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Abstract

We investigate dynamics of polynomial semigroups of which post-
critical sets in the plane are bounded. The Julia set may not be con-
nected in general. We show that for such a polynomial semigroup,
there exists an intrinsic total order in the space of all connected com-
ponents of the Julia set and each connected component of the Fatou
set is either simply or doubly connected.

We classify the class of polynomial semigroups with bounded post-
critical set in the plane

Furthermore, we investigate wordwise dynamics of such semigroups.
Using uniform fiberwise quasiconformal surgery on a fiber bundle, we
show that if the Julia set of such a semigroup is disconnected, then
there exists a family of quasicircles with uniform distortion which is
parametrized by the Cantor set.

1 Introduction and the main results

A rational semigroup is a semigroup generated by non-constant ratio-
nal maps on $\overline{\mathbb{C}}$ with the semigroup operation being the composition of
maps([H Ml]). A polynomial semigroup is a semigroup generated by
non-constant polynomial maps. Research on the dynamics of rational semi-
groups was initiated by A. Hinkkanen and $\mathrm{G}.\mathrm{J}$ . Martin ([HM1]), who were
interested in the role of the dynamics of polynomial semigroups while study-
ing various one-complex-dimensional moduli spaces for discrete groups, and
F. Ren’s group([ZR], [GR]).

Definition 1.1. Let G be a rational semigroup. We set

$F(G)=$ { $z$ $\in\overline{\mathbb{C}}|G$ is normal in a neighborhood of $z$ }, $J(G)=\overline{\mathbb{C}}\backslash F(G)$ .
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$F(G)$ is called the Fatou set for G and $J(G)$ is called the Julia set for G.
The backward orbit $G^{-1}(z)$ of z and the set of exceptional points $E(G)$

are defined by: $G^{-1}(z)$ $=\mathrm{U}_{g\in G}g^{-1}(z)$ and $E(G)=\{z\in\overline{\mathbb{C}}|\# G^{-1}(z)<$

$\infty\}$ . For any subset $A$ of $\overline{\mathbb{C}}$, we set $G^{-1}(A)=\mathrm{U}_{g\in G}g^{-1}(A)$ . We denote by
$\langle$ $h_{1}$ , $h_{2}$ , $\ldots$ ) the rational semigroup generated by the family $\{h_{\mathrm{i}}\}$ . The Julia
set of the semigroup generated by a single map $g$ is denoted by $J(g)$ . For
any polynomial $g$ , we set $K(g)$ $:=$ { $z \in \mathbb{C}|\bigcup_{n\in \mathrm{N}}g^{n}(z)$ : bounded in $\mathbb{C}$ }.

For a polynomial semigroup $G$ , we set

$\hat{K}(G):=$ { $z\in \mathbb{C}|\cup g\in Gg(z)$
: bounded in $\mathbb{C}$ }.

Furthermore, we set Rat $:=$ { $h$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}|h$ : holomorphic }, with uniform
convergence topology on C.

Definition 1.2. Let G be a rational semigroup. We set

$P(G)=g\in G\cup${all critical values of $g$}.

This is called the postcritical set for $G$ .

Question 1. Let $G$ be a polynomial semigroup such that each element $g\in$

$G$ is of degree at least two. If $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ , then $J(G)$ is
connected?

The answer is NO.

Example 1.3 ([SY]). Let $G= \langle z^{3}, \frac{z^{2}}{4}\rangle$ . Then $P(G)\backslash \{\infty\}=\{0\}$ (which
is bounded in C) and $J(G)$ is disconnected( $J(G)$ is a Cantor family of
round circles). Furthermore, small pertubation $H$ of $G$ still satisfies that
$P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ and that $J(H)$ is disconnected. ( $J(H)$ is a
Cantor family of quasi-circles with uniform dilatation. )

Question 2. What happens if $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ and $J(G)$ is
disconnected?

1.1 Connected components of Julia sets

We present some results on connected components of the Julia set of a poly-
nomial semigroup with bounded postcritical set in the plane. Furthermore,
we classify such semigroups. The proofs are given in the section 3.1.

Theorem 1.4. Let $G$ be a rational semigroup generated by a family $\{h_{\lambda}\}_{\lambda\in\Lambda}$

such that each $h_{\lambda}$ is not an elliptic Mobius transformation of finite order.
Suppose that there exists a connected component $A$ of $J(G)$ such that

$\# A$ $>1$ and $\bigcup_{\lambda\in\Lambda}J(h_{\lambda})\subset A$ . Then, $J(G)$ is connected
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Definition 1.5. Let $\mathcal{G}$ be the set of all polynomial semigroups G with the
following properties:

$\bullet$ each element of $G$ is of degree at least two, and

$\bullet$ $P(G)\backslash \{\infty\}$ is bounded in C.

Furthermore, we set $\mathcal{G}_{\mathrm{C}}=$ { $G\in Ci$ $|\mathrm{J}(\mathrm{G})$ : connected} and $\mathcal{G}_{d}=\{G\in \mathcal{G}|$

$J(G)$ : disconnected}.
Notation: For a polynomial semigroup G, we denote by J the set of all
connected components of $J(G)$ which are included in C.

Definition 1.6. For any connected compact sets $K_{1}$ and $K_{2}$ in $\mathbb{C}$ , “$K_{1}\leq$

$K_{2}$
” means that $K_{1}=K_{2}$ or $K_{1}$ is included in a bounded component of

$\mathbb{C}\backslash K_{2}$ . $” K_{1}<K_{2}$” means $K_{1}\leq K_{2}$ and $K_{1}\neq K_{2}$ . Note that $”\leq$
” is a

partial order in the space of all non-empty compact connected set in C.

Theorem 1,7. Let G $\in C\mathcal{G}$ (possibly infinitely generated). Then

1. $(J, \leq)$ is totally ordered.

2. Each connected component of $F(G)$ is either simply or doubly con-
nected.

S. For any $g\in G$ and any connected component $J$ of $J(G)$ , we have
that $g^{-1}(J)$ is connected. Let $g^{*}(J)$ be the connected component of
$J(G)$ containing $g^{-1}(J)$ . If $J\in J$ , then $g^{*}(J)\in J$ . if $J_{1}$ , $J_{2}\in J$ and
$J_{1}\leq J_{2}$ , then $g^{-1}(J_{1})\leq g^{-1}(J_{2})$ and $g^{*}(J_{1})\leq g^{*}(J_{2})$ .

Proposition 1.8. Let $G\in \mathcal{G}$ . if $U$ is a connected component of $F(G)$ such
that $U\cap\hat{K}(G)\neq\emptyset$, then $U$ dint $\hat{K}(G)$ and $U$ is simply connected. Further-
more, we have $\hat{K}(G)\cap F(G)=\mathrm{i}nt\hat{K}(G)$ .

Notation: We classify the class $\mathcal{G}_{d}$ of polynomial semigroups as follows:

$\bullet$ type(I) $\#(P(G)\backslash \{\infty\})\geq 2$

$-(\mathrm{a})$ : oo $\in F(G)$

$-(\mathrm{b})$ : oo $\in J(G)$

$\bullet$ type (II) $\#(P(G)\backslash \{\infty\})=1$ , let $\{\mathrm{z}\mathrm{O}\}=P(G)\backslash \{\infty\}$ . (Note that in
this case each element of the semigroup is of the form $a(z-z\mathrm{o})^{n}+z0\cdot)$

$-(\mathrm{a})$ : oo $\in F(G)$

$*(\mathrm{i}):z_{0}\in F(G)$

$*(\mathrm{i}\mathrm{i}):z_{0}\in J(G)$

$-(\mathrm{b})$ : oo $\in J(G)$
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$*(\mathrm{i}):z_{0}\in F(G)$

$*(\mathrm{i}\mathrm{i}):z_{0}\in J(G)$ .

Theorem 1.9. Let G $\in \mathcal{G}_{d}$ . Under the above notation, we have the follow-
ing.

1. If $G$ is generated by a compact set of polynomials in Rat, then any
subsemigroup $H$ of $G$ with $H\in g_{d}$ is of type (I)(a) or (II)(a)(i).

2. ij oo $\in F(G)$ , the connected component $U_{\infty}$ of $F(G)$ containing oo
is simply connected. Further more, the element $J_{\max}\in J$ containing
$\partial U_{\infty}$ is the unique one satisfying that $J\leq J_{\mathrm{m}\mathrm{a}s\mathrm{c}}$ for each $J\in J$ .
Furthemore, oo $\in F(G)$ if and only if there exists a unique maximal
element in $(J, \leq)$ .

3. Whatever the type of G is, there exists a unique element $J_{\min}\in J$

such that $J_{\min}\leq J$ for each element $J\in J$ . Furthermore, let $D$ be the
unbounded component of $\mathbb{C}\backslash J_{\min}$ . Then $(P(G)\backslash \{\infty\})\cap D=\emptyset$ and
$\partial\hat{K}(G)\subset J_{\min}$ .

4. ij $G$ is generated by a family $\{h_{\lambda}\}_{\lambda\in\Lambda}$ , then there exist two elements
$\lambda_{1}$ and $\lambda_{2}$ of A satisfying:

(a) there exist two elements $J_{1}$ and $J_{2}$ of $J$ such that $J_{1}\neq J_{2}$ and
$J(h_{\lambda_{i}})\subset J_{\mathrm{i}}$ for each $i=1,2$,

(b) $J(h_{\lambda_{1}})\cap J_{\min}=\emptyset$,

(c) for each $n\in \mathrm{N}$ , we have $h_{\lambda_{1}}^{-n}(J(h_{\lambda_{2}}))\cap J(h_{\lambda_{2}})=\emptyset$ and $h_{\lambda \mathrm{z}}^{-n}(J(h\lambda_{1}))\cap$

$J(h_{\lambda_{1}})=\emptyset$ , and

(d) $h_{\lambda_{1}}$ has an attracting fixed point $z_{1}$ in $\mathbb{C}$, int $K(h_{\lambda_{1}})$ consists of
only one immediated attracting basin for $z1$ , ant $K(h\lambda_{2})$ Cint
$K(h_{\lambda_{1}})$ . Furthermore, $z_{1}\in int$ $K(h\lambda_{2})$ .

Moreover, for each $g\in G$ with $J(g)\cap J_{\min}=\emptyset$ , we have that $g$ has an
attracting fixed point $z_{g}$ in $\mathbb{C}$ , int $K(g)$ consists of only one immediate
attracting basin for $z_{g}$ , and $J_{\min}$ Cint $K(g)$ .

5. int $\hat{K}(G)(=\hat{K}(G)\cap F(G))\neq\emptyset$ if and only if $G$ is of type (I) or
(II)(a)(i)or (II)(b)(i). if int $\hat{K}(G)\neq\emptyset$ then

(a) $\mathbb{C}\backslash J\min$ is disconnected, $\# J$ $\geq 2$ for each $J\in J$ , and

(b) for each $g\in G$ with $J(g)\cap J_{\min}=\emptyset$ , we have $J_{\min}<g^{*}(J_{\min})_{f}$

$g(\hat{K}(G))\subset \mathrm{i}nt$ $\hat{K}(G)_{1}$ and the unique attracting fixed point $z_{g}$ of
$g$ in $\mathbb{C}$ belongs to int $\hat{K}(G)$ .
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6. If $G$ is of type (1)(b) or (II)(b), then the connected component of $J(G)$

containing oo is equal to $\{\infty\}$ . Similarly, if $G$ is of type $(II)(a)(\mathrm{i}\mathrm{i})$ or
(II) (b) (b), then $J_{\min}=\{zo\}$ .

7. $J(G)$ is uniformly perfect if and only if $G$ is of type $(I)(a)$ or (II)
(a)(i). Here a compact set $K$ in $\overline{\mathbb{C}}$ is said to be uniformly perfect if
$\# K$ $\geq 2$ and there exists a constant $G>0$ such that each annulus $A$

which separates $K$ satisfies that mod $(A)\leq C$ .

8. Suppose that $G$ is of type (I). Let $g\in G$ and let $z_{1}\in J(G)\cap$ C.
If (II) $=z_{1}$ and $g’(z_{1})=0$ , then $z_{1}\in intJ_{\min}$ and $J(g)\subset J_{\min}$ .
(Remark: For a rational semigroup $G$ , if $J(G)$ is connected then
each superattracting fixed point in $J(G)$ of some element $g\in G$ belongs
to int $J(G).)$

1.2 Fiberwise Julia sets

We present some results on fiberwise dynamics of a finitely generated poly-
nomial such that the postcritical set in the plane is bounded and the Julia set
is disconnected. In particular, using the uniform fiberwise quasiconformal
surgery on a fiber bundle, we show the existence of a family of quasicircles
parametrized by a Cantor set with uniform distortion in the Julia set of such
a semigroup. The proofs are given in section 3.2.

Definition 1.10. 1. ([SI],[S3]) Let $X$ be a compact metric space, $g$ :
$Xarrow X$ be a continuous map and $f$ : $X\mathrm{x}$ $\overline{\mathbb{C}}arrow X\mathrm{x}$ $\overline{\mathbb{C}}$ be a continuous
map. Then we say that $f$ is a rational skew product ( or fibered
rational map on trivial bundle $X\mathrm{x}$

$\overline{\mathbb{C}}$ ) over $g$ : $Xarrow X$ , if $\pi \mathrm{o}f=\pi \mathrm{o}g$

where $\pi$ : $X\mathrm{x}$ $\overline{\mathbb{C}}arrow X$ denotes the projection, and for each $x\in X$ ,
the restriction $f_{x}:=f|_{\pi^{-1}(x)}$ : $\pi^{-1}(x)arrow\pi^{-1}(g(x))$ of $f$ is a non
constant rational map, under the identification $\pi^{-1}(x’)\cong\overline{\mathbb{C}}$ for each
$x’\in X$ . Let $d(x)=\deg(f_{x})$ , for each $x\in X$ . Let $q_{x}^{(n)}$ be a rational
map defined by: $q_{x}^{(n)}(y)=\pi_{\overline{\mathbb{C}}}(f_{x}^{n}((x, y)))$ , for each $n\in \mathrm{N}$ and $x\in X$ .
Let $\pi$ : $X\mathrm{x}$ $\overline{\mathbb{C}}arrow X$ and $\pi_{\overline{\mathbb{C}}}$ : $X\mathrm{x}$ $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ be the projections.

2. Let $G=\langle h_{1}, \cdots, h_{m}\rangle$ be a finitely generatd rational semigroup. For
a fixed generator system $\{h_{1}, \cdots, h_{m}\}$ , we set $\Sigma_{m}=\{1, \cdots, m\}^{\mathrm{N}}$ , a :
$\Sigma_{m}arrow\Sigma_{m}$ , $\mathrm{a}(\mathrm{x}\mathrm{i}, x_{2}, \cdots)$ $:=(x_{2}, x_{3}, \cdots)$ . Moreover, we define a map
$f$ : $\Sigma_{m}\mathrm{x}$ $\overline{\mathbb{C}}arrow\Sigma_{m}\mathrm{x}$ $\overline{\mathbb{C}}$ by: $(x, y)$ , $\mapsto$ a $(\mathrm{x}\mathrm{i}, h_{x_{1}}(y))$ , where $x=$
$(x_{1}, x_{2},$\cdots ). This is called the skew product map associated with
the generator system $\{h_{1},$\cdots ,$h_{m}\}$ .

3. Let $f$ : A $\mathrm{x}$

$\overline{\mathbb{C}}arrow X\mathrm{x}$ $\overline{\mathbb{C}}$ be a rational skew product over $g$ : $Xarrow X$ .
We set

$P(f):=\cup f^{n}$ (
$n\geq 0,x\in X$

critical points of $f_{x}$ ),
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where the closure is taken in $X\mathrm{x}\overline{\mathbb{C}}$. This is called the fiber-postcritical
set for $f$. We say that $f$ is hyperbolic (along fibers) if $P(f)\subset F(f)$ .

Definition 1.11 ([SI],[S3]). Let f : Xx $\overline{\mathbb{C}}arrow X$ x $\overline{\mathbb{C}}$ be a rational skew
product over g : X $arrow X$ . Then,

1. $f_{x}^{n}:=f^{n}|_{\pi^{-1}x}$ : $\pi^{-1}xarrow\pi^{-1}\sigma^{n}(x)\subset X\mathrm{x}$ C.

2. we denote by $F_{x}(f)$ the set of points $y\in\pi^{-1}x$ which has a neighbor-
hood $U$ in $\pi^{-1}x$ such that $\{f_{x}^{n} : Uarrow X\mathrm{x} \overline{\mathbb{C}}\}_{n\in \mathrm{N}}$ is normal.

3. $J_{x}(f):=\pi^{-1}x\backslash F_{x}(f)$ .
4. $J\sim(f)$ $:=\overline{\bigcup_{x\in\Sigma_{m}}J_{x}(f)}$ in $X\mathrm{x}$ C.

5. $\hat{J}_{x}(f):=\pi^{-1}x\cap\tilde{J}(f)$ .

6. $\tilde{F}(f):=(\Sigma_{m}\cross \overline{\mathbb{C}})\backslash \tilde{J}(f)$ .
Definition 1.11 Let $G=\langle h_{1}$ , $\ldots$ , $h_{m}$ ) be a finitely generated polynomial
semigroup. Fix the generator system $\{h_{1}$ , . . . , $h_{m}\}$ . Suppose $G\in \mathcal{G}_{d}$ . Then
we set

$B_{\min}:=\{1\leq j\leq m|J(h_{j})\subset J_{\min}\}$ ,

where $J_{\min}$ denotes the unique minimal element in $(J, \leq)$ in Theorem 1.9.3.
Furthermore, let $H_{\min}$ be the subsemigroup of $G$ which is generated by
$\{h_{j}|j\in B_{\min}\}$ .

Proposition 1.13. Let $G=\langle h_{1}, \cdots, h_{m}\rangle$ be a finitely generated polynomial
semigroup in $\mathcal{G}_{d}$ . Then, we have $B_{\min}\neq\emptyset$ and $\{$ 1, $\ldots$ , $m\}\backslash B_{\min}\neq\emptyset$, under
the above notation.

Theorem 1.14. Let $G=\langle h_{1}$ , $\cdots$ , $h_{m}$ } be a finitely generated polynomial
semigroerp. Suppose $G\in \mathcal{G}_{d}$ . Let $f$ : $\Sigma_{m}\mathrm{x}$ $\overline{\mathbb{C}}arrow\Sigma_{m}\mathrm{x}$

$\overline{\mathbb{C}}$ be the skew product
map associated utith the generator system $\{h_{1}, \ldots, h_{m}\}$ . Then under the
above notation and notation in section 1, we have that

1. for each x $\in\Sigma_{m}\backslash \bigcup_{n\geq 0}\sigma^{-n}B_{\min}^{\mathrm{N}}$ ,

(a) there exists only one bounded component $U_{x}$ of $\pi^{-1}(x)\backslash (J_{x}(f)\cup$

$\pi_{\overline{\mathbb{C}}}^{-1}\{\infty\})$ . Furthermore, the boundary $\partial U_{x}$ in $\pi^{-1}x$ is equal to
$J_{x}(f)$ .

(b) each limit function of $\{f_{x}^{n}\}_{n}$ in $U_{x}$ is constant For each $y\in U_{x}$

there exists a number $n\in \mathrm{N}$ such that $\pi_{\overline{\mathbb{C}}}(f_{x}^{n}(y))$ &int $\hat{K}(G)$ .
(c) $\hat{J}_{x}(f)=J_{x}(f)$ .
(c) 2-dimensional Lebesgue measure of $\hat{J}_{x}(f)=J_{x}(f)$ is equal to

zero
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2. if $H_{\min}$ is semi-hyperbolic then $G$ is also. If this is so, then for each
$x \in\Sigma_{m}\backslash \bigcup_{n\geq 0}\sigma^{-n}B_{\min}^{\mathrm{N}}$ , we have that $\hat{J}_{x}(f)=J_{x}(f)$ is a Jordan
curve. Here, a rational semigroup $H$ is said to be semi-hyperbolic if
for each $z\in J(H)$ there exists a neighborhood $U$ of 2 in $\overline{\mathbb{C}}$ and $a$

number $N\in \mathrm{N}$ such that for each $g\in G$ , $\deg(g : Varrow U)\leq N$ for
each connected component $V$ of $g^{-1}(U)$ . $([S\mathit{1}J_{J}[S\mathit{4}].)$

3. For each s $\in \mathrm{N}$ , we set

$W_{s}:=$ {x $\in\Sigma_{m}|\forall l\in \mathrm{N}$, $1\leq\exists j\leq s$ with $x\iota+j\in$ {1, \ldots ,
$m \}\backslash B\min$}.

Let $\overline{f}:=f|_{W_{s}\mathrm{x}\overline{\mathbb{C}}}$ : $W_{s}\mathrm{x}$ $\overline{\mathbb{C}}arrow W_{s}\mathrm{x}$ C. Then $\overline{f}$ is a hyperbolic skew
product and there exists a constant $K_{\mathit{8}}\geq 1$ such that for each $x\in W_{s}$ ,
$\hat{J}_{x}(f)=J_{x}(f)=J_{x}(\overline{f})$ is a $K_{s}$ -quasicircle.

Theorem 1.15. (Existence of a Cantor family of quasicircles.) Let
$G\in \mathcal{G}_{d}$ ( possibly infinitely generated) and let $V$ be an open set with $V\cap$

$J(G)\neq\emptyset$ . Then there exist elements $g_{1}$ and $g_{2}$ in $G$ such that all of the
following hold.

1. H $=\langle g_{1}, g_{2}\rangle$ satisfies $J(H)\cap V\neq\emptyset$ .
2. There exists an open set U in $\mathbb{C}$ ratifying that $g_{1}^{-1}(\overline{U})\cup g_{2}^{-1}(\overline{U})\subset U$

and $g_{1}^{-1}(\overline{U})$ and $g_{2}^{-1}(\overline{U})$ are disjoint

3. H $=\langle g_{1}, g_{2}\rangle$ is a hyperbolic polynomial semigromp(i. e. $P(H)\subset F(H)$ ),

4. Let f : $\Sigma_{2}$ x $\overline{\mathbb{C}}arrow\Sigma_{2}\mathrm{x}$ $\overline{\mathbb{C}}$ be the skew product map associated with the
generator system $\{g_{1}, g_{2}\}$ . Then,

$\bullet$ $\mathrm{J}(\mathrm{H})=\bigcup_{x\in\Sigma_{2}}\pi_{\overline{\mathbb{C}}}(J_{x}(f))$ (disjoint union),
$\bullet$ each connected component $J$ of $J(H)$ is equal to $\pi_{\overline{\mathbb{C}}}(J_{x}(f))$ far

some $x\in\Sigma_{2}$ and
$\bullet$ there exists a constant $K\geq 1$ independent of $J$ such that each

connected component $J$ of $J(H)$ is a K-quasicircle.

5. x $\mapsto J_{x}(f)$ is continuous and injective
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2 Tools

To show the main results, we need some tools in this section.

2.1 Fundamental properties of rational semigroups

Lemma 2.1 $([\mathrm{H}\mathrm{M}1],[\mathrm{G}\mathrm{R}],[\mathrm{S}1])$ . Let G be a rational semigroup.

1. For each f $\in G$ , we have $f(F(G))\subset F(G)$ and $f^{-1}(J(G))\subset J(G)$ .
Note that we do not have that the equality holds in general.

2. If G $=\langle h1,$\cdots ,$h_{m}\rangle f$ then $\mathrm{J}(\mathrm{G})=h_{1}^{-1}(J(G))\mathrm{U}\cdots\cup h_{m}^{-1}(J(G))$

3. If $\#(J(G))\geq 3$ , then $J(G)$ is a perfect set

4. If $\#(J(G))\geq 3$ , then $\# E(G)\leq 2$ .

5. If a point z is not in $E(G)$ , then $J(G)\subset\overline{G^{-1}(z)}$ . In particular if $a$

point 2 belongs to $J(G)\backslash E(G)$ , then $\overline{G^{-1}(z)}=J(G)$ .

6. If $\#(J(G))\geq 3$ , then $J(G)$ is the smallest closed backward invariant set
containing at least three points. Here we say that a set $A$ is backward
invariant under $G$ if for each $g\in G$ , $g^{-1}(A)$ $\subset A$ .

Theorem 2.2 $\underline{([\mathrm{H}\mathrm{M}1],[\mathrm{G}\mathrm{R}]).}$Let $G$ bearationalsemigroup. If $\#(J(G))\geq$

$3$ , then $J(G)=\{z\in\overline{\mathbb{C}}|\exists g\in G, g(z)=z, |g’(z)|>1\}$ . In particular, $J(G)=$
$\overline{\bigcup_{g\in G}J(g)}$ .

2.2 Fundamental properties of fibered rational maps

Lemma 2.3. Let $f$ : $X\mathrm{x}$ $\overline{\mathbb{C}}arrow X\mathrm{x}\overline{\mathbb{C}}$ be a rational skew product over
$g$ : $Xarrow X$. Then,

1. $f^{-1}(\tilde{J}(f))=\tilde{J}(f)=f(\tilde{J}(f))$ . $f^{-1}J_{g(x)}(f)=J_{x}(f)$ . $\hat{J}_{x}(f)\supset J_{x}(f)_{l}$

no$te$ that equality does not hold in general. If $g$ : $Xarrow X$ is $a$

surjective and open map, then $f^{-1}\hat{J}_{g(x)}(f)$ $=\hat{J}_{x}(f)$ .

2. ([J], $[\mathrm{S}1]\mathrm{J}$ ij $\deg(f_{x})\geq 2$ for each $x\in X$ , then $J_{x}(f)$ is a non-empty
perfect set Furthermore, $x\mapsto J_{x}(f)$ is lower semicontinuous; $\mathrm{i}.e$ . for
any point $(x, y)\in X\mathrm{x}$

$\overline{\mathbb{C}}$ with $(x, y)\in J_{x}(f)$ and any sequence $(x^{n})$

in $X$ with $x^{n}arrow x$ , there exists a sequence $(x^{n}, y^{n})$ in $X\mathrm{x}$
$\overline{\mathbb{C}}$ with

$(x^{n}, y^{n})\in J_{x^{n}}(f)$ such that $(x^{n}, y^{n})arrow(x, y)$ . But $x\mapsto J_{x}(f)$ is NOT
continuous with respect to the Hausdorff topology in general.

3. ij $\deg(f_{x})\geq 2$ and $f_{x}$ is a polynomial for each $x\in X$ , then for each
$x\in X$ , we have $\infty\in\pi_{\overline{\mathbb{C}}}(F_{x}(f))$ and $J_{x}(f)$ $=\partial K_{x}(f)$ (in $\pi^{-1}(x)$),
where $K_{x}(f):=$ { $z\in\pi^{-1}x|\{\pi_{\overline{\mathbb{C}}}(f_{x}^{n}(z))\}_{n\in \mathrm{N}}$ : bounded in $\mathbb{C}$ }.
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4. If $f$ : $\Sigma_{m}\mathrm{x}\overline{\mathbb{C}}arrow\Sigma_{m}\mathrm{x}\overline{\mathbb{C}}$ is a skew product map associated with a general
ator system $\{\mathrm{h}\mathrm{i}, \cdots, h_{m}\}$ of a rational semigroup $G$ , then $\pi_{\overline{\mathbb{C}}}(\tilde{J}(f))$ $=$

$J(G)$ .
Lemma 2.4. $lei$ $G=\langle h_{1}, \cdots, h_{m}\rangle$ be a finitely generated polynomial semi-
group such that each $h_{j}$ is of degree at least two. Let $f$ : $\Sigma_{m}\mathrm{x}$

$\overline{\mathbb{C}}arrow\Sigma_{m}\mathrm{x}$
$\overline{\mathbb{C}}$

be the skew product map associated with the generator system $\{h_{1}, \cdots,, h_{m}\}$ .
Then $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ if and only if $J_{x}(f)$ is connected for each

$x\in\Sigma_{m}$ .

2.3 A lemma from general topology

Lemma 2.5 ([N]). Let $X$ be a compact metric space and let $f$ : $Xarrow X$

be a continuous open map. Let $A$ be a compact connected subset of X. Then
for each connected component $B$ of $f^{-1}(A)_{2}$ we have $f(B)=A$.

3 Proofs of the main results

In this section, we demonstrate the main results.

3.1 Proofs of results in 1.1

Proof of Theorem 1.4: Let $\mathrm{A}\in$ A and let $B$ be a connected component of
$h_{\lambda}^{-1}(A)$ . Then by Lemma 2.5, $h_{\lambda}(B)=A$ . Combining this with $h_{\lambda}^{-1}(J(h\lambda))=$

$J(h_{\lambda})$ , we obtain $B\cap J(h_{\lambda})\neq\emptyset$ . Hence $B\subset A$ . This means that $h_{\lambda}^{-1}(A)\subset A$

for each $\mathrm{A}\in$ A. Combining this with $\beta A$ $\geq 3$ , by Lemma 2J-6 we obtain
$J(G)\subset A$ . Hence $J(G)=A$ and $J(G)$ is connected. $\square$

Lemma 3.1. Let $G\in$ (; and let $J$ be a connected compon $ent$ of $J(G)$ , $z0\in J$

a point, and $(g_{n})$ a sequence of $G$ such that $d(z0, J(g_{n}))arrow 0$ as $narrow\infty$ .
Then

$\sup_{z\in J(g_{n})}d(z, J)arrow \mathrm{O}$
as $narrow\infty$ .

Proof. Suppose there exist a connected component $J^{J}$ of $J(G)$ with $J’\neq J$

and a subsequence $(g_{n_{j}})$ of $(g_{n})$ such that $\min$ $d(z, J’)arrow \mathrm{O}$ as $jarrow\infty$ .
$z\in J(g_{n_{j}})$

Since $J(g_{n_{j}})$ is compact and connected for each $j$ , we may assume that there
exists a non-empty compact connected subset $K$ of $\overline{\mathbb{C}}$ such that $J(g_{n_{j}})arrow K$

as $jarrow\infty$ , with respect to the Hausdorff topology. Then $K\cap J\neq\emptyset$ and
$K\cap J’\neq\emptyset$ . Since $K\subset J(G)$ and $K$ is connected, it contradicts $J’\neq J$. $\square$

Lemma 3.2. Suppose G $\in \mathcal{G}_{d}$ and oo $\in J(G)$ . Then, the connected compo-
nent A of $J(G)$ containing $\infty$ is equal to $\{\infty\}$ .

Proof By Lemma 2.5, we obtain $g^{-1}(A)\subset A$ for each $g\in G$ . Hence, if
$\# A$ $\geq 3$ , then $J(G)\subset A$ , by Lemma 2.1-6. Then $J(G)$ $=A$ and it causes a
contradiction, since $J(G)$ is disconnected. $\square$
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Proofof Theorem 1.7: First we show the statement 1. Suppose there exist
elements $J_{1}$ , $J_{2}\in J$ such that $J_{2}$ is included in the unbouded component $A_{1}$

of $\mathbb{C}\backslash J_{1}$ and $J_{1}$ is included in the unbounded component A2 of $\mathbb{C}\backslash J_{2}$ . Then we
can find an $\epsilon>0$ such that $\overline{B(J_{2},\epsilon)}$ is included in the unbounded component
of $\mathbb{C}\backslash \overline{B(J_{1},\epsilon)}$ and $\mathrm{B}(\mathrm{J}2, \epsilon)$ is included in the unbounded component of $\mathbb{C}\backslash$

$B(J_{2_{2}}\epsilon)$ . We take a point $z_{i}\in J_{i}$ , for each $\mathrm{i}=1,2$ . By Theorem 2.2, for each
$\mathrm{i}=1,2$ , there exists a sequence $\{g_{\mathrm{i},n}\}_{n\in \mathrm{N}}$ in $G$ such that $d(z_{\mathrm{i}}, J(g_{i,n}))arrow 0$ as
$narrow\infty$ . Then by Lemma 3.1, we obtain for each $\mathrm{i}=1,2$ , $\sup$ $d(z, J_{\mathrm{i}})arrow$

$z\in J(g_{i,n})$

0 as $narrow\infty$ . Hence, we obtain that there exists a positive integer no such
that for each $n$ with $n\geq n_{0}$ and each $i=1,2$ , we have $J(g_{i,n})\subset B(J_{\mathrm{i}}, \epsilon)$ .
This implies $J(g_{1,n})\subset A_{2,n}$ and $J(g_{2,n})\subset A_{1,n},\cdot$ where $A_{i,n}$ denotes the
unbounded component of $\mathbb{C}\backslash J(g_{in}\rangle)$ . Hence we obtain $K(g2,n)\subset A_{1,n}$ for
each $n\in \mathrm{N}$ with $n\geq n_{0}$ . Let $n\geq n_{0}$ be a number and $v$ a critical value
of $g_{2,n}$ in C. Since $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ , we have $v\in K(g_{2,n})$ .
Hence $v\in A_{1,n}$ . Hence $g_{1,n}^{l}(v)arrow\infty$ . But this implies a contradiction since
$P(G)\backslash \{\infty\}$ is bounded in C. Hence we have shown the statement 1.

Next, we show the statement 2. Let $F_{1}$ be a connected component of
$F(G)$ . Suppose that there exist three connected components Ji, $J_{2}$ and $J_{3}$

of $J(G)$ such that they are mutually disjoint and $\partial F_{1}\cap J_{i}\neq\emptyset$ for each
$\mathrm{i}=1,2,3$ . Then, by the statement 1, we may assume that we have either
(1): $J_{\mathrm{i}}\in J$ for each $\mathrm{i}=1,2,3$ and $J_{1}<J_{2}<J_{3}$ , or (2): $J_{1}$ , $J_{2}\in J$, $J_{1}<J_{2}$ ,
and $\infty\in J_{3}$ . Each of these cases implies that $J_{1}$ is included in a bounded
component of $\mathbb{C}\backslash J_{2}$ and $J_{3}$ is included in the unbounded component of

$\overline{\mathbb{C}}\backslash J_{2}$ . But it causes a contradiction, since $\partial F_{1}\cap J_{i}\neq\emptyset$ for each $\mathrm{i}=1,2,3$ .
Hence, we have shown that we have either
Case $\mathrm{I}:\mathfrak{g}$ { $J$ : component of $J(G)|\partial F_{1}\cap J\neq\emptyset$ } $=1$ or
Case $\mathrm{I}\mathrm{I}$ : $\#$ { $J$ : component of $J(G)|\partial F_{1}\cap J\neq\emptyset$} $=2$ .

Suppose we have Case I. Let $J_{1}$ be the connected component of $J(G)$

such that $\partial F_{1}\subset J_{1}$ . Let $D_{1}$ be the connected component of $\overline{\mathbb{C}}\backslash J_{1}$ containing
$F_{1}$ . Since $\partial F_{1}\subset J_{1}$ , we have $\partial F_{1}\cap D_{1}=\emptyset$ . Hence, we have $F_{1}=D_{1}$ . Hence
$F_{1}$ is simply connected.

Suppose we have Case $\mathrm{I}\mathrm{I}$ . Let $J_{1}$ and $J_{2}$ be two connected components
of $J(G)$ such that $J_{1}\neq J_{2}$ and $\partial F_{1}\subset J_{1}\cup J_{2}$ . Let $D$ be the connected
component of $\overline{\mathbb{C}}\backslash (J_{1}\cup J_{2})$ containing $F_{1}$ . Since $\partial F_{1}\subset J_{1}\cup J_{2}$ , we have
$\partial F_{1}\cap D=\emptyset$ . Hence, we have $F_{1}=D$ . Hence $F_{1}$ is doubly connected.
Hence, we have shown the statement 2.

We now show the statement 3. Let $g\in G$ be an element and let $J$

be a connected component of $J(G)$ . Suppose $g^{-1}(J)$ is disconnected. By
Lemma 2.5, there exist at most finitely many connected components of
$g^{-1}(J)$ . Let $\{A_{j}\}_{j=1}^{r}$ be the set of connected components of $g^{-1}(J)$ . Then
there exists a positive number $\epsilon$ such that denoting by $Bj$ the connected
component of $g^{-1}(B(J, \epsilon))$ containing $A_{j}$ for each $j=1$ , $\cdots$ , $r$ , $\{B_{j}\}$ are
mutually disjoint. By Lemma 2.5 we obtain for each connected component
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$B$ of $g^{-1}(B(J, \mathrm{e}))$ , $g(B)=\mathrm{S}(\mathrm{J}, \epsilon)$ and $B\cap A_{j}\neq\emptyset$ for some $j$ . Hence we ob-
tain $g^{-1}(B(J, \epsilon))=\bigcup_{j=1}^{r}B_{j}$ (disjoint union ) and $g(B_{j})=B(J, \epsilon)$ for each
$j$ . By Theorem 2.2 and Lemma 3.1, we have that there exists a sequence $(g_{n})$

of $G$ such that $\sup_{z\in J(g_{n})}d(z, J)arrow \mathrm{O}$ as $narrow\infty$ . Let $n\in \mathrm{N}$ be a number
such that $J(g_{n})\subset B(J_{}\epsilon)$ . Then it follows that $g^{-1}(J(g_{n}))\cap Bj\neq\emptyset$ for
each $j=1$ , $\cdots$ , $r$ . Moreover, we have $g^{-1}(J(g_{n}))\subset g^{-1}(B(J, \epsilon))=\cup^{r}j=1Bj$ .
On the other hand, by Lemma 2.4, we have that $g^{-1}(J(g_{n}))$ is connected.
This is a contradiction. Hence we have shown that for each $g\in G$ and
each connected component $J$ of $J(G)$ , $g^{-1}(J)$ is connected. By Lemma 3.2,
we obtain that if $J\in J$ , then $g^{*}(J)\in$ J. Let $J_{1}$ and $J_{2}$ be two ele-
ments of $J$ such that $J_{1}\leq J_{2}$ . Let $U_{i}$ be the unbounded component of
$\mathbb{C}\backslash J_{i}$ , for each $i=1,2$ . Then $U_{2}\subset U_{1}$ . Let $g\in G$ be an element. Then
$g^{-1}(U_{2})\subset g^{-1}(U_{1})$ . Since $g^{-1}(U_{\mathrm{i}})$ is the unbounded connected component
of $\mathbb{C}\backslash g^{-1}(J_{i})$ for each $\mathrm{i}=1,2$ , it follows that $g^{-1}(J_{1})\leq g^{-1}(J_{2})$ . Hence
$g’(J_{1})\leq g’(J_{2})$ , otherwise $g’(J_{2})\leq g^{*}(J_{1})$ and $g^{*}(J_{2})\neq g’(J_{1})$ , and it
contradicts $g^{-1}(J_{1})\leq g^{-1}$ (J2). $\square$

Proof of Proposition 1.8: Let $g\in G$ be an element. Then we have
$\hat{K}(G)\cap \mathrm{F}(\mathrm{G})\subset$ int $\mathrm{K}(\mathrm{G})$ . Since $h(\hat{K}(G)\cap \mathrm{F}(\mathrm{G})\subset\hat{K}(G)\cap F(G)$ for each
$h\in G$ , it follows that $h(U)$ cint $K(g)$ for each $h\in G$ . Hence $U$ cint $\hat{K}(G)$ .
From this, it is easy to see $\hat{K}(G)\cap F(G)=\mathrm{i}\mathrm{n}\mathrm{t}\hat{K}(G)$ . By the maximal value
principle, we see that $U$ is simply connected. $\square$

Proof of Theorem 1.9: First we show the statement 1. To do that, we
show the following claim:
Claim 1: Let $G$ be a rational semigroup generated by a compact set A in
Rat. Let $z_{0}\in\overline{\mathbb{C}}$ be a point such that for each $g\in\Lambda$ , $g(z_{0})=z0$ and
$|g’(z_{0})|<1$ . Then, $z_{0}\in F(G)$ .

The proof of this claim is immediate. From the claim, we easily obtain
the statement 1.

Next, we show the statement 2. Suppose oo $\in F(G)$ . Let $F_{\infty}$ be the
connected component of $F(G)$ containing $\infty$ . Let $J\in J$ be an element such
that $\partial F_{\infty}\cap J\neq\emptyset$ . Let $D$ be the unbounded component of $\overline{\mathbb{C}}\backslash J$. Then
$F_{\infty}\subset D$ and $D$ is simply connected. We show $F_{\infty}=D$ . Otherwise, there
exists an element $J_{1}\in J$ such that $J_{1}\neq J$ and $J_{1}\subset D$ . By Theorem I.7-1,
we have either $J_{1}<J$ or $J<J_{1}$ . Hence, it follows that $J<J_{1}$ and we have
that $J$ is included in a bounded component $D$ of $\mathbb{C}\backslash J_{1}$ . Since $p_{\infty}$ is included
in the unbounded component $D_{1}$ of $\overline{\mathbb{C}}\backslash J_{1}$ , it contradicts $\partial F_{\infty}\cap J\neq\emptyset$ . Hence,
$F_{\infty}=D$ and $F_{\infty}$ is simply connected.

Next, suppose that there exists an element $J\in J$ such that $J_{\alpha}<J$.
Then $J_{\alpha}$ is included in a bounded component of $\mathbb{C}\backslash J$. On the other hand,
$p_{\infty}$ is included in the unbounded component of $\overline{\mathbb{C}}\backslash J$. Since $\partial F_{\infty}\subset J_{\alpha}$ , we
have a contradiction. Hence, we have shown $J\leq J_{\alpha}$ for each $J\in J$ .
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By Lemma 3.2 and Lemma 2,1-3, it follows that if $G\in \mathcal{G}_{d}$ and oo $\in J(G)$ ,
then there exists a sequence $(J_{n})$ of $J$ such that $\mathrm{d}(\mathrm{o}\mathrm{o}, J_{n})arrow 0$ as $narrow\infty$ .
Then there exists no maximal element in $(J, \leq)$ . Hence, we have shown the
statement 2.

Next, we show the statement 3. Since $\emptyset\neq P(G)\backslash \{\infty\}\subset\hat{K}(G)$ , we
have $\hat{K}(G)\neq\emptyset$ . By Proposition 1.8, we have $\partial\hat{K}(G)\subset J(G)$ . Let $J_{1}$ be a
connected component of $J(G)$ with $J_{1}\cap\partial\hat{K}(G)$ . By Lemma 3.2, $J_{1}\in$ J.
Suppose that there exists an element $J\in J$ such that $J<J_{1}$ . Let $z\mathit{0}\in J$

be a point. By Theorem 2.2, there exists a sequence $(g_{n})$ in $G$ such that
$d(z_{0}, J(g_{n}))arrow 0$ as $narrow\infty$ . Then by Lemma 3.1, $\sup d(z, J)arrow \mathrm{O}$ as

$z\in J(g_{n})$

$narrow\infty$ . Since $J_{1}$ is included in the unbounded component of $\mathbb{C}\backslash J$ , it
follows that for a large $n\in \mathrm{N}$ , $J_{1}$ is included in the unbounded component
of $\mathbb{C}\backslash J(g_{n})$ . But this causes a contradiction, since $J_{1}\cap\hat{K}(G)\neq\emptyset$ . Hence,
by Theorem 1.9-1 it must hold that $J_{1}\leq J$ for each $J\in$ J. This argument
shows that if $J_{1}$ and $J_{2}$ are two connected components of $J(G)$ such that
$J_{\mathrm{i}}\cap\partial\hat{K}(G)\neq\emptyset$ for each $i=1,2$ , then $J_{1}=J_{2}$ . Hence, we obtain that there
exists a unique minimal element $J_{\min}$ in $(J, \leq)$ and $\partial\hat{K}(G)\subset J_{\min}$ .

Next, let $D$ be the unbounded component of $\mathbb{C}\backslash J_{\min}$ . Suppose $D\cap$

$P(G)\neq\emptyset$ . Let $x\in D\cap P(G)$ be a point. By Theorem 2.2 and Lemma 3.1,
there exists a sequence $(g_{n})$ in $G$ such that $\sup$ $d(z, J_{\min})arrow \mathrm{O}$ as $narrow\infty$ .

$z\in J(g_{n})$

Then, for a large $n\in \mathrm{N}$ , $x$ is in the unbounded component of $\mathbb{C}\backslash J(g_{n})$ . But
this is a contradiction, since $g_{n}^{l}(x)arrow\infty$ as $larrow\infty$ , $x\in P(G)\backslash \{\infty\}$ , and
$P(G)\backslash \{\infty\}$ is bounded in C. Hence, we have shown the statement 3.

Next, we show the statement 4. By Theorem 1.4, there exist Ai, A26 A
and conntected components Ji, $J_{2}$ of $J(G)$ such that $J_{1}\neq J_{2}$ and $J(h_{\lambda_{i}})\subset J_{\mathrm{i}}$

for each $\mathrm{i}=1,2$ . By Lemma 3.2, we have $J_{i}\in J$ for each $i=1,2$. Then
$\mathrm{J}(\mathrm{h}\mathrm{X}1)\cap J(h_{\lambda_{2}})=\emptyset$. Since $P(G)\backslash \{\infty\}$ is bounded in $\mathbb{C}$ , we may assume
$\mathrm{J}(\mathrm{h}\mathrm{X}1)<J(h_{\lambda_{1}})$ . Then we have $K(h_{\lambda_{2}})\subset$ int $K(h\lambda_{1})$ and $J_{2}<J_{1}$ . By
the statement 3, $J_{1}\neq J_{\min}$ . Hence $J(h_{\lambda_{1}})\cap J_{\min}=\emptyset$ . Since $P(G)\backslash \{\infty\}$ is
bounded in $\mathbb{C}$ , we have that $K(h_{\lambda_{2}})$ is connected. Let $U$ be the connected
component of int $K()$. ) containing $K(h_{\lambda_{2}})$ . Since $P(G)\backslash \{\infty\}\subset K(h_{\lambda_{2}})$ , it
follows that there exists an attracting fixed point $z_{1}$ of $h_{\lambda_{1}}$ in $K(h_{\lambda_{2}})$ and $U$

is the immediate attracting basin for $z_{1}$ with respect to the dynamics of $h_{\lambda_{1}}$ .
Furthermore, by Lemma 2.4, $h_{\lambda_{1}}^{-1}(J(h_{\lambda_{2}}))$ is connected. Hence, $h_{\lambda_{1}}^{-1}(U)=U$ .
Hence, int $K(h\lambda_{1})=U$.

Suppose there exists an $n\in \mathrm{N}$ such that $h_{\lambda_{1}}^{-n}(J(h\lambda_{2}))\cap J(h\lambda_{2})\neq\emptyset$ .
Then $A:= \bigcup_{s\geq}0h_{\lambda_{1}}^{-ns}(J(h\lambda_{2}))$ is connected and its closure $\overline{A}$ contains $J(h\lambda_{1})$ .
Hence $J(h_{\lambda_{1}})$ and $J(h_{\lambda_{2}})$ are included in the same connected component of
$J(G)$ . This is a contradiction. Hence, for each $n\in \mathrm{N}$ , we have $h_{\lambda_{1}}^{-n}(J(h_{\lambda_{2}}))\cap$

$\mathrm{J}(\mathrm{h}\mathrm{X}1)=\emptyset$ . Similarly, for each $n\in \mathrm{N}$ , we have $h_{\lambda_{2}}^{-n}(J(h\lambda_{1}))\cap J(h\lambda_{1})=\emptyset$ .
Combining $h_{\lambda_{1}}^{-1}(J(h_{\lambda_{2}}))\cap J(h_{\lambda_{2}})=\emptyset$ with $z_{1}\in K(h\lambda_{2})$ , we obtain $z_{1}\in$ int
$K(h_{\lambda_{2}})$ . Now, let $g\in G$ be an element with $\mathrm{J}(\#)$ $\cap J_{\min}=\emptyset$ . We show the
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followi $\mathrm{n}\mathrm{g}$ :
Claim 2: $J_{\min}<J(g)$ .

To show the claim, suppose that $J_{\min}$ is included in the unbounded
component $U$ of $\mathbb{C}\backslash J(g)$ . Since $J_{\min}$ is the unique minimal element in
$(J, \leq)$ , we have that $J(g)$ is included in the unbounded component $V$ of
$\mathbb{C}\backslash J_{\min}$ . Then, there exists an $\epsilon>0$ such that $B(J_{\min}, \epsilon)\subset U$ and $J(g)$ is
included in the unbounded component $V_{\epsilon}$ of $\mathbb{C}\backslash B(J_{\min}, \epsilon)$ . By Theorem 2.2
and Lemma 3.1, it follows that there exists an element $h\in G$ such that
$\mathrm{J}(\mathrm{h})\subset \mathrm{B}\{\mathrm{J}\mathrm{m}\mathrm{m},$ $\epsilon$ ). Then, we obtain that $J(h)\subset U$ and $J(g)$ is included in
the unbounded component of $\mathbb{C}\backslash J(h)$ . Hence, we obtain $K(h)\subset U$. Since
$\mathrm{P}(\mathrm{G})\backslash \{\infty\}\subset \mathrm{K}(\mathrm{h})$ , it contradicts $P(G)\backslash \{\infty\}$ is bounded in C. Hence, we
have shown the claim.

By Claim 2, Theorem 2.2 and Lemma 3.1 there exists an element $h_{1}\in G$

such that $J(h_{1})<J(g)$ . By an argument which we have used before, it
follows that $g$ has an attracting fixed point $z_{g}$ in $\mathbb{C}$ and int $K(g)$ consists
of only orze immediate attracting basin for $z_{g}$ . Hence, we have shown the
statement 4.

Next, we show the statement 5. Suppose that $G$ is of type (II)(a)(ii) or
(II)(b)(ii). Let $\{z_{0}\}=P(G)\backslash \{\infty\}$ . Then $z0\in J(G)$ and each element of $G$

is of the form $a(z-z_{0})^{n}+z0$ . By Lemma 2.1-3, there exists a sequence $(g_{n})$ in
$G$ such that $\max\{d(z, z_{0})|z\in J(g_{n})\}arrow 0$ as $narrow\infty$ . Then we see $\hat{K}(G)=$

$\{z\mathrm{o}\}$ . Hence $F(G)\cap\hat{K}(G)=\emptyset$ . Conversely, suppose $F(G)\cap\hat{K}(G)=\emptyset$ . By
the statement 4, there exist two elements $g_{1}$ and $g_{2}$ of $G$ and two elements
$J_{1}$ and $J_{2}$ of $J$ such that $J_{1}\neq J_{2}$ , $J(g_{\mathrm{i}})\subset J_{\mathrm{i}}$ for each $\mathrm{i}=1,2$ , $g_{1}$ has
an attracting fixed point $z_{0}$ in int $\mathrm{K}\{\mathrm{g}2$ ) and $\mathrm{K}\{\mathrm{g}2$ ) $\subset$ iut $\mathrm{K}(\# 1)$ . Since we
assume $F(G)\cap\hat{K}(G)=\emptyset$ , we have $z_{0}\in \mathrm{J}(\mathrm{G})$ . Let $J$ be the connected
component of $J(G)$ containing $\mathrm{z}\mathrm{q}$ . By Lemma 3.2, we have $J\in J$ . We
show $J=\{z_{0}\}$ . Suppose $\int J\geq 2$ . Then $J(g_{1}) \subset\bigcup_{n\geq}0g_{1}^{-n}(J)$ . Moreover, by
Theorem 1.7-3, $g_{1}^{-n}J$ is connected for each $n\in$ N. Since $g_{1}^{-n}(J)\cap J\neq\emptyset$ for
each $n\in \mathrm{N}$ , we see that $\bigcup_{n\geq}0g_{1}^{-n}(J)$ is connected. Combining this with $z0\in$

int $K(g_{2})$ , $K(g_{2})\subset$ int $\mathrm{K}(\mathrm{g}2)$ , $z_{0}\in J$ and $\mathrm{J}(\mathrm{g})$ $\subset\bigcup_{n\geq}0g_{1}^{-n}(J)$ , we obtain
$\bigcup_{n\geq}0g_{1}^{-n}(J)$ $\cap J(g_{2})\neq\emptyset$ . Then it follows that $\mathrm{J}(\mathrm{g}\mathrm{i})$ and $J(g_{2})$ are included
in the same connected component of $J(G)$ . This is a contradiction. Hence
we have shown $J=\{z\mathrm{o}\}$ . By the statement 3, we obtain $\{z\mathrm{o}\}=J\min=$

$P(G)\backslash \{\infty\}$ . Hence, it follows that $G$ is of type (H)(a)(ii) or (II) (b)(ii).
Hence, we have shown that $F(G)\cap\hat{K}(G)=\emptyset$ if and only if $G$ is of type
(II)(a)(ii) or (II)(b) (ii)

Next, suppose int $\hat{K}(G)(=\hat{K}(G)$ $\mathrm{F}(\mathrm{G})\neq\emptyset$. Since $\partial\hat{K}(G)\subset J_{\mathrm{n}\mathrm{i}\mathrm{n}}$ (the
statement 3) and $\hat{K}(G)$ is bounded, it follows that $\mathbb{C}\backslash J_{\min}$ is disconnected
and $\# J_{\min}\geq 2$ . Hence, $\# J$ $\geq 2$ for each $J\in J$ . Now, let $g\in G$ be an
element with $J(g)\cap J_{\min}=$ U. we show $J_{\min} \neq g^{*}(J\min)$ . If $J_{\min}=g^{*}(J_{\min})$ ,
then $g^{-1}(J_{\min})\subset$ Jmin. Since $\# J_{\min}\geq 3$ , it follows that $J(g)\subset J_{\min}$ . But
this is a contradiction. Hence, $J_{\min}\neq g^{*}(J_{\min})$ . Hence, we obtain $J_{\min}<$
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$g^{*}(J_{\min})$ . Since $g(\hat{K}(G)\}$ $\subset\hat{K}(G)$ , we have $g(\mathrm{i}\mathrm{n}\mathrm{t}\hat{K}(G))$ cint $\hat{K}(G)$ . Suppose
$g(\partial\hat{K}(G))\cap\partial\hat{K}(G)\neq\emptyset$. Then, since $\partial\hat{K}(G)\subset J_{\min}$ (statement 3), we obtain
$g(J_{\min})\cap J_{\min}\neq\emptyset$. This implies $g^{-1}(J_{\min})\cap J_{\min}\neq\emptyset$ . Since $g^{-1}(J \min)$

is connected (Theorem 1.7-3), we obtain $g^{*}(J_{\min})=J_{\min}$ . But this is a
contradiction. Hence, it must hold $g(\partial\hat{K}(G))$ cint $\hat{K}(G)$ . Hence, $g(\hat{K}(G))\subset$

int $\hat{K}(G)$ .
By the statement 4, $g$ has a unique attracting fixed point $z_{g}$ i $\mathrm{n}$ C. Then,

$z_{g}\in P(G)\backslash \{\infty\}\subset\hat{K}(G)$ . Hence, $z_{g}=g(z_{g})\in g(\hat{K}(G))\subset$ int $\hat{K}(G)$ . Hence,
we have shown the statement 5.

Next, we show the statement 6. Let $G$ be of type (II)(a)(ii) or (II)(b)(ii)
and let $\{z\mathrm{o}\}=P(G)\backslash \{\infty\}$ . Then by the same method as in the proof
of Lemma 3.2, we obtain that the connected component $J$ of $J(G)$ with
$z_{0}\in J$ satisfies $J=\{z_{0}\}$ . By the statement 3, we obtain $J= \{z_{0}\}=J\min$ .
Combining this and Lemma 3.2, we obtain the statement 6.

Next, we show the statement 7. Suppose that $G$ is of type (I)(a) or
(II)(a)(i). Let $A$ be an annulus separating $J(G)$ . Then $A$ separates $J_{\max}$

and $J_{\min}$ . Let $D$ be the unbounded component of $\mathbb{C}\backslash J_{\min}$ and let $U$ be
the connected component of $\mathbb{C}\backslash J_{\max}\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{t}\mathrm{a}\mathrm{i}\mathrm{n}\mathrm{i}\mathrm{n}\mathrm{g}$ Jmin. Then it follows that
$A\subset U\cap D$ . By the statement 2 and 5, we have $\beta J_{\max}>1$ and Jmin $>1$ .
Hence, the doubly connected domain $U\cap D$ satisfies mod $(U\cap D)<\infty$ .
Hence, we obtain mod $A\leq$ mod $(U\cap D)<\infty$ . Hence, $J(G)$ is uniformly
perfect. Next, suppose that $G$ is of type (I) (b) or (II)(a)(ii) or (II)(b). By
Theorem 4.1 in [HM2] and the statement 6, we obtain that $J(G)$ is not
uniformly perfect. Hence, we have shown the statement 7.

Next, we show the statement 8. By Theorem 4.1 in [HM2] and the
statement 7, we obtain $z_{1}$ Cint $J(G)$ . Furthermore, by the statement 3, we
obtain $z_{1}\in J_{\min}$ . Hence $z_{1}\in \mathrm{i}\mathrm{n}\mathrm{t}J_{\min}$ . By the statement $5\mathrm{b}$ , we obtain
$J(g)\subset J_{\min}$ . Hence, we have shown the statement 8.

Hence, we have shown Theorem 1.9. $\square$

3.2 Proofs of results in 1.2

Proposition 3.3. Let G $\in(;$; and let $\{h\lambda\}_{\lambda\in\Lambda}$ be a generator system of G.
Let $\lambda_{1}$ , $\lambda_{2}\in$ A and let $J_{\mathrm{i}}\in J$ be an element containing $J(h\lambda_{i})$ for each
$\mathrm{i}=1,2$ . Suppose $J_{1}\leq J_{2}$ . Let

$Q=$ {$g\in G|\exists J\in$ Jwith $J_{1}\leq J\leq J_{2}$ , $J(g)\subset J$}

and let $H$ be the subsemigroup of $G$ generated by Q. Then, we have $J(H)\subset$

$((\overline{\mathbb{C}}\backslash A_{2})\cap A_{1})\cup J_{1}$ , where $A_{i}$ denotes the unbounded component of $\mathbb{C}\backslash J_{i}$

for each $\mathrm{i}=1,2$ .

Proof. Let $K=J(G)\cap(((\overline{\mathbb{C}}\backslash A_{2})\cap A_{1})\cup J_{1})$ . Let $g\in Q$ and let $J\in J$ be
an element containing $J(g)$ . Let $J_{3}\in J$ be an element with $J\leq J_{3}\leq J_{2}$ .
We show the following
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Claiml : $g’(J_{3})\leq J_{3}$ . To show the claim, suppose $J_{3}<g^{*}(J_{3})$ . Then by
Theorem 1.7-3, we have $J\leq J_{3}<g^{*}(J_{3})\leq(g^{n})^{*}(J_{3})$ for each $n\in \mathrm{N}$ . Hence,
$\inf\{d(z, J)|z\in g^{-n}(J_{3}), n\in \mathrm{N}\}>0$ . But since $\mathrm{J}(\#)\subset J$, we obtain a
contradiction. Hence the claim holds.

Similarly we obtain the following:
Claim 2: For any element $J_{4}\in J$ with $J_{1}\leq J_{4}\leq J$ , we have $J_{4}\leq g^{*}(J_{4})$ .

By Claim 1 and 2, we obtain that $g^{-1}(K)\subset K$ for each $g\in Q$ . By
Lemma 2.1-6, it follows that $J(H)\subset K$ . $\square$

Proof of Proposition 1.13: By Theorem 1.4 and Proposition 3.3. 0

Lemma 3.4. Let $f$ : $X\mathrm{x}\overline{\mathbb{C}}arrow X\mathrm{x}$ $\overline{\mathbb{C}}$ be a rational skew product over
$g$ : $Xarrow X$ such that $f_{x}$ is a polynomial with $d(x)\geq 2$ , for each $x\in$

X. Let $(x, y)\in F_{x}(f)$ and let $q_{x}^{(n_{j})}(y)$ $.=\pi_{\overline{\mathbb{C}}}f_{x}^{n_{j}}((x, y))$ be a sequence of
rational maps which converges to a nonconstant map around $y$ . Then there
exist a domain $V$ in $\mathbb{C}$ , a point $x_{\infty}$ in $X$ , and a number $k\in \mathrm{N}$ such that
$\{x_{\infty}\}\mathrm{x}$ $\partial V\subset\tilde{J}(f)$ $\cap P(f)$ and $q_{x}^{(n_{j})}(y)\in V$ for each $j$ with $j\geq k$ .

Proof. By the proof of Lemma 2.13 in [SI]. $\mathrm{C}1$

Proof of Theorem 1.14-1: Let $(x, y\mathrm{o})$ be a point in a bounded component
of $F_{x}(f)$ . By Lemma 3.4 and $h_{j}(\hat{K}(G))$ cint $\hat{K}(G)$ for each $j\in\{1, \cdots, m\}\backslash$

$B_{\min}$ (Theorem 1.9-5b), we obtain that there exists no non-constant limit
function of the sequence $(q_{x}^{(n)})_{n\in \mathrm{N}}(q_{x}^{(n)}(y):=\pi_{\overline{\mathbb{C}}}f_{x}^{n}((x, y)))$ around $y_{0}$ . Since
$\mathrm{P}(\mathrm{G})\backslash \{\infty\}\cap \mathrm{J}(\mathrm{G})\subset J_{\min}$ (Theorem 1.9-3), we obtain that the statement
lb is true. From the statement $1\mathrm{b}$ , we obtain the statement $1\mathrm{c}$ . By the lower
semi-continuity of $x\mapsto J_{x}(f)$ (Lemma 2.3-2), we obtain the statement la.
By Theorem 1.7, we obtain $h_{j}^{-1}(J(G))$ fi $J_{\min}=\emptyset$ for each $j\in\{1, \cdots, m\}\backslash$

$B_{\min}$ . Combining this with Theorem 1.9-3 and the Koebe distortion theorem,
we obtain the statement $1\mathrm{c}$ . $\square$

Proof of Theorem 1.14-2: We can easily obtain the following claim:
Claiml: $\hat{K}(H_{\min})=\hat{K}(G)$ .

By Claim 1 and $h_{j}(\hat{K}(G))$ Clnt $\hat{K}(G)$ for each $j\in\{1, \cdots , m\}\backslash B_{\min}$

(Theorem 1.9-5b), we can easily obtain that if $H_{\min}$ is semi-hyperbolic,
then $G$ is semi-hyperbolic. If $G$ is semi-hyperbolic, then by [S4], we obtain
that for each $x\in X$ , the unbounded component $A_{x}(f)$ of $F_{x}(f)(A_{x}(f)$ $=$

$\overline{\mathbb{C}}\backslash K_{x}(f))$ is a John domain. Since $A_{x}(f)$ is simply connected for each
$x\in X$ (Lemma 2.4), it follows that $J_{x}(f)=\partial A_{x}(f)$ (Lemma 2.3-3) is
locally connected ([NV]). Hence, combining this with the statement la and
$J_{x}(f)=\partial A_{x}(f)$ (Lemma 2.3-3), we obtain Theorem 1.14-2. $\square$

Theorem 3.5. (Uniform fiberwise quasiconformal surgery) Let f :
$X\mathrm{x}$ $\overline{\mathbb{C}}arrow X\mathrm{x}$ $\overline{\mathbb{C}}$ be a rational skew product over $g$ : $Xarrow X$ such that $f_{x}$ is $a$

polynomial with $d(x)$ $\geq 2_{J}$ for each $x\in X$ . Suppose that $f$ is hyperbolic and
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there exists only one bounded component of $F_{x}(f)$ , for each $x\in X$ . Then,
there exists a constant $K$ such that for each $x\in X$ , $J_{x}(f)$ is a K-quasicircle.

Proof. Step 1: By [SI], the map $x\mapsto J_{x}(f)$ is continuous with respect to
the Hausdorff topology. Hence, there exists a positive constant $C_{1}$ such that
for each $x\in X$ , $d(J_{x}(f), \pi^{-1}(x)\cap P(f))$ $>C_{1}$ . Since $X$ is compact, it
follows that for each $x\in X$, there exists an analytic Jordan curve $\gamma_{x}$ in
$K_{x}(f)\cap F_{x}(f)$ such that:

1. $\pi^{-1}(x)\cap P(f)$ is included in a bounded component $V_{x}$ of $\pi^{-1}(x)\backslash \gamma_{x}$ .

2. $\inf_{z\in\gamma_{x}}\mathrm{d}\{\mathrm{z},$ $Jx(f)$ $\mathrm{L}\mathrm{J}$ $(\mathrm{y}-1(x)\cap P(f)))\geq C_{2}$ , where $C_{2}$ is a positive
constant independent of $x\in X$ .

3. There exist finitely many Jordan curves $\tau_{1}$ , $\cdots$ , $\tau_{k}$ in $\mathbb{C}$ such that for
each $x\in X$ , there exists a $j$ with $\pi_{\overline{\mathbb{C}}}(\gamma_{x})=\tau j$ .

Step 2: By Theorem 2.14 (5) in [SI], there exists an $n\in \mathrm{N}$ such that for
each $x\in X$, $W_{x}:=(f_{x}^{n})^{-1}(V_{\sigma^{n}(x)})\supset V_{x}$ and mod $(W_{x}\backslash \overline{V_{x}})\geq C_{3}$ , where $C_{3}$

is a positive constant independent of $x\in X$ . Since $J_{x}(f^{n})=J_{x}(f)$ , we may
assume $n=1$ .
Step 3: For each $x\in X$ , let $\varphi_{x}$ : yr-1 $(x) \backslash \overline{V_{x}}arrow\pi^{-1}(x)\backslash D(0, \frac{\overline 1}{2})$ be the
Riemann map such that $\varphi_{x}((x, \infty))=(x, \infty)$ , under the identification $\pi^{-1}$ ;

C. $\varphi_{x}$ can be extended analytically to $\partial V_{x}=\gamma_{x}$ . We define a quasi-regular
map $h_{x}$ ; $\pi^{-1}(x)arrow\pi^{-1}(\sigma(x))$ as follows:

$h_{x}(z):=\{\begin{array}{l}z^{d(x)},z\in\varphi_{\sigma(x)}f_{x}\varphi_{x_{\frac{1(z),z}{D(0,\frac{1}{2})}}}^{-}\in\varphi_{x}(\pi^{-1}(x)\backslash W_{x})\tilde{h}_{x}(z)_{?}z\in\varphi_{x}(W_{x})\backslash D(0,\frac{\overline 1}{2})\end{array}$

where $\tilde{h}_{x}$ : $\varphi_{x}(W_{x})\backslash \overline{D(0,\frac{1}{2})}arrow D(0, \frac{\overline 1}{2})\backslash D(0, (\frac{1}{2})^{d(x)})$ is a regular covering
and a $K$-quasiregular map, where $K$ is a constant independent of $x\subset\sim X$ .
Step 4: For each $x\in X$ , we define a Beltrami differential $\mu_{x}(z)‘\frac{\Gamma z}{dz}$ on $\pi^{-1}(x)$

as follows:

$\{$

$\frac{(h_{\sigma^{n}(x)}\mathrm{a}_{z^{-\tilde{h}_{\sigma^{n}(x\}}}}}{\partial_{z}h_{\sigma^{n}(x)}}.\frac{\iota\Gamma z}{dz}..,z_{x})\backslash h_{x})^{*}(\frac{\ _{z}\tilde{h}_{\sigma^{n}(x)}}{\in\varphi_{x}(W\mathit{8}_{z}h_{\sigma^{n}(x)}} \frac{Tz}{dz}),z\in(h_{\sigma^{n}(x)}\cdots h_{x})^{-1}(\varphi_{\sigma^{n}(x)}(W_{\sigma^{n}(x)})\backslash D(0, \frac{\overline 1}{2}))\frac{}{D(0,\frac{1}{2})}$

$0$ , otherwise

Then, there exists a constant $k$ with $0<k$ $<1$ such that for each $x\in$

$X$ , $||\mu_{x}||_{\infty}\leq k$ . By the construction, we have $g_{x}^{*}\mu_{\sigma(x)}=\mu_{x}$ , for each $x\in X$ .
Let $\psi_{x}$ : $\pi^{-1}(x)arrow\pi^{-1}(x)$ be a quasiconformal map such that $\theta_{\overline{z}}\psi_{x}=$

$\mu_{x}\partial_{z}\psi_{x}$ , $\psi_{x}(0)=0$ , $\psi_{x}(1)=1$ , and $\psi_{x}(\infty)=\infty$ , under the identification
$\pi^{-1}(x)\cong$ C. Let $\hat{h}_{x}:=\psi_{\sigma(x)}h_{x}\psi_{x}^{-1}$ : $\pi^{-1}(x)arrow\pi^{-1}$ (a(r)). Then, $\hat{h}_{x}$ is
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holomorphic on $\pi^{-1}(x)$ . By the construction, we see that $\hat{h}_{x}(z)=c(x)z^{d(x)}$ ,
where $c(x)=\psi_{\sigma(x)}h_{x}\psi_{x}^{-1}(1)=\psi_{\sigma(x)}g_{x}(1)$ . Furthermore, by the construction
again, we see that there exists a positive constant $C_{4}$ such that for each
$x\in X$ , $\frac{1}{c_{4}}\leq|g_{x}(1)|\leq C_{4}$ . Hence, there exists a positive constant $C_{5}$

such that for each $x\in X$ , $\frac{1}{c_{5}}\leq \mathrm{c}(\mathrm{x})\leq C_{5}$ . Let $\tilde{J}_{x}$ be the set of non-
normality of the sequence $(\hat{h}_{\sigma^{n}(x)}\cdots\hat{h}_{x})_{n}$ in $\pi_{x}$ . Then, by $\hat{h}_{x}(z)$ $=c(x)z^{d(x)}$

and $\frac{1}{c_{5}}\leq|c(x)|\leq C_{5}$ for each $x\in X$ , we obtain that $\tilde{J}_{x}$ is a round circle.

Under the identification of $\pi^{-1}(x)\cong\overline{\mathbb{C}}$, we have that the family $\{\psi_{x}\}_{x\in X}$

is normal in C. Hence, $J_{x}(f)=\varphi_{x}^{-1}\psi_{x}^{-1}\tilde{J}_{x}$ and it follows that there exists a
constant $K$ such that for each $x\in X$ , $J_{x}(f)$ is a $K$-quasicircle. $\square$

Proof of Theorem 1.14-3: Since $P(G)\backslash \{\infty\}\cap J(G)\subset J_{\min}$ (Theo-
rem 19-3, it is easy to see $(\pi_{\overline{\mathbb{C}}}\hat{J}_{x}(f))\cap P(G)=\emptyset$ for each $x\in X$ . Hence,

$\overline{f}$ is a hyperbolic skew product. Combining this with Theorem 1.14-1a and
Theorem 3.5 we obtain that there exists a constant $K_{s}$ such that for each
$x\in W_{s}$ , $J_{x}(\overline{f})$ is a $K_{s}$-quasicircle. $\square$

Proof of Theorem 1.15: Since $J(G)=\overline{\bigcup_{g\in G}J(g)}$ (Theorem 2.2), there
exists an element $h_{1}\in G$ with $J(h_{1})\cap V\neq\emptyset$ . By Theorem 1.4, there exists
an element $h_{2}\in G$ such that the Julia set of $G_{1}=\langle h_{1}, h_{2}\rangle$ is disconnected.
By Theorem 1.14-3, we can find two elements $g_{1}$ and $g_{2}$ in $G_{1}$ satisfying all
of the conditions in the statement in Theorem 1.15. $\square$
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