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Abstract

We investigate dynamics of polynomial semigroups of which post-
critical sets in the plane are bounded. The Julia set may not be con-
nected in general. We show that for such a polynomial semigroup,
there exists an intrinsic total order in the space of all connected com-
ponents of the Julia set and each connected component of the Fatou
set is either simply or doubly connected.

We classify the class of polynomial semigroups with bounded post-
critical set in the plane.

Furthermore, we investigate wordwise dynamics of such semigroups.
Using uniform fiberwise quasiconformal surgery on a fiber bundle, we
show that if the Julia set of such a semigroup is disconnected, then
there exists a family of quasicircles with uniform distortion which is
parametrized by the Cantor set.

1 Introduction and the main results

A rational semigroup is a semigroup generated by non-constant ratio-
nal maps on C with the semigroup operation being the composition of
maps([HM1]). A polynomial semigroup is a semigroup generated by
non-constant polynomial maps. Research on the dynamics of rational semi-
groups was initiated by A. Hinkkanen and G.J. Martin ([HM1]), who were
interested in the role of the dynamics of polynomial semigroups while study-

ing various one-complex-dimensional moduli spaces for discrete groups, and
F. Ren’s group([ZR], [GR]).

Definition 1.1. Let G be a rational semigroup. We set

F(G) = {# € C| G is normal in a neighborhood of z}, J(G) = C\ F(G).



F(Q) is called the Fatou set for G and J(G) is called the Julia set for G.
The backward orbit G=!(2) of z and the set of exceptional points E(G)
are defined by: G™1(2) = Uyeqg™!(2) and E(G) = {z € C | G™1(2) <
oo}. For any subset A of C, we set G™1(A) = Ugegg™1(A). We denote by
{(h1, hg, ...} the rational semigroup generated by the family {h;}. The Julia
set of the semigroup generated by a single map g is denoted by J(g). For
any polynomial g, we set K(g) := {2z € C | Upeng™(2) : bounded in C}.
For a polynomial semigroup G, we set

K(G):={zeC]| U g(z) : bounded in C}.
9eG

Furthermore, we set Rat := {h: C — C | h: holomorphic }, with uniform
convergence topology on C.

Definition 1.2. Let G be a rational semigroup. We set

PG)= U {all critical values of g}.
geG

This is called the postcritical set for G.

Question 1. Let G be a polynomial semigroup such that each element g €
G is of degree at least two. If P(G) \ {oo} is bounded in C, then J(G) is

connected?
The answer is NO.

Example 1.3 ([SY]). Let G = (23, 2). Then P(G) \ {oc} = {0} (which
is bounded in C) and J(G) is disconnected( J(G) is a Cantor family of
round circles). Furthermore, small pertubation H of G still satisfies that
P(@) \ {oo} is bounded in C and that J(H) is disconnected. (J(H) is a
Cantor family of quasi-circles with uniform dilatation. )

Question 2. What happens if P(G) \ {oo} is bounded in C and J(G) is

disconnected?

1.1 Connected components of Julia sets

We present some results on connected components of the Julia set of a poly-
nomial semigroup with bounded postcritical set in the plane. Furthermore,
we classify such semigroups. The proofs are given in the section 3.1.

Theorem 1.4. Let G be a rational semigroup generated by a family {ha}rea
such that each hy, is not an elliptic Mébius transformation of finite order.

Suppose that there exists a connected component A of J(G) such that
#A > 1 and UpeaJ(hy) C A. Then, J(G) is connected.

199



200

Definition 1.5. Let G be the set of all polynomial semigroups G with the
following properties: '

e cach element of G is of degree at least two, and
o P(G)\ {oo} is bounded in C.

Furthermore, we set G, = {G € G | J(G) : connected} and Gg = {G € G |
J(G) : disconnected}.

Notation: For a polynomial semigfoup G, we denote by J the set of all
connected components of J(G) which are included in C.

Definition 1.6. For any connected compact sets K; and K9 in C, “K; <
K3” means that K; = Ky or K; is included in a bounded component of
C\ Ky. “K; < K3” means K; < Ky and K; # Ky. Note that “<” is a
partial order in the space of all non-empty compact connected set in C.

Theorem 1.7. Let G € G (possibly infinitely generated). Then
1. {(J, <) is totally ordered.

2. Each connected component of F(G) is either simply or doubly con-
nected.

3. For any g € G and any connected component J of J(G), we have
that g~Y(J) is connected. Let g*(J) be the connected component of
J{(G) containing g~ *(J). If J€ T, then g*(J) € J. If J1,J2 € J and
Ji1 < Ja, then g71(J1) < g7'(J2) and g*(J1) < g% (Ja).

Proposition 1.8. Let G € G. If U is a connected component of F(Q) such
that UNK(G) # 0, then U Cint K(G) and U is simply connected. Further-
more, we have K(G) N F(G) =int K(G).

Notation: We classify the class G4 of polynomial semigroups as follows:

o type() §(P(G)\ {oc}) 2 2
— (a): oo € F(G)
— (b): o0 € J(G)

e type (II) §(P(G) \ {oc}) = 1, let {20} = P(G) \ {o0}. (Note that in
this case each element of the semigroup is of the form a(z — 20)™ + 20.)

— (a): 00 € F(G)
* (i): 20 € F(G)
* (ii): 29 € J(G)
— {b): 00 € J(G)
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* (i): zg € F(G)
* (ii): zg € J(G).

Theorem 1.9. Let G € G4. Under the above notation, we have the follow-
ng.

1. If G is generated by a compact set of polynomials in Rat, then any
subsemigroup H of G with H € G4 is of type (I)(a) or (II)(a)(i).

2. If oo € F(G), the connected component Uy, of F(G) containing oo
s simply connected. Furthermore, the element Jynax € J containing
OUy is the unique one satisfying that J < Jmax for each J € J.
Furthermore, oo € F(G) if and only if there exists a unique mazimal
element in (J, <).

3. Whatever the type of G 1is, there exists a unique element Jyin € J
- such that Jqin < J for each element J € J. Furthermore, let D be the

unbounded component of C\ Juin. Then (P(G)\ {o0}) N D =0 and
GK(G) C Jmin-

4. If G is generated by a family {hx}rca, then there exist two elements
A1 and Ag of A satisfying:

(a) there exist two elements Jy and Jo of J such that J1 # Jo and
J(hy,) C J; for each i =1,2,

(b) J(hr) N Jewin = 6,

(¢) for eachn € N, we have hy"(J(hx,))NJ (hay) = 0 and b3 (J(hy,))N
J(hy,) =0, and

(d) hy, has an attracting fized point z1 in C, int K(hy,) consists of
only one immediated attracting basin for z1, and K(hy,) Cint
K(hy,). Furthermore, z1 € int K(hy,).

Moreover, for each g € G with J(g) N Jmin = B, we have that g has an
attracting fized point zg in C, int K(g) consists of only one immediate
attracting basin for zg, and Juyin Cint K(g).

5. int K(G)(= K(G) N F(®)) # 0 if and only if G is of type (I) or
(II)(a)(i)or (II)(b)(i). If int K(G) # O then
(a) C\ Jmin is disconnected, §J > 2 for each J € J, and

(b) for each g € G with J(g) N Jmin = 0, we have Jyin < ¢*(Jmin),
g(K(G)) C int K(G), and the unique attracting fived point 2 of
g in C belongs to int K(G).
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6. If G is of type (I)(b) or (II)(b), then the connected component of J(G)
containing oo is equal to {oo}. Similarly, if G is of type (II)(a)(ii) or
(I1)(b)(ii), then Jmin = {20}

7. J(G) is uniformly perfect if and only if G is of type (I)(a) or (II)
(a)(i). Here a compact set K in C is said to be uniformly perfect if
#K > 2 and there ezists a constant C > 0 such that each annulus A
which separates K satisfies that mod (A) < C.

8. Suppose that G is of type (I). Let g € G and let zy € J(G) NC.
If g(z1) = 21 and ¢'(z1) = 0, then z1 € int Jmin and J(g9) C Jmin.
(Remark: For a rational semigroup G, if J(G) is connected then
each superattracting fized point in J(G) of some element g € G belongs
to int J(G).)

1.2 Fiberwise Julia sets

We present some results on fiberwise dynamics of a finitely generated poly-
nomial such that the postcritical set in the plane is bounded and the Julia set
is disconnected. In particular, using the uniform fiberwise quasiconformal
surgery on a fiber bundle, we show the existence of a family of quasicircles
parametrized by a Cantor set with uniform distortion in the Julia set of such
a semigroup. The proofs are given in section 3.2.

Definition 1.10. 1. ([S1},{S3]) Let X be a compact metric space, ¢ :
X — X be a continuous map and f : X x C — X x C be a continuous
map. Then we say that f is a rational skew product ( or fibered
rational map on trivial bundle X xC )overg: X — X, if rof =mog
where 7 : X x C — X denotes the projection, and for each z € X,
the restriction fy := fl-1¢y @ 77N 2) — 7~ (g(z)) of f is a non
constant rational map, under the identification 7~1(z') = C for each
' € X. Let d(z) = deg(f,), for each z € X. Let qén) be a rational

map defined by: qg,-") (y) = mg( f;’“(g_a_:, y))_), for each m € Nand z € X.
Let 7 : X x C— X and 7g : X x C — C be the projections.

2. Let G = (h1,--- ,h;m) be a finitely generatd rational semigroup. For
a fixed generator system {hy,--- ,hn}, we set T, = {1,--- ,m}Y, o:
Yim = Em, o(1,T9, ) = (z2,73,- - ). Moreover, we define a map
f:ZmxC = Z, xC by: (z,y), = (o(z), he(y)), where z =
(x1,z2,- ). This is called the skew product map associated with
the generator system {h1,--- ,hn}.

3. Let f: X x C — X x C be a rational skew product over g : X — X.
We set

P(f) = U f™(critical points of f;),
n202eX



] where the closure is taken in X x C. This is called the fiber-postcritical
set for f. We say that f is hyperbolic (along fibers) if P(f) C F(f).

Definition 1.11 ([S1],[S8]). Let f : X x C — X x C be a rational skew
product over g : X — X. Then,

L f2 = filpay s 71z - 7lo™(@) € X x T.

2. we denote by F,(f) the set of points y € ﬂ’:l.’B which has a neighbor-
hood U in 771z such that {f? : U — X X C},en is normal.

3. Jo(f) =1 x \ Fx(f).

4. J(f) =Upes,. J=(f) in X x C.
5. jm(f) =1z N J(f).

6. F(f) = (Zm x O) \ J(f).

Definition 1.12. Let G = {h1,... , hy) be a finitely generated polynomial
semigroup. Fix the generator system {h1,...,hn}. Suppose G € G4. Then

we set _
Bpin = {1 <js<m l J(hy) - Jmin}a

where Jpin denotes the unique minimal element in {7, <) in Theorem 1.9.3.
Furthermore, let Hpyy be the subsemigroup of G which is generated by

{hj I] < Bmin}.

Proposition 1.13. Let G = {(hy, - ,hp) be a finitely generated polynomial
semigroup in Gq. Then, we have Buyin # 0 and {1,... ,m}\ Buin # 0, under
the above notation.

Theorem 1.14. Let G = (h1,--- ,hy) be a finitely generated polynomial
semigroup. Suppose G € Gg. Let f 1 Xy, X C — X, x C be the skew product
map associated with the generator system {hi,...,hn}. Then under the
above notation and notation in section 1, we have that

1. for each z € Ly \ UnZO o~"BN,

(a) there exists only one bounded component Uy of 7~ z) \ (Je(f) U
ﬂ%l{oo}). Furthermore, the boundary U, in w1z is equal to

Jz(f)-

(b) each limit function of {f2}n in Uy is constant. For eachy € U,
there exists a number n € N such that 7x(f2{y)) €int K(G).

(c) Ju(f) = Ju(f).

(d) 2-dimensional Lebesgue measure of Jo(f) = Jo(f) is equal to
zero.
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2. If Hyin is semi-hyperbolic then G is also. If this is so, then for each

z € Xy \Un>oa_”B§un, we have that Jz(f) = J(f) is a Jordan
curve. Here, a rational semigroup H is said to be semi-hyperbolic if
for each z € J(H) there exists a neighborhood U of z in C and a
number N € N such that for each g € G, deg(g:V — U) < N for
each connected component V of g~ (U). ([51],[54].)

For each s € N, we set
Wy ={z€Xn |VI€EN, 1<3j<s withzi; €{1,...,m}\ Bmin}-

Let f := Flw,xe : Ws X C — W, x C. Then f is a hyperbolic skew
product and there exists a constant K > 1 such that for each x € W,

Jo(f) = Jo(f) = Je(f) is a Ks-quasicircle.

Theorem 1.15. (Existence of a Cantor family of quasicircles.) Let
G € Ggy( possibly infinitely generated) and let V be an open set with V N
J(G) # 0. Then there exist elements g1 and go in G such that all of the
Jollowing hold.

1.

2.

H = {g1,92) satisfies J(H)NV # .

There ezists an open set U in C satifying that g YThug ') c U
and g7 1(U) and g;*(U) are disjoint.

H = (g1, 92) is a hyperbolic polynomial semigroup(i.e. P(H) C F(H)).

Let f: ¥9 x C — X9 x C be the skew product map associated with the
generator system {g1,g2}. Then,

o J(H) = Uyes, me(Jz(f)) (disjoint union),

e each connected component J of J(H) is equal to ng(Jz(f)) for
some T € Y9 and

o there ezists a constant K > 1 independent of J such that each
connected component J of J(H) is a K-quasicircle.

z +— Jp(f) is continuous and injective.
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2 Tools

To show the main results, we need some tools in this section.

2.1 Fundamental properties of rational semigroups

Lemma 2.1 ([HM1],[GR],[S1]). Let G be a rational semigroup.

1. For each f € G, we have f(F(G)) C F(G) and f~1{J(®)) C J(G).
Note that we do not have that the equality holds in general.

IfG={(h1,  ,hm), then J(G) = h{H(J(G)) U --- UL 1 (J(Q))
If§(J(@)) = 3, then J(G) is a perfect set.
If3(J(G)) = 3, then §E(G) < 2.

If a point z is not in E(G), then J(G) C G~1(z). In particular if a
point z belongs to J(G)\ E(G), then G~1(z) = J(G).

6. If{(J(@)) = 3, then J(G) is the smallest closed backward invariant set
containing at least three points. Here we say that a set A is backward
invariant under G if for each g € G, g~ (4) C A.

SIS S

Theorem 2.2 ([HM1],[GR]). Let G be a rational semigroup. If{(J(G)) >
3, then J(G) = {2z € C|3g € G, g(z) =2, |g(z)| > 1}. In particular, J(G) =
Ugee 7(9)-

2.2 Fundamental properties of fibered rational maps

Lemma 2.3. Let f : X x C — X x C be a rational skew product over
g: X — X. Then,

1 fHIE) = I = ) @) = () J=(f) 2 Jul(f),
note that equality does not hold in general. Ifg: X — X isa
surjective and open map, then f‘ljg(m)( )y =J(f)-

2. (131, [S1]) If deg(fx) = 2 for each z € X, then Jy(f) is a non-empty
perfect set. Furthermore, x +— Jo(f) is lower semicontinuous; i.e. for
any point (z,y) € X x C with (z,y) € J(f) and any sequence (z™)
in X with " — x, there exists a sequence (z",y") in X x C with
(z",y") € Jun(f) such that (=, y") — (z,y). But  — J(f) is NOT
continuous with respect to the Hausdorff topology in general.

8. If deg(f.) > 2 and f» is a polynomial for each x € X, then for each
z € X, we have oo € mx(Fy(f)) and Jo(f) = 0K (f) (in 771 (z)),
where Ky (f) := {z € n7 1z | {mg(f2(2)) }nen : bounded in C}.
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4. Iff: 2 xC = T X C is a skew product map associated with a gener-
ator system {hy,- -+ ,hm} of a rational sengroup G, then WC(J (H)=
J(G).

Lemma 2.4. Let G = (hy, - , hm) be a finitely generated polynomial semi-
group such that each hj is of degree at least two. Let f : Ty x C — Em x C
be the skew product map associated with the generator system {hy,--- , hm}.

Then P(G) \ {co} is bounded in C if and only if J(f) is connected for each
T € Xpy- '

2.3 A lemma from general topology

Lemma 2.5 ([N]). Let X be a compact metric space and let f : X — X
be a continuous open map. Let A be a compact connected subset of X. Then
for each connected component B of f~1(A), we have f(B) =

3 Proofs of the main results

In this section, we demonstrate the main results.

3.1 Proofs of results in 1.1

Proof of Theorem 1.4: Let A € A and let B be a connected component of
hy'(A). Then by Lemma 2.5, hy(B) = A. Combining this with h} LI(hy) =
J(hy), we obtain BNJ(hy) # 0. Hence B C A. This means that A, (4) C A
for each A € A. Combining this with §4 > 3, by Lemma 2.1-6 we obtain
J(G) C A. Hence J(G) = A and J(G) is connected. O

Lemma 3.1. Let G € G and let J be a connected component of J(G), z0 € J-
a point, and (gn) a sequence of G such that d(zo, J(gn)) — 0 as n — o0.

Then sup d(z,J) — 0 asn — oo.
z€J{gn)

Proof. Suppose there exist a connected component J' of J(G) with J' # J
and a subsequence (gn;) of (g,) such that min d(z,J') — 0 as j — oo.

9n;
Since J(gn,) is compact and connected for each j, we may assume that there
exists a non-empty compact connected subset X of C such that J (gn;) = K
as j — oo, with respect to the Hausdorff topology. Then K NJ # @ and

KNJ' #0. Since K C J(G) and K is connected, it contradicts J' # J. O

Lemma 3.2. Suppose G € Gy and oo € J(G). Then, the connected compo-
nent A of J(G) containing 0o is equal to {co}.

Proof. By Lemma 2.5, we obtain g71(4) C A for each g € G. Hence, if
§A > 3, then J(G) C A, by Lemma 2.1-6. Then J(G) = A and it causes a
contradiction, since J(G) is disconnected. O



Proof of Theorem 1.7: First we show the statement 1. Suppose there exist
elements Jy, Jo € J such that Js is included in the unbouded component A;
of C\J; and J; is included in the unbounded component Ay of C\Jz. Then we
can find an € > 0 such that B(Jy, €) is included in the unbounded component
of C\ B(J1,€) and B(Ji,¢) is included in the unbounded component of C \
B(J2,€). We take a point z; € J;, for each i = 1, 2. By Theorem 2.2, for each
i = 1,2, there exists a sequence {g; » }nen in G such that d(z;, J(gin)) — O as
n — oo. Then by Lemma 3.1, we obtain for each i = 1,2, sup d(z,J;) —
Z€J(gin

0 as n — oo. Hence, we obtain that there exists a positive inteéer ng such
that for each n with n > ng and each i = 1,2, we have J(g;) C B(J;,¢€).
This implies J(g91n) C Az and J(g2,n) C A1n, where A;, denotes the
unbounded component of C \ J(g;,). Hence we obtain K(gzn) C A1 for
each n € N with n > ng. Let n > ng be a number and v a critical value
of gon in C. Since P(G) \ {oc} is bounded in C, we have v € K(g2n)-
Hence v € A;,,. Hence gﬁ,n(v) — o00. But this implies a contradiction since
P(G)\ {00} is bounded in C. Hence we have shown the statement 1.

Next, we show the statement 2. Let F; be a connected component of
F(G). Suppose that there exist three connected components Ji, J2 and J3
of J(G) such that they are mutually disjoint and 0F; N J; # 0 for each
i = 1,2,3. Then, by the statement 1, we may assume that we have either
(1): J; € Jforeachi=1,2,3and J; < Jp < Js,0or (2): J1, o € T, J1 < Ja,
and oo € Js. Each of these cases implies that J; is included in a bounded
component of C\ Jo and Js is included in the unbounded component of
C\ Jo. But it causes a contradiction, since 0F; N J; # @ for each i = 1,2, 3.
Hence, we have shown that we have either
Case I: §{J : component of J(@) |0F1NJ # 0} =1or
Case II: #{J : component of J(G) | 0F1 N J # 0} = 2.

Suppose we have Case I. Let J; be the connected component of J(G)
such that 8F; C Ji. Let Dy be the connected component of E\ J1 containing
F. Since 8F; C J1, we have 8F; N Dy = (. Hence, we have F; = D;. Hence
Fy is simply connected.

Suppose we have Case II. Let J; and J2 be two connected components
of J(G) such that J; # Jo and 8F; C J; U Ja. Let D be the connected
component of C \ (J; U Ja) containing Fy. Since 8F1 C Ji1 U J2, we have
8F, N D = {. Hence, we have F; = D. Hence F; is doubly connected.
Hence, we have shown the statement 2.

We now show the statement 3. Let ¢ € G be an element and let J
be a connected component of J(G). Suppose g~1(J) is disconnected. By
Lemma 2.5, there exist at most finitely many connected components of
g7 (J). Let {A;j}}-; be the set of connected components of g *(J). Then
there exists a positive number € such that denoting by B; the connected
component of g~1(B(J,¢)) containing A; for each j = 1,---,r, {B;} are
mutually disjoint. By Lemma 2.5, we obtain for each connected component

207
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B of g71(B(J,€)), g(B) = B(J,€) and BN A; # @ for some j. Hence we ob-
tain g7 (B(J, €)) = Jj=; B; (disjoint union ) and g(B;) = B(J, ¢) for each
j. By Theorem 2.2 and Lemma 3.1, we have that there exists a sequence (gn)
of G such that sup,¢ ., yd(z,J) = 0asn — oo. Let n € N be a number
such that J(g,) C B(J;€). Then it follows that g~(J(gn)) N By # ¢ for
each j =1,-- ,r. Moreover, we have g~'(J(gn)) C g~ 2(B(J,€)) = Uj=1 Bj-
On the other hand, by Lemma 2.4, we have that g~'(J(gn)) is connected.
This is a contradiction. Hence we have shown that for each g € G and
each connected component J of J(G), g~*(J) is connected. By Lemma 3.2,
we obtain that if J € J, then g*(J) € J. Let J1 and Jz be two ele-
ments of J such that J; < Jo. Let U; be the unbounded component of
C\ J;, for each i = 1,2. Then Uz C Ui. Let g € G be an element. Then
g~HUy) c g~X(U1). Since g~(U;) is the unbounded connected component
of C\ g~1(J;) for each ¢ = 1,2, it follows that g=1(J1) < g~ '(J2). Hence
g*(J1) < g*(Jo), otherwise g*(J2) < g*(J) and g*(Jz) # g*(J1), and it
contradicts g~1(J1) < g~ (Ja). O

Proof of Proposition 1.8: Let g € G be an element. Then we have
K(@)N F(G) C int K(g). Since h(K(G) N F(G)) C K(G)NF(G) for each
h € G, it follows that h(U) Cint K(g) for each h € G. Hence U Cint K(G).
From this, it is easy to see K(G) N F(@) =int K(G). By the maximal value
principle, we see that U is simply connected. O

Proof of Theorem 1.9: First we show the statement 1. To do that, we
show the following claim:

Claim 1: Let G be a rational semigroup generated by a compact set A in
Rat. Let zp € C be a point such that for each g € A, g(z) = 2o and
l9'(%0)| < 1. Then, z; € F(G).

The proof of this claim is immediate. From the claim, we easily obtain
the statement 1.

Next, we show the statement 2. Suppose oo € F(G). Let Fy, be the
connected component of F(G) containing co. Let J € J be an element such
that OFs N J # 0. Let D be the unbounded component of C \ J. Then
Fs C D and D is simply connected. We show Fo, = D. Otherwise, there
exists an element J; € J such that J; # J and J; C D. By Theorem 1.7-1,
we have either J; < J or J < J;. Hence, it follows that J < J; and we have
that J is included in a bounded component D of C\ Jy. Since F, is included
in the unbounded component D, of C\Ji, it contradicts 8F,.NJ # §. Hence,
Fo = D and F, is simply connected.

Next, suppose that there exists an element J € J such that J, < J.
Then J, is included in a bounded component of C\ J. On the other hand,
F is included in the unbounded component of @\ J. Since 0Fy C Jqu, we
have a contradiction. Hence, we have shown J < J, for each J € J.



By Lemma 3.2 and Lemma 2.1-3, it follows that if G € G4 and o0 € J(G),
then there exists a sequence (Jp,) of J such that d{oo,J,) — 0 as n — oo.
Then there exists no maximal element in (7, <). Hence, we have shown the
statement 2.

Next, we show the statement 3. Since § # P(G) \ {oo} C K(®), we
have K(G) # 0. By Proposition 1.8, we have K (G) C J(G). Let J; be a
connected component of J(G) with J; N 8K (G). By Lemma 3.2, J; € J.
Suppose that there exists an element J € J such that J < J;. Let 20 € J
be a point. By Theorem 2.2, there exists a sequence (g,) in G such that

d(zg, J(gn)) — 0 as n — oco. Then by Lemma 3.1, sup d(z,J) — 0 as
2€J(gn)

n — oo. Since J; is included in the unbounded component of C\ J, it
follows that for a large n € N, J; is included in the unbounded component
of C\ J(gn). But this causes a contradiction, since Ji N K(G) # . Hence,
by Theorem 1.9-1 it must hold that J; < J for each J € J. This argument
shows that if J; and Jy are two connected components of J(G) such that
J;NOK (G) # 0 for each i = 1,2, then J; = Jo. Hence, we obtain that there
exists a unique minimal element Jin in (J, <) and 8K(G) C Jmin-

Next, let D be the unbounded component of C \ Jnin. Suppose D N
P(@) # 0. Let z € DN P(G) be a point. By Theorem 2.2 and Lemma 3.1,

there exists a sequence (g, ) in G such that sup d(z, Jmin) — 0 asn — oo.
2€J(gn)
Then, for a large n € N, z is in the unbounded component of C\ J(gn). But

this is a contradiction, since g,(z) — oo as Il — o0, z € P(G) \ {oc}, and
P(G) \ {oo} is bounded in C. Hence, we have shown the statement 3.

Next, we show the statement 4. By Theorem 1.4, there exist A1, A2 € A
and conntected components Ji, Jo of J(G) such that J; # Jp and J(hy,) C J;
for each ¢ = 1,2. By Lemma 3.2, we have J; € J for each ¢ = 1,2. Then
J(hy,) N J(hy,) = 0. Since P(G) \ {cc} is bounded in C, we may assume
J(hy,) < J(hy;). Then we have K(hy,) C int K(hy,) and Jo < Ji. By
the statement 3, J; # Jmin. Hence J(hy,) N Jmin = 0. Since P(G) \ {oo} is
bounded in C, we have that K(h,),) is connected. Let U be the connected
component of int K (hy,) containing K (hy,). Since P(G)\{oc} C K(hy,), it
follows that there exists an attracting fixed point 21 of hy, in K(hy,) and U
is the immediate attracting basin for z; with respect to the dynamics of A A1
Furthermore, by Lemma 2.4, h All(J (hy,)) is connected. Hence, h 1(U )=
Hence, int K(hy,) =

Suppose there ex1sts an n € N such that h3(J(hy,)) N J(hy,) # 0.
Then A := Usyoh,"*(J(hy,)) is connected and its closure A contains J(hy, ).
Hence J(hy,) and J(hy,) are included in the same connected component of
J(G). This is a contradiction. Hence, for each n € N, we have h} “(J(hy, )0
J(hy,) = 0. Similarly, for each n € N, we have A" (J(hx,)) N J(hr;) = 9.
Combining A}, 1(J(h)‘z)) N J(hy,) = 0 with z; € K(hy,), we obtain z; € int
K(hy,)- Now, et g € G be an element with J(g) N Jpin = 0. We show the
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following:
Claim 2: Jpin < J(9).

To show the claim, suppose that Jp, is included in the unbounded
component U of C\ J(g). Since Jmix is the unique minimal element in
(J,<), we have that J(g) is included in the unbounded component V' of
C \ Jiin. Then, there exists an e > 0 such that B(Jmin,€) CU and J(g) is
included in the unbounded component V; of C\ B(Jmin, €). By Theorem 2.2
and Lemma 3.1, it follows that there exists an element h € G such that
J(h) C B(Juin, €). Then, we obtain that J(h) C U and J(g) is included in
the unbounded component of C\ J(h). Hence, we obtain K(h) C U. Since
P(G)\ {co} C K(h), it contradicts P(G) \ {oo} is bounded in C. Hence, we
have shown the claim.

By Claim 2, Theorem 2.2 and Lemma 3.1, there exists an element hy € G
such that J(h1) < J(g). By an argument which we have used before, it
follows that g has an attracting fixed point z, in C and int K(g) consists
of only one immediate attracting basin for z,. Hence, we have shown the
statement 4.

Next, we show the statement 5. Suppose that G is of type (II)(a)(ii) or
(I1)(b)(ii). Let {z0} = P(G) \ {oo}. Then 2 € J(G) and each element of G
is of the form a(z—20)"+ 2. By Lemma 2.1-3, there exists a sequence (gn) in
G such that max{d(z, z9) | z € J(gn)} — 0 as n — oo. Then we see K(G) =
{z}. Hence F(G) N K(G) = 0. Conversely, suppose F(G) N K(G) = 0. By
the statement 4, there exist two elements g; and gs of G and two elements
Ji and Jy of J such that J; # Jo, J(g;) C J; for each i = 1,2, g1 has
an attracting fixed point zo in int K(g2) and K(g2) C int K(g1). Since we
assume F(Q) N K(G) = 0, we have zp € J(G). Let J be the connected
component of J(G) containing z. By Lemma 3.2, we have J € J. We
show J = {20}. Suppose §J > 2. Then J{g1) C Up>o09; "(J). Moreover, by
Theorem 1.7-3, g;"J is connected for each n € N. Since g; "(J) N J # @ for
each n € N, we see that Up>og; "(J) is connected. Combining this with z €
int K(go), K(g2) C int K(g1), 20 € J and J(g1) C Un>097 "(J), we obtain

Un>097 “(J) N J(g2) # 0. Then it follows that J(g1) and J(g2) are included
in the same connected component of J(G). This is a contradiction. Hence
we have shown J = {20}. By the statement 3, we obtain {20} = Juin =
P(G) \ {oc}. Hence, it follows that G is of type (II){(a)(ii) or (II) (b)(ii).
Hence, we have shown that F(G) N K(G) = @ if and only if G is of type
(II) (a) (i) or (II)(b)(ii).

Next, suppose int K(G)(= K(G)NF(G)) # . Since K (G) C Juin (the
statement 3) and K(G) is bounded, it follows that C\ Jpyin is disconnected
and §Jymin > 2. Hence, #J > 2 for each J € J. Now, let ¢ € G be an
element with J(g) N Jmin = 0. we show Jnin # % (Imin)- I Jimin = 9" (Jmin),
then 7Y (Jmin) C Jinin- Since §Jmin > 3, it follows that J(g) C Jmin. But

this is a contradiction. Hence, Jyin # 9*(Jmin). Hence, we obtain Jpin <



9*(Jmin)- Since g(K(@®)) c K(G), we have g(int K(G)) cint K(@). Suppose
g(BK(G))NOK (@) # 0. Then, since 0K (G) C Jnin (statement 3), we obtain
9(Jmin) N Jmin # O. This implies g7 (Jmin) N Jmin # @. Since g7 (Jimin)
is connected (Theorem 1.7-3), we obtain ¢*(Jmin) = Jmin. But this is a
contradiction. Hence, it must hold g(8K(@)) cint K(@). Hence, g(K(G)) C
int K(G).

By the statement 4, g has a unique attracting fixed point z, in C. Then,
24 € P(G)\ {00} C K(G). Hence, z; = g(z,) € g(K(G)) C int K(G). Hence,
we have shown the statement 5.

Next, we show the statement 6. Let G be of type (II)(a)(ii) or (IT)(b)(ii)
and let {z} = P(G) \ {oc}. Then by the same method as in the proof
of Lemma 3.2, we obtain that the connected component J of J(G) with
2p € J satisfies J = {2p}. By the statement 3, we obtain J = {20} = Jmin.
Combining this and Lemma 3.2, we obtain the statement 6.

Next, we show the statement 7. Suppose that G is of type (I)(a) or
(II)(a)(i). Let A be an annulus separating J(G). Then A separates Jmax
and Jyin. Let D be the unbounded component of C\ Jmin and let U be
the connected component of C\ Jyaxcontaining Jyin. Then it follows that
A C UND. By the statement 2 and 5, we have §Jyax > 1 and §iJmin > 1.
Hence, the doubly connected domain U N D satisfies mod (U N D) < oo.
Hence, we obtain mod A < mod (U N D) < oco. Hence, J(G) is uniformly
perfect. Next, suppose that G is of type (I)(b) or (II)(a)(ii) or (II)(b). By
Theorem 4.1 in [HM2] and the statement 6, we obtain that J(G) is not
uniformly perfect. Hence, we have shown the statement 7.

Next, we show the statement 8. By Theorem 4.1 in [HM2] and the
statement 7, we obtain z; €int J(G). Furthermore, by the statement 3, we
obtain 21 € Jmin. Hence 2; € int Jyin. By the statement 5b, we obtain
J(g) C Jmin- Hence, we have shown the statement 8.

Hence, we have shown Theorem 1.9. O

3.2 Proofs of results in 1.2

Proposition 3.8. Let G € G and let {hy}xrea be a generator system of G.
Let \M,Ao € A and let J; € J be an element containing J(hy,) for each
i=1,2. Suppose J; < Jy. Let

Q={g9ecG|3Je Juith J; <J < Jp, J(g) C J}

and let H be the subsemigroup of G generated by Q. Then, we have J(H) C
((C\ Az) N A1) U Jy, where A; denotes the unbounded component of C\ J;
for eachi=1,2. ,

Proof. Let K = J(G)N(((C\ A2) N A1) U J1). Let g € Q and let J € J be
an element containing J(g). Let Js € J be an element with J < J3 < Jo.
We show the following:
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Claiml : g*(J3) < Js. To show the claim, suppose J3 < ¢g*(J3). Then by
Theorem 1.7-3, we have J < Js < g*(J3) < (g")*(J5) for each n € N. Hence,
inf{d(z,J) | z € g~™Js), n € N} > 0. But since J(g) C J, we obtain a
contradiction. Hence the claim holds.
Similarly we obtain the following:
Claim 2: For any element Jy € J with J; < Jg < J, we have Jy < g*(J4).
By Claim 1 and 2, we obtain that g7*(K) C K for each g € Q. By
Lemma 2.1-6, it follows that J(H) C K. O

Proof of Proposition 1.13: By Theorem 1.4 and Proposition 3.3. |

Lemma 3.4. Let f : X x C — X x C be a rational skew product over
g : X — X such that fy is a polynomial with d(xz) > 2, for each z €
X. Let (z,y) € Fp(f) and let qénj)(y) = 7mzfz’ ((z,y)) be a sequence of
rational maps which converges to a nonconstant map around y. Then there
erist a domain V in C, a point o n X, and a number k € N such that

{Teo} X BV C J(£) N P(f) and ¢ (y) € V for each j with j > k.
Proof. By the proof of Lemma 2.13 in [S1]. ]

Proof of Theorem 1.14-1: Let (z, o) be a point in a bounded component
of F,(f). By Lemma 3.4 and h;(K(G)) Cint K(Q) foreach j € {1,--- ,m}\
Bpin (Theorem 1.9-5b), we obtain that there exists no non-constant limit
function of the sequence (qé"))neN (q;(cn) (y) = mgfy((z,y))) around yo. Since
P(G)\ {00} NJ(G) C Jmin (Theorem 1.9-3), we obtain that the statement
1b is true. From the statement 1b, we obtain the statement 1c. By the lower
semi-continuity of z — Jx(f) (Lemma 2.3-2), we obtain the statement la.
By Theorem 1.7, we obtain hj_l(J(G)) N Jmin = @ for each j € {1,--- ,m}\
Bujin. Combining this with Theorem 1.9-3 and the Koebe distortion theorem,
we obtain the statement 1d. O

Proof of Theorem 1.14~2: We can easily obtain the following claim:
Claim1: K(Hun) = K(G).

By Claim 1 and h;j(K(G)) Cint K(G) for each j € {1,---,m} \ Bmin
(Theorem 1.9-5b), we can easily obtain that if Hpy, is semi-hyperbolic,
then G is semi-hyperbolic. If G is semi-hyperbolic, then by [S4], we obtain
that for each z € X, the unbounded component Az(f) of Fy(f) (Az(f) =
C\ K.(f)) is a John domain. Since A4,(f) is simply connected for each
z € X (Lemma 2.4), it follows that J,(f) = 04.(f) (Lemma 2.3-3) is
locally connected ([NV]). Hence, combining this with the statement 1a and
Jo(f) = 0Az(f) (Lemma 2.3-3), we obtain Theorem 1.14-2. O

Theorem 3.5. (Uniform fiberwise quasiconformal surgery) Let f :
X XC — X xC be a rational skew product over g : X — X such that f is o
polynomial with d(x) > 2, for each x € X. Suppose that f is hyperbolic and



there exists only one bounded component of F(f), for each ¢ € X. Then,
there ezists a constant K such that for each x € X, J,(f) is a K-quasicircle.

Proof. Step 1: By [S1], the map = +— J;(f) is continuous with respect to
the Hausdorff topology. Hence, there exists a positive constant C; such that
for each z € X, d(J(f), =~ (z) N P(f)) > Ci. Since X is compact, it
follows that for each z € X, there exists an analytic Jordan curve 7, in
K, (f) N Fy(f) such that:

1. #~1(z) N P(f) is included in a bounded component V,, of 7~*(z) \ vz

2. infyeq, d(z, Jo(f) U (7~ z) N P(f))) = Cs, where C; is a positive
constant independent of x € X.

3. There exist finitely many Jordan curves 71, - - , 7 in C such that for
each z € X, there exists a j with 7g(yz) = 75.

Step 2: By Theorem 2.14 (5) in [S1], there exists an n € N such that for
each z € X, Wy = (f1)"}(Vyn(z)) D Vi and mod (W \ V) > C3, where C3
is a positive constant independent of z € X. Since J(f") = Jz(f), we may

assume n = 1. .
Step 3: For each z € X, let o, : 71 (2) \ Vo — 77 1(z) \ D(O,%) be the

Riemann map such that ¢, ((z,)) = (, 00), under the identification 7! =
C. p, can be extended analytically to 9V, = ;. We define a quasi-regular

map hg; 71 (z) — 77 (o{z)) as follows:

%(w)fm@;l(z), zZ € ‘Pz(”—l(m) \ We)
he(2) == 24 2 € D(0, 3)
ha(2), 2 € pu(We) \ D(0, 3),

where A : 0x(Wa) \ D(0,3) — D(0,3)\ D(0, (3 Lyd(#)) is a regular covering
and a K. -quasuegular map, where K is a constant mdependent of z € X.
Step 4: For each x € X, we define a Beltrami differential ,um(z)g- on 7 1(x)
as follows:
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(hcrn(a:) a:) (B—hgn(z) d_) z € (ha""(m) Tt hx)_l(Wa”(x)(Wa"(m)) \ D(Oa %))

o h o (z )dz

8:h_n
g, 2 € pa(We) \ D(0, )

0, otherwise.

Then, there exists a constant k with 0 < k < 1 such that for each z €
X, |pizlloo < k- By the construction, we have g fto(z) = fiz, for each z € X.
Let 1z : 7 1(z) — 7~ !(z) be a quasiconformal map such that 9z, =
[T R T zpm(()) =0, ¥(1) =1, and Q,bm(oo) = 00, under the identification

7 1(z) = C. Let hy = Yomhatiy’ : 771 (z) — 77 (o(2)). Then, hg is
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holomorphic on 77*(z). By the construction, we see that he(z) = ()29,

where ¢(2) = Yy (z)he¥z 1(1) = t5(z)92(1). Furthermore, by the construction
again, we see that there exists a positive constant ¢4 such that for each
z € X, 3.% < |gz(1)] < Cjs. Hence, there exists a positive constant Cs
such that for each z € X, & < |e(z)| < Cs. Let Jr be the set of non-
normahty of the sequence (han(m) - hg)n in 7. Then, by he(z) = c(z)24®
and z < |c(x)| < Cs for each x € X, we obtain that Jy is a round circle.
Under the identification of 7~1(z) & C, we have that the family {¢z}zex
is normal in C. Hence, J(f) = ¢z ¢7 le and it follows that there exists a

constant K such that for each z E X, J.(f) is a K-quasicircle. ([

Proof of Theorem 1.14-3: Since P(G) \ {00} N J(G) C Jmin (Theo-
rem 1.9-3, it is easy to see (mzJy(f)) N P(G) = B for each z € X. Hence,
7 is a hyperbolic skew product. Combining this with Theorem 1.14-1a and
Theorem 3.5, we obtain that there exists a constant K such that for each
z € W, Jm(f) is a K-quasicircle. O

Proof of Theorem 1.15: Since J(G) = UgegJ(g) (Theorem 2.2), there
exists an element h; € G with J(h;) NV # 0. By Theorem 1.4, there exists
an element hs € G such that the Julia set of G; = (h1, hg) is disconnected.
By Theorem 1.14-3, we can find two elements g; and go in Gy satisfying all
of the conditions in the statement in Theorem 1.15. O
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