Hyperbolic Hausdorff dimension is equal to the minimal exponent of conformal measure on Julia set. A simple proof.\footnote{extracted from [PRS] F. Przytycki, J. Rivera-Letelier, S. Smirnov "Equality of pressures for rational functions", to appear in Ergodic Theory and Dynamical Systems}

by Feliks Przytycki\footnote{Institut Henri Poincaré, Paris, September 2003 and RIMS, Kyoto, February 2004}

The fact in the title was proved in [DU] except one point proved later in [P1]. This is a crucial technical fact in the study of dimensions and their continuity for Julia sets. The proofs in these papers use several complicated techniques. Here we give a simple proof.

Let $f : \overline{\mathcal{O}} \rightarrow \overline{\mathcal{O}}$ be a rational mapping of degree $d \geq 2$ on the Riemann sphere $\overline{\mathcal{O}}$. We denote by Crit the set of critical points, that is $f'(x) = 0$ for $x \in \text{Crit}$. The symbol J stands for the Julia set of f. Absolute values of derivatives and distances are considered with respect to the standard Riemann sphere metric. We consider pressures below for all $t > 0$.

Definition 1. Tree pressure. For every $z \in \overline{\mathcal{O}}$ define

$$P_{\text{tree}}(z, t) := \lim_{n \to \infty} \frac{1}{n} \sum_{f^n(z) = z} |(f^n)'(x)|^{-t}.$$

Definition 2. Hyperbolic pressure.

$$P_{\text{hyp}}(t) := \sup_{X} P(f | x, -t \ln |f'|),$$

where the supremum is taken over all compact f-invariant (that is $f(X) \subset X$) isolated hyperbolic subsets of J.

Isolated (sometimes called repelling) means that there is a neighbourhood U of X such that $f^n(x) \in U$ for all $n \geq 0$ implies $x \in X$. Hyperbolic means that there is a constant $\lambda_X > 1$ such that for all n large enough and all $x \in X$ we have $|(f^n)'(x)| \geq \lambda_X^n$. Sometimes the more adequate term expanding is used.

$P(f | x, -t \ln |f'|)$ denotes the standard topological pressure for the continuous mapping $f|_X : X \rightarrow X$ and continuous real-valued potential function $-t \ln |f'|$ on X, see for example [W].

Note that these definitions imply that $P_{\text{hyp}}(t)$ is a continuous monotone decreasing function of t.

Definition 3. Conformal pressure. Set $P_{\text{Conf}}(t) := \ln \lambda(t)$, where

$$\lambda(t) = \inf \{ \lambda > 0 : \exists \mu, \text{ a probability measure on } J \text{ with Jacobian } \lambda |f'|^t \}. $$
We say that $\varphi : J \to \mathbb{R}, \varphi \geq 0$ is the Jacobian for $f|_J$ with respect to μ if φ is μ-integrable and for every Borel set $E \subset J$ on which f is injective $\mu(f(E)) = \int_E \varphi \, d\mu$. We write $\varphi = \text{Jac}_\mu(f|_J)$.

We call any probability measure μ on J with Jacobian of the form $\lambda |f'|^t$ a (λ, t)-conformal measure and with Jacobian $|f'|^t$ a conformal measure with exponent t or t-conformal measure.

Proposition 1. For each $t > 0$ the number $P_{\text{Conf}}(t)$ is attained, that is there exists a (λ, t)-conformal measure with $\lambda = P_{\text{Conf}}(t)$.

This Proposition follows from the following

Lemma. If μ_n is a sequence of (λ_n, t)-conformal measures of J for an arbitrary $t > 0$, weakly* convergent to a measure μ and $\lambda_n \to \lambda$ then μ is a (λ, t)-conformal measure.

Proof. Let $E \subset J$ on which f is injective. E can be decomposed into a countable union of critical points and sets E_i pairwise disjoint and such that f is injective on a neighbourhood V of cE_i. For every ε there exist compact set K and open U such that $K \subset E_i \subset U \subset V$ and $\mu(K) < \varepsilon$ and $\mu(f(U)) - \mu(f(K)) < \varepsilon$. Consider an arbitrary continuous function $\chi : J \to [0, 1]$ so that χ is 1 on K and 0 on $J \setminus U$. Then there exists $s : 0 < s < 1$ such that for $A = \chi^{-1}([s, 1])$, $\mu(\partial f(A)) = 0$. Then the weak* convergence of μ_n implies $\mu_n(f(A)) \to \mu(f(A))$, as $n \to \infty$. Moreover this weak* convergence and $\lambda_n \to \lambda$ imply $\int \chi \lambda_n |f'|^t \, d\mu_n \to \int \chi \lambda |f'|^t \, d\mu$. Therefore from $\mu_n(f(A)) = \int_A \lambda_n |f'|^t \, d\mu_n$, letting $\varepsilon \to 0$, we obtain $\mu(f(A)) = \int_A \lambda |f'|^t \, d\mu$.

If $E = \{c\}$ where $c \in \text{Crit} \cap J$ then for every $r > 0$ small enough and for all n, we have $\mu_n(f(B(c, r)) \leq 2(\sup z \lambda)^t (2r)^t$ and since the bound is independent of n we get $\mu(f(c)) = 0$, hence $\mu(f(c)) = \int \lambda |f'|^t \, d\mu$, as $f'(c) = 0$.

Definition 4. We call $z \in \overline{E}$ safe if $z \notin \bigcup_{j=1}^{\infty} f^j(\text{Crit})$ and $\lim \inf_{n \to \infty} \frac{1}{n} \ln \text{dist}(z, f^n(\text{Crit})) = 0$.

Definition 5. We call $z \in \overline{E}$ repelling if there exist Δ and $\lambda = \lambda_z > 1$ such that for all n large enough f^n is univalent on $\text{Comp}_z f^{-n}(B(f^n(z), \Delta))$, where Comp_z means the connected component containing z, and $|(f^n)'(z)| \geq \lambda^n$.

Definition 6. Hyperbolic Hausdorff dimension of Julia set is defined by

$$\text{HD}_{\text{hyp}}(J) = \sup_X \text{HD}(X),$$

where the supremum is taken over all compact f-invariant isolated hyperbolic subsets of J and $\text{HD}(X)$ means the Hausdorff dimension of X.

Proposition 2. The set S of repelling safe points in J is nonempty. Moreover $\text{HD}(S) \geq \text{HD}_{\text{hyp}}(J)$.

183
Proof. The set NS of non-safe points is of zero Hausdorff dimension. This follows from $NS \subset \bigcup_{j=1}^{\infty} f^j(Crit) \cup \bigcup_{\xi<1} \bigcap_{n=1}^{\infty} \bigcup_{j=n}^{\infty} B(f^j(Crit), \xi^j)$, finiteness of Crit and from $\sum_{n}(\xi^n)^t < \infty$ for every $0 < \xi < 1$ and $t > 0$. Therefore the existence of safe repelling points in J follows from the existence of hyperbolic sets $X \subset J$ with $HD(X) > 0$. Note that every point in a hyperbolic set X is repelling.

Theorem 1. For all $t > 0$, all repelling safe $z \in J$ and all $w \in \mathcal{F}$

$$P_{\text{tree}}(z, t) \leq P_{\text{hyp}}(t) \leq P_{\text{Conf}}(t) \leq P_{\text{tree}}(w, t).$$

We will provide a proof later. Now let us state corollaries.

Corollary 1. $P_{\text{hyp}}(t) = P_{\text{Conf}}(t)$ and $HD_{\text{hyp}}(J) =$ minimal exponent t for a t conformal measure.

Proof. The first equality follows from Theorem 1 and existence of repelling safe points in J. The second from the fact that both quantities are first zeros of $P_{\text{hyp}}(t)$ and $P_{\text{Conf}}(t)$.

We obtain also a simple proof of the following

Corollary 2. $P_{\text{tree}}(z, t)$ does not depend on z for $z \in J$ repelling safe.

Proof of Theorem 1.

1. We prove first that $P_{\text{tree}}(z, t) \leq P_{\text{hyp}}(t)$. Fix repelling safe $z = z_0 \in J$ and $\lambda = \lambda_{z_0} > 1$ according to Definition 5. Since z_0 is repelling, we have for $\delta = \Delta/2$, $l = 2\alpha n$ and all n large enough

$$W := \text{Comp}_{z_0} f^{-l} B(f^l(z_0), 2\delta) \subset B(z, \epsilon \lambda^{-\alpha n}),$$

and f^l is univalent on W. Since z_0 is safe we have

$$B(z_0, \epsilon \lambda^{-\alpha n}) \cap \bigcup_{j=1}^{2n} f^j(Crit) = \emptyset$$

for arbitrary constants $\epsilon, \alpha > 0$.

By the Koebe Distortion Lemma for ϵ small enough, for every $1 \leq j \leq 2n$ and $z_j \in f^{-j}(z_0)$ we have

$$\text{Comp}_{z_j} f^{-j} B(z_0, \epsilon \lambda^{-\alpha n}) \subset B(z_j, \delta)$$

Let $m = m(\delta)$ be be such that $f^m(B(y, \delta/2)) \supset J$ for every $y \in J$. Then, putting $y = f^l(z_0)$, for every $z_n \in f^{-n}(z_0)$ we find $z'_n \in f^{-m}(z_n) \cap f^m(B(y, \delta/2))$. Hence the component W_{z_n} of $f^{-m} (\text{Comp}_{z_n} f^{-n} (B(z_0, \epsilon \lambda^{-\alpha n}))$ containing z'_n is contained in $\subset B(y, \frac{3}{2}\delta)$ and f^{m+n} is univalent on W_{z_n} (provided $m \leq n$).
Therefore f^{m+n+l} is univalent from $W_{z_{n}}' := \text{Comp}(f^{-(m+n+l)}(B(y, 2\delta)) \subset W_{z_{n}}$ onto $B(y, 2\delta)$. The mapping

$$F = f^{m+n+l} : \bigcup_{z_{n} \in f^{-n}(z_{0})} W_{z_{n}}' \rightarrow B(y, 2\delta)$$

has no critical points, hence $Z := \bigcap_{k=0}^{\infty} F^{-k}(B(y, 2\delta))$ is an isolated expanding F-invariant (Cantor) subset of J.

We obtain for a constant $C > 0$ resulting from distortion and $L = \sup |f'|$

$$P(F|z, -t \ln |F'|) \geq \ln\left(C \sum_{z_{n} \in f^{-n}(z_{0})}|(f^{m+n+l})'(z_{n}')|^{-t}\right) \geq \ln\left(C \sum_{z_{n} \in f^{-n}(z_{0})}|(f^{n})'(z_{n})|^{-t}L^{-(m+l)}\right).$$

Hence on the expanding f-invariant set $Z' := \bigcup_{j=0}^{m+n+l-1} f^{j}(Z)$ we obtain

$$P(f|z', -t \ln |f'|) \geq \frac{1}{m+n+l}P(F, -t \ln |F'|) \geq \frac{1}{m+n+l}(\ln C - t(m+l) \ln L + \ln \sum_{z_{n} \in f^{-n}(x_{0})}|(f^{n})'(z_{n})|^{-t}).$$

Passing with n to ∞ and next letting $\alpha \searrow 0$ we obtain

$$P(f|_{Z'}, -t \ln |f'|) \geq P_{\text{tree}}(z_{0}, t).$$

2. $P_{\text{hyp}}(t) \leq P_{\text{Conf}}(t)$ is immediate. Let μ be an arbitrary (λ, t)-conformal measure on J. From the topological exactness of f on J, which means that for every U an open set intersecting J there exists $N \geq 0$ such that $f^{N}(U) \supset J$, we get $\int_{J} \lambda^{n}|(f^{N})'|^{t}d\mu \geq 1$. Hence $\mu(U) > 0$. Let X be an arbitrary f-invariant non-empty isolated hyperbolic subset of J. Then, for U small enough, $(\exists C)(\forall x_{0} \in X)(\forall n \geq 0)(\forall x \in X \cap f^{-n}(x_{0}))$ f^{n} maps $U_{x} = \text{Comp}_{x}f^{-n}(U)$ onto U univalently with distortion bounded by C. So, for every n,

$$\mu(U) \cdot \sum_{x_{0} \in f^{-n}(x_{0}) \cap X} \lambda^{-n}|(f^{n})'(x)|^{-t} \leq C \sum_{x_{0} \in f^{-n}(x_{0}) \cap X} \mu(U_{x}) \leq C.$$

Hence

$$P(f|x, -\ln \lambda - t \ln |f'|) \leq 0 \text{ hence } P(f|x, -t \ln |f'|) \leq \ln \lambda.$$

3. $P_{\text{Conf}}(t) \leq P_{\text{tree}}(w, t)$ follows from Patterson-Sullivan construction. The proof is as follows. Let us assume first that w is such that for any sequence $w_{n} \in f^{-n}(w)$ we have
$w_n \to J$. This means that w is neither in an attracting periodic orbit, nor in a Siegel disc, nor in a Herman ring. Let $P_{\text{tree}}(w, t) = \lambda$. Then for all $\lambda' > \lambda$

$$
\sum_{x \in f^{-n}(w)} (\lambda')^{-n}|(f^n)'(x)|^{-t} \to 0
$$

exponentially fast, as $n \to \infty$. We find a sequence of numbers

$\phi_n > 0$ such that $\lim_{n \to \infty} \phi_n/\phi_{n+1} \to 1$ and for $A_n := \sum_{x \in f^{-n}(w)} \lambda^{-n}|(f^n)'(x)|^{-t}$ the series $\sum_n \phi_n A_n$ is divergent. For every $\lambda' > \lambda$ consider the measure

$$
\mu_{\lambda'} = \sum_{n} \sum_{x \in f^{-n}(w)} D_x \cdot \varphi_n \cdot (\lambda')^{-n}|(f^n)'(x)|^{-t}/\Sigma_{\lambda'},
$$

where D_x is the Dirac delta measure at x and $\Sigma_{\lambda'}$ is the sum of the weights at D_x, so that $\mu_{\lambda'}(J) = 1$. Finally we find a (λ, t)-conformal measure μ as a weak* limit of a convergent subsequence of $\mu_{\lambda'}$ as $\lambda' \searrow \lambda$.

If w is in an attracting periodic orbit which is one of at most two exceptional fixed points (for polynomials, 0 or ∞ for $z \mapsto z^k$, in adequate coordinates) then it is a critical value, so $P_{\text{tree}}(w, t) = \infty$. If w is in a non-exceptional attracting periodic orbit or in a Siegel disc or Herman ring S, take $w' \in f^{-1}(w)$ not in the periodic orbit of w, neither in the periodic orbit of S in the latter cases. Then for w' we have the first case, hence $P_{\text{Conf}}(f) \leq P_{\text{tree}}(w', t) \leq P_{\text{tree}}(w, t)$. The latter inequality follows from

$$
P_{\text{tree}}(w', t) = \limsup_{n \to \infty} \frac{1}{n-1} \sum_{x \in f^{-(n-1)}(w')} |(f^{-(n-1)})'(x)|^{-t} \leq
$$

$$
\leq \limsup_{n \to \infty} \frac{1}{n} \sum_{x \in f^{-(n-1)}(w')} |(f^n)'(x)|^{-t} \sup_{x \in \overline{S}} |f'|^t \leq P_{\text{tree}}(w, t).
$$

QED

Remark 1. There is a direct simple proof of $P_{\text{tree}}(z, t) \leq P_{\text{Conf}}(t)$ for μ-a.e. z, using Borel-Cantelli Lemma, see [P2, Theorem 2.4].

Remark 2. In [P2, Th.3.4] a stronger fact than Corollary 2 has been proved, also by elementary means, namely that $P_{\text{tree}}(z, t)$ does not depend on $z \in \overline{S}$ except zero Hausdorff dimension set of z's.

References

