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This article is a resume of the paper [11]. We study an irrationally indifferent
cycle of points or circles of a rational function, which is either Siegel or Cremer by
definition. We give a clear interpretation of some Diophantine quantity associated
with an irrationally indifferent cycle as a quantity arising in the Nevanlinna theory.
As a consequence, we show that an irrationally indifferent cycle is Cremer if this
Nevanlinna-theoretical quantity does not vanish, which generalize the classical
Cremer condition.

Let $f$ be a rational function of degree $\geq 2$ and $f^{k}:=f^{\mathrm{o}k}$ for $k\in$ N. $F(f)$

and $J(f)$ denote the Fatou and Julia sets of $f$ respectively. The classification of
cyclic Fatou components $D$ is known: The pair $(g, D)$ , where $g$ is the first retur n
map of $f$ on $D$, is an attractive basin if $\{g^{n}\}_{n=1}^{\infty}$ converges to a point in $D$ locally
uniformly on $D$ . The parabolic basin is similar, $\dot{\mathrm{D}}\mathfrak{U}\mathrm{t}$ { $g^{\prime i}l_{n=1}^{\sim}$ converges to a point
in the boundary of $D$ locally uniformly on $D$ . When $g$ is a proper selfmap of $D$ of
degree $\geq 2$ , $(g, D)$ is one of them. When 9 is a univalent selfmap of $D$ , $D$ is called
a rotation domain since $(g,D)$ is conformally conjugate to an irrational rotation
on either a disk or an annulus, and called a Siegel disk or an Herman ring in each
of cases. For the details, see [9], [1], [3], [8].

Our main interest is an irrationally indifferent cycle of points or circles.

Definition 1 (irrationally indifferent cycle of points or circles), A point Zo in $\hat{\mathbb{C}}$

is periodic if for some p $\in \mathrm{R}$ , $\mathrm{f}\mathrm{p}(\mathrm{z}\mathrm{o})=\mathrm{Z}\mathrm{o}-$ The least such p is the period of zq,
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$\{f^{n}(z_{0})\}_{n=1}^{p}$ is a cycle of points, and /1 $:=(\mathrm{f}\mathrm{p}\mathrm{Y}(\mathrm{z}\mathrm{o})$ is the multiplier of it. This cycle
ofpoints is irrationally indifferent if $il=e^{2\pi i\alpha}$ for some $\alpha$ $\in \mathbb{R}-$ Q.

A topological circle $S\subset\hat{\mathbb{C}}$ is periodic if for some $p\in \mathrm{N}$ , $f^{l^{J}}(S)=S$ and
$f^{p}|S$ : $Sarrow S$ is an orientation-preserving homeomorphism. The least such $p$ is
the period of $S$ , $\{f^{n}(S)\}_{n=1}^{p}$ is a cycle of circles, and it $:=e^{\underline{9}}\pi i\alpha$ is the multiplier
of it, where $\alpha\in \mathrm{R}/\mathrm{Z}$ is the rotation number (cf. [5]) of a $S^{1}$ -homeomorphism
$\phi$ which is topologically conjugate to $f^{p}|S$ . This cycle of circles is irrationally
indifferent if $\alpha$ is irrational.

It is known that if irrationally indifferent cycles of points or circles intersect
$F(f)$ , then they are contained in some rotation domains.

Definition 2 (Siegel and Cremer cycles). An irrationally indifferent cycle of
points or circles is a Siegel cycle if it is contained in $F(f)$ . Otherwise it is a
Cremer cycle.

The following is an unsolved problem with a long history: Given an irra-
tionally indiferent cycle points or circles, how can we judge whether it is con-
tained in the Fatou set or not?

The following answers the problem for points in one direction.

Theorem 1 (Siegel, Brjuno, Riissmann and Yoccoz). Every analytic germ $f(z)$ $=$

$i\downarrow z+O(z^{2})$, $\lambda$ $=e^{2\pi i\alpha}(\alpha\in \mathbb{R}-\mathbb{Q})$ , at the origin is analytically linearizable if $\lambda$

satisfies the Brjuno condition, which is a $Diophantine${-type) condition.

For the precise definition of Brjuno condition, see [2] and [17]. In the reverse
direction,

Theorem 2. Let P be a quadratic polynomial An irrationally indifferent cycles
ofpoints ofP is Cremer if its multiplier does not satisfy the Brjuno condition.

Remark 1. Theorem 2 is proved by Yoccoz ([17]) in the case of period one, and,
from this, later generalized by the author ([10]) in the case of arbitrary periods.

Until now, only for quadratic polynomials and only for points, the complete
answer of the problem is known. The classical Cremer Theorem is a partial answer
for the problem for points in the reverse direction:

Theorem 3 (Cremer[4] (1932)). Let $f$ be a rational function of degree $d\geq 2$,

and $O$ be an irrationally indifferent cycle ofpoints period $p$ and ofmultiplier $\lambda$ .
$O$ is Cremer ifA satisfies

$\lim_{narrow}\sup_{\infty}\frac{1}{d^{pn}}\log\frac{1}{|\lambda^{n}-\mathrm{J}|}=\infty$ . (1)
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We succeeded in improving the Cremer condition (1) and extending his result
to irrationally indifferent cycles of circles.

Main Theorem 1 (Criterion for Cremer [11]). Let $f$ be a rational function of
degree $d\geq 2$ , and $O$ be an irrationally indifferent cycle ofeither points or circles
ofperiod $p$ and ofmultiplier $\lambda$ .

$O$ is Cremer if $\lambda$ satisfies

$\mathrm{J}\mathrm{i}\mathrm{m}\sup_{narrow\infty}\frac{1}{d^{pn}}\log\frac{1}{|\lambda^{n}-1|}>0$ . (2)

This improvement is substantial. In fact, For every $x\in[0, \infty]$ , it is easy to find
$\alpha\in \mathbb{R}-\mathbb{Q}$ such that the left hand side of (2) equals $x$ (cf. [6]).

Remark 2. In the case of polynomials and irrationally indifferent cycle of points,
Pierre Tortrat ([16]) showed a similar result to Main Theorem 1 by using a po-
tential theoretical argument. Indeed, his condition, which is slightly technical,
coincides with ours.

Main Theorem 1 naturally follows from the interpretation of the left hand side
of (1) as a Nevanlinna-theoretical quantity, and its vanishing theorem.

Let $[p, q]$ be the chordal distance between $p$ , $q\in\hat{\mathbb{C}}$ such that [0, $\infty 3$ $=1$ , and cr
the spherical area measure on $\hat{\mathbb{C}}$ such that $\sigma(\hat{\mathbb{C}})=1$ . We write the set of all rational
endomorphism of $\hat{\mathbb{C}}$ by Rat, and call a sequence in Rat a rational sequence.

The following tools of the Nevanlinna theory for rational sequences was in-
vented by Sodin in [15],

For $f$, $g\in$ Rat, we define the pointwise proximityfunction:

$(w(g,f))(z):= \log\frac{1}{[g(z),f(z)]}$ : $\hat{\mathbb{C}}arrow[0, \infty]$ ,

and the mean proximity:

$m \acute{(}g,f):=\int_{\hat{\mathbb{C}}}UJ\acute{(}g,f)d\sigma\cdot\in[0, \infty)$ .

For a rational sequence $\mathcal{F}’=\{f_{k}\}_{k=1}^{\infty}$ , we define the characteristic sequence
$\{T_{F}(k):=\deg f_{k}\}_{\mathrm{A}=1}^{\infty}\subset$ N.

Using the above tools, we shall define some deficiency of a rational sequence
with the increasing characteristic sequence:

Definition 3 $(\mathrm{c}\mathrm{f}, [7])$. Let $\mathcal{F}^{arrow}=\{f_{k}\}_{k=1}^{\infty}$ be a rational sequence with the increasing
characteristic sequence. For $g\in$ Rat, we define the Valiron exceptionality:

$\mathrm{V}\mathrm{E}(\mathrm{g}:F)$ $:=$ $\mathrm{J}\mathrm{i}\mathrm{m}\sup_{karrow\varpi}\frac{m(g,f_{k})}{T_{F}(k)}\in[0, \infty]$ .
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Although the Valiron exceptionality is defined by a quite complicate way, we
can treat it by the following.

Main Theorem 2 (Fundam ental Equality). Let $f\in$ Rat be ofdegree $d\geq 2$ , and
$g\in$ Rat not identically equal to such $z$

$\in\hat{\mathbb{C}}$ as $\#$ $\bigcup_{2\in \mathrm{N}},f^{-ll}(z)<\infty$ .
Then for every positive continuousfunction $\phi\not\equiv 0$ on $\hat{\mathbb{C}}$,

$\mathrm{V}\mathrm{E}(\mathrm{C}\mathrm{j}; \{f^{k}\})=$ $\lim_{karrow}\sup_{\infty}\frac{\int_{\underline{\hat{\Gamma}}}\phi\cdot\iota v(g,J\mathrm{f}^{k})d\sigma}{d^{k}\cdot\int_{\hat{\mathbb{C}}}\phi d\sigma}$ .

By the fundamental equality, we obtain two Main Theorems..

Main Theorem 3 (Vanishing Theorem), Let f be a rational function ofdegree
$\geq 2$ such that $F(f)\neq\emptyset$ . Then $\mathrm{V}\mathrm{E}(\mathrm{I}\mathrm{d}_{\hat{\mathbb{C}}}, \{f^{k}\})=0$.

Problem Does $\mathrm{V}\mathrm{E}(\mathrm{I}\mathrm{d}_{\dot{\mathbb{C}}}, \{f^{k}\})$ always vanish even if $J(f)=\hat{\mathbb{C}}$?

Main Theorem 4 (Natural Equality). Let O be an irrationally indifferent cycle
of either points or circles ofperiod p and ofmultiplier $\lambda$. IfO is Siegel, then

$\lim_{karrow}\sup_{\infty}\frac{1}{d^{p\mathrm{A}}}$

,
$\log\frac{1}{|,1^{k}-1|}=\mathrm{V}\mathrm{E}(\mathrm{I}\mathrm{d}_{\hat{\mathbb{C}}};\{f^{pk}\})$ . (3)

Now the proof of Main Theorem 1 is straightforward:

ProofofMain Theorem 1 If $O$ is Siegel, then $F(f)\neq\emptyset$ . Hence from the Vanishing
Theorem, $\mathrm{V}\mathrm{E}(\mathrm{I}\mathrm{d}_{\hat{\mathbb{C}}};\{f^{pk}\}\rangle=0$ , so by the Natural equality, the left hand side of (3)
vanishes. $\square$

Remark 3. Our method of studying multipliers of irrationally indifferent cycles
unifies the cases both of points and of circles, and in particular, dispenses with
such quasiconformal surgeries as in [12] for Siegel cycles of circles. However,
when this cycle of circles is contained in an Herman ring, by quasiconformal
surgery of it (cf. [12], [13] and [14]), we obtain a rational function $\overline{f}$ whose
degree is less than that of $f$ and which has a Siegel disk with the same rotation
number as the original Herman ring of $f$ . Hence by applying Main Theorem 1 to
$\overline{f}$ rather than $f$ , a stronger conclusion than Main Theorem 1 follows.
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