $\mathrm{q}\mathrm{c}$-deformation, what we call wringing, is the same as the
Branner-Hubbard motion in the talc of A. Douady [A], See also Branner [B] and
Branner-Hubbard [BH].

The Bottcher coordinate $\varphi_{P_{u}}$ of $P_{u}$ is equal to $f_{u}\circ\varphi_{P}\circ F_{u}^{-1}$ , Since $P_{u}$ is hybrid
equivalent to $P$ , it holds $P_{u}\equiv P$ for $P\in C_{d}$ , the connectedness locus. For $P\in \mathcal{E}_{d}$ ,
the escape locus, we define the stretching ray through $P$ by

$R(P)$ $=W_{P}(\mathbb{R}_{+})=\{P_{S\gamma}.s \in \mathbb{R}_{+}\}$ .

In case $d=2$ , stretching rays coincide with the external rays for the Mandelbrot
set. Because of the conjecture that the Mandelbrot set is locally connected, it seems
that all the external rays of the Mandelbrot set land. Here we show the existence
of non-landing stretching rays for real cubic polynomials.

2 Stretching rays for real cubic polynomials
We consider the family of real cubic polynomials :

$P(z)=P_{A,B}(z)=z^{3}-3Az+\sqrt{B}$ ; $A$ , $B>0$.
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We restrict our attention to the first quadrant of the parameter space. Then the
connectedness locus $\mathrm{C}_{3}(\mathbb{R})$ is bounded by two real algebraic curves :

$Per_{1}(1)$ $=$ $\{B=4(A+1/3)^{3};0\leq A\leq 1/9\}$ ,
Preper{l) 1 $=$ $\{B=4A(A-1)^{2};1/9\leq A\leq 1\}$ .

For $Q\in Per_{1}(1)$ , $Q$ has a parabolic fixed point $\beta_{Q}=\sqrt{A+1}/3$ with multiplier 1.

Figure 1: Parameter space for real cubics

We investigate the landing properties of stretching rays in the region $\mathcal{R}_{0}$ : $B>$
$4(A+1/3)^{3}$ , that is, above the parabolic arc $Per_{1}(1)$ . This region is contained in
the shift locus $\mathrm{S}_{3}(\mathbb{R})$ , i.e. the locus where both critical points $\pm\sqrt{A}$ escape to $\infty$ .

We set $\zeta_{P}(z)=\frac{\log\log\varphi_{P}(z)}{\log 3}$ and define the B\"ottcher vector $\eta(P)$ for $P\in \mathrm{S}_{3}(\mathbb{R})$

by

$\eta(P)=\frac{\log h_{P}(-\sqrt{A})-\log h_{P}(\sqrt{A})}{\log 3}=\zeta_{P}(P(-\sqrt{A}))-\zeta_{P}(P(\sqrt{A}))$.

Lemma 2.1. On the stretching ray $R(P)$ through P $\in S_{3}(\mathbb{R})$ , $\eta(P_{s})$ is invariant

Thus each stretching ray in the shift locus $\mathrm{S}_{3}(\mathbb{R})$ is a level curve $\eta(P)=\eta$ of the
Bottcher vector map $P\vdasharrow\eta(P)$ , which we denote by $R(\eta)$ . So, we have an explicit
description of stretching rays and we can draw their pictures. See Figures 2 and 3.

3 Non-landing stretching rays
For $Q\in Per_{1}(1)$ , the immediate basin $B_{Q}$ of the parabolic fixed point $\beta_{Q}$ contains
both critical points $\pm\sqrt{A}$ and $J(Q\rangle$ $=\partial B_{Q}$ is a Jordan curve. Let $\phi_{Q,-}$ and $\phi_{Q,+}$ be
the attracting and repelling Fatou coordinates respectively normalized appropriately
so that they are symmetric with respect to the real axis. They satisfy $\phi q,\pm \mathrm{o}Q=$

$T_{1}\circ\phi_{Q,\pm}$ , where $T_{\alpha}(w)=w+$ ox is a translation by $\alpha$ . We define the Fatou vector
$\tau(Q)$ of $Q$ by $\tau(Q)=\phi_{Q,-}(-\sqrt{A})-\phi_{Q,-}(\sqrt{A})$.
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Figure 2: Parameter space for real cubics Figure 3: Oscillating stretching rays

Lemma 3.1. The Fatou vector gives u real analytic parametrization of $Per_{1}(1)$ .

Lemma 3.2. The stretching ray $R(\eta)$ with $\eta\in \mathbb{Z}$ lands at a map Q $\in Per_{1}(1)$ with
$\tau(Q)=\eta$ . Conversely, at a map $Q\in Per_{1}(1)$ with $\tau(Q)\in \mathbb{Z}$ , the stretching ray
$R(\eta)$ with $\eta=\tau(Q)$ lands.

Actually $R(k)$ is a real algebraic curve $P(-\sqrt{A})-P^{k+1}(\sqrt{A})=0$ for $k\geq 1$ .

Theorem 3.1. Suppose $\eta$ is not integral. Then the stretching ray $R(\eta)$ does not
land at any point on $Per_{1}(1)$ . Hence its accumulation set is a non-trivial arc on
$Per_{1}(1)$ .

4 Idea of proof
Let $A(Q)=\phi_{Q,+}(\Omega_{Q,+}-K(Q))/T_{1}$ be the annulus in the repe lhng Ecalle cylinder
$\phi_{Q,+}(\Omega_{Q,+})/T_{1}$ , bounded by the images of the Julia set $J(Q)$ . Note that $\zeta_{Q}$ maps
$\Omega_{Q,+}-K(Q)$ conformally onto a right half region I in the strip $\{|{\rm Im}\zeta|<\pi/(2\log 3)\}$

and satisfies $\zeta_{Q}\backslash \circ Q=T_{1}\circ(_{Q}$ there (the same functional equation as the Fatou
coordinates). This induces a flat annulus $A’(Q)=\{\zeta\in \mathbb{C}/\mathbb{Z}||{\rm Im}\zeta|<\pi/(2\log 3)\}$

of modulus $\pi/$ log3. Then the quotient map Qq : $A’(Q)arrow A(Q)$ of the map
$\phi_{Q,+}\circ\zeta_{Q}^{-1}$ : $\Sigmaarrow\Omega_{Q)}+-K(Q)$ gives a conform al equivalence between the annuli
$A’(Q)$ and $A(Q)$ . See Figure 4.

By virtue of the parabolic implosion analysis, we have the following.

Lemma 4.1. Suppose $R(\eta)$ lands at Q $\in Per_{1}(1)$ . Then $\psi Q(\zeta+[\eta])=\psi Q(\zeta)+$

$[\tau(Q)]$ holds for any \langle . Especially it follows $\tau(Q)=\eta$ .

Now, we give an idea of the proof of Theorem 3.1. In case $\eta\in \mathbb{R}-\mathbb{Q}$ , using
the fact that $\{[n\eta];n\in \mathbb{Z}\}$ is dense in $\mathbb{R}/\mathbb{Z}$ , we conclude that $A(Q)$ must be a flat
annulus. Then $J(Q)$ must be a real analytic curve. This contradicts the fact that
$J(Q)$ is not differentiable at any point on the inverse orbit of the parabolic fixed
point $\beta_{Q}$ .
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Figure 4: Annuli $A’(Q\rangle$ and $A(Q)$

In case $\eta=p/\iota:\in \mathbb{Q}-\mathbb{Z}$ , we need a more careful analysis (due to Weixiao Shen).
We use the fact th at $J(Q)$ is cusp at every point on the inverse orbit of $\beta Q$ . On
the other hand, th$1\mathrm{P}_{J}$ radial Julia set $J_{rad}(Q)$ is just the complem ent in $f(Q)$ of the
inverse $()\mathrm{r}\mathrm{b}\mathrm{i}\mathrm{l},\mathrm{s}$ of $\beta_{Q}$ . Lemma 4.1 says that $\phi_{Q,+}(J(Q))$ is invariant under translation
$T_{1/q}$ , which corresponds to multiplication of the external angles by $3^{1/q}\in \mathbb{R}-$ Q.
Let $z_{0}$ ; $J(Q)$ be the landing point of the external ray with angle $3^{-n}$ . Then it lies
on the inverse orbit of $\beta_{Q}$ and is a cusp. Then $z_{1}=\phi_{Q,+}^{-1}\circ T_{1/q}\circ\phi Q,+(zo)\in J(Q)$

is also a cusp but it has irrational external angle $3^{1/q-n}$ , hence $z_{1}\in J_{rad}(Q)$ . By
the Koebe distortion theorem, it follows that, there exists a $k<1$ so that, for any
$r<<1$ , $\mathrm{D}(z_{1}, r)-K(Q)$ contains a disk of radius $kr$ . This contradicts the fact that
$z_{1}$ is a cusp.

5 Stretching rays for real biquadratic polynomials

In the above proof, we essentially use the fact that $3^{1/q}$ is irrational for any $q\geq 2$ .

This argument does not work for degree four polynomials. In fact, as was pointed
out by Milnor, there exists a landing stretching ray with B\"ottcher vector 1/2
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Consider the family of real biquadratic polynomials :

$P_{a,b}(z)=(z^{2}+a)^{2}+b$ , $(a, b)\in \mathbb{R}^{2}$ .

Each $P_{a,b}$ has two critical orbits and we can define B\"ottcher vectors as above. The
connectedness locus of this family is surrounded by three algebraic curves :

$\bullet Per_{1}^{+}(1):-\frac{\sqrt[3]{2}}{4}\leq a\leq\frac{7\sqrt[3]{4}}{16}$,

$\bullet$ Preper{l)l : $b=-a^{2}+\sqrt{-2a}$ , $-2 \leq a\leq-\frac{\sqrt[3]{2}}{4}$ ,

$\bullet$ $Pre^{l}per_{(\mathit{2})1}$ : $a=-b^{2}+\sqrt{-2b}$, $-2 \leq b\leq-\frac{\sqrt[3]{2}}{4}$.

Here the curve $Per_{1}^{+}(1)$ is one of the two connected components of the parabolic
locus :

$Per_{1}(1)$ : $a^{2}b^{2}+a^{3}+b^{3}+ \frac{9ab}{8}-\frac{27}{256}=0$ ,

and is characterized by the locus where the $\beta$-fixed point (i.e. the maximum real
fixed point) is parabolic with multiplier one. This curve is also parametrized by the
Fatou vector.

Figure 5: Parameter space for real biquadratics

Another com ponent Perf (1) of the parabolic locus is not related to the boundary
of the connectedness locus. See Figure 5.

We consider the stretching rays in the region $\mathcal{R}_{0}$ above this curve. By the same
argument as for cubic polynomials, we can show the following. See Figures 6 and 7.

Theorem 5.1. The stretching ray with an integral B\"ottcher vector lands at a map
with the same Fatou vector. The stretching ray with Bottcher vector y7 $\not\in$ ZLJ $(\mathbb{Z}+1/2)$

does not land at any point on $Per_{1}^{+}(1)$ .
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Figure 6: Parameter space for real bi- Figure 7: Oscillating stretching rays
quadratics

The stretching ray with Bottcher vector 1/2 is the ray $b=a>1/4$ , which lands
at 1/4, 1/4). But this seems to be exceptional since $Q_{a,a}$ is the second iterate of the
quadratic polynom ial $z^{2}+a$ . The stretching rays $R(\eta)$ with y7 $=n+1/2$ , $n\in \mathbb{Z}-\{0\}$

do not seem to land although we do not have a proof.
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