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This is a summary of the joint work [BS1] with F. Bracci.

0. Motivation
In the celebrated paper [CS] published in 1982, C. Camacho and P. Sad proved

that, for a holomorphic vector field $v$ on a neighborhood of the origin 0 in $\mathbb{C}^{2}$ with
isolated singularity, there always exists a separatrix (complex analytic integral curve
through 0) for $v$ . Main ingredients of the proof are (1) the results of Poincare et al.
on generic vector fields, (2) reduction of singularities by Seidenberg et al. and (3) the
Camacho-Sad index theorem:

Theorem [CS]. Let $S$ be a complex surface, $C$ a compact non-singular curve in $S$

and $\mathcal{F}$ a one-dim ensional foliation on $S$ leaving $C$ invariant. Let $p_{1}$ , . , . , $p_{r}$ denote the
singularities of $\mathcal{F}$ on $C$ .
(i) For each $p_{i}$ , we may associate a complex number Indc $(\mathcal{F}, p_{i})_{t}$ called the index.
(ii) We have

$\sum_{i=1}^{r}\mathrm{I}\mathrm{n}\mathrm{d}_{C}(\mathcal{F},p_{i})=C\cdot C$ ,

the self-intersection number of $C$ .

Generalizations of this theorem are done in [L1] and [Sul] for singular invariant
curves in surfaces, in [G] and [L2] for codimension one foliations and in [LS] for general
case.

Then in 1988, Camacho went on to prove the existence of separatrices for

vector fields on a surface with an isolated singularity whose resolution graph is a tree
([C]), using (1) resoluton of surface singularities and reduction of singularities of vector
fields, (2) Camacho-Sad index theorem and (3) a lemma on the resolution graphs.

An analogous problem in discrete dynamics is to investigate if there exist

“parabolic curves” for holomorphic self-maps. In one-dimensional case, this is known

as the Leau-Fatou flower theorem. In two-dimensional case, M. Abate proved in 2001
that for a holomorphic self-map of $(\mathbb{C}^{2},0)$ tangent to the identity, there always exists
a parabolic curve for $f$ .
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Theorem [A], Let $S$ be a complex surface, $C$ a compact non-singular curve in $S$

and $f$ a holomorphic self-map of $S$ with $f|c=Idc-$ Suppose $f$ is “tangential” (non-
degenerate) along $C$ and let $p_{1}$ , . .. ’ $p_{r}$ denote the “singularities” of $f$ on $C$ .
(i) For each $p:$ , we may associate a complex number Indc(f, $C;p:$ ).
(ii) We have

$\sum \mathrm{I}\mathrm{n}\mathrm{d}_{C}(f, C;p_{i})=Cr$ . $C$ .
$i=1$

Generalizations of this theorem to various directions are done in [BT], [ABT],
[BS2], see also Theorem in Section 3 below. As to the terminologies, we also refer to
[B], [BS1].

Thus the next natural question would be:

1. Existence of parabolic curves for holomorphic self-maps of singular sur-
faces

Concerning this, we proved:

Theorem [BS1]. Let $(X,p)$ be a $t$ -absolutely isolated singularity whose resolution
graph is a tree. For any holomorphic self-map $f$ of $(X,p)$ tangent to the identity, there
exists a parabolic curve for $f$ .

Here we recall:

Definition, (1) A germ of variety $(X,p)$ is an absolutely isolated singularity if it can
be resolved by a finite number of quadratic blowing-ups.
(2) $(X,p)$ is a $\mathrm{t}$-absolutely isolated singularity if it is absolutely isolated and, at each
blowing-up step, the strict transform is generically transverse to the exceptional divi-
sor.

Example. The variety $X$ defined by

$x^{2}-y^{2}+z^{2r+1}=0$

in $\mathbb{C}^{3}=\{(x, y, z)\}$ has a $\mathrm{t}$-absolutely isolated singularity at 0.

We hope to be able to remove the above restriction in the theorem (t-absolutely
isolatedness) soon.

Here are the main ingredients of the proof:
(I) Generalization of the Abate index theorem.

This is an index (or residue) theorem for holomorphic self-maps of singular
surfaces and will be described below. For this, we need a local intersection theory of
curves (divisors), both Cartier and Weil, on singular surfaces



241

(II) Use of the Camacho lemma on graphs, with arguments much more involved than
the case of vector fields.

The major difference from the case of vector fields is that we may not be able
to lift the given map when we blow-up the surface singularity so that we are forced to
remain on singular surfaces.

2. Intersection theory
The following is essentially done in [M]. However, our approach is an analytic

one based on Grothendieck residues on singular varieties and is applicable to the higher
dimensional case as well.

In the sequel, a variety will be a reduced analytic space. A curve or a surface
will be a variety of pure dimension one or two, respectively. For a subvariety $V$ and
a divisor $D$ in a complex manifold $W$ , we denote by $D\cdot$ $V$ the pull-back $\iota^{*}D$ of $D$ by
the embedding $\iota$ : $Varrow W$ . We use the symbol $\cap$ to denote set theoretic intersections.

2.1. Grothendieck residues relative to a subvariety

Let $U$ be a neighborhood of 0 in $\mathbb{C}^{r}$ and $V$ a subvariety of pure dimension
$n$ in $U$ which contains 0 as at most an isolated singular point. Also, let $f1$ , $\ldots$ , $f_{n}$

be holomorphic functions on $U$ with $\bigcap_{i=1}^{n}\{p\in U : f_{i}(p)=0\}\cap V=\{0\}$ . For $\mathrm{a}$

holomorphic $n$ from $\omega$ on $U$ , the Grothendieck residue relative to $V$ is defined by

${\rm Res}_{0}[_{f_{1},..,f_{n}}\omega.\ovalbox{\tt\small REJECT}$ $V=( \frac{1}{2\pi\sqrt{-1}})^{n}\int_{\Gamma}\frac{\omega}{f_{1}\cdots f_{n}}$ ,

where $\Gamma$ is an $\mathrm{n}$ -cycle in $V$ defined by $\Gamma=\bigcap_{i=1}^{n}\{p\in U : |f_{i}(p)|=\epsilon_{i}\}\cap V$ with $\epsilon_{i}$ small
positive numbers (cf. [Su2, $\mathrm{C}\mathrm{h}.\mathrm{I}\mathrm{V}$ , 8], [Su3]).

Note that if $V$ is a complete intersection defined by $h_{1}=\cdots=h_{k}=0$ ,
$k=r-n$ , then it coincides with the usual Grothendieck residue

${\rm Res} 0 \ovalbox{\tt\small REJECT}_{f_{1},.,f,h_{1},\ldots,h_{k}}\omega \mathrm{A}.dh_{1}\bigwedge_{n}\cdots\Lambda dh_{k}\ovalbox{\tt\small REJECT}$ .

2.2. Multiplicities
Let $V$ be as above and let $C_{0}(V)$ denote the tangent cone of $V$ at 0, Recall that

$C_{0}(V)$ is an analytic space whose support is the zero set of all the leading homogeneous
polynomials of germs in the ideal of $V$ at 0, and has the same dimension as $V$ . We
say that a collection of hyperplanes $(H_{1}, \ldots , H_{i})$ through 0, $1\leq i\leq n$ , is general with
respect to $V$ if $\dim C_{0}(V)\cap H_{1}\cap\cdots\cap H_{i}=n-\mathrm{i}$ .

We define the multiplicity of $V$ at 0 by

$m(V,0)={\rm Res} 0\ovalbox{\tt\small REJECT}_{p_{1}}dl_{1}\Lambda,$ $..\cdots$
$.,\Lambda dl_{n}\ell_{n}\ovalbox{\tt\small REJECT}$

$v$

,

where $\ell_{1}$ , $\ldots$ , $\ell_{n}$ denote defining linear functions of $n$ hyperplanes general with respect
to $V$ . This definition of multiplicity coincides with the one in $[\mathrm{F}, \mathrm{p}.79]$ :
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Lemma, Let $PC_{0}(V)$ denote the projective cone of V at 0 (which is in $\mathbb{P}^{r-1}$ ). Then

$m(V,0)=\deg PC_{0}(V,l$ .

2.3. Intersections, local theory
Let $X$ be a surface in a small neighborhood $U$ of 0 in $\mathbb{C}^{r}$ possibly with an

isolated singularity at 0. Let $D_{1}$ and $D_{2}$ be (effective, for simplicity) Cartier divisors
on $X$ . Defining functions for $D_{1}$ and $D_{2}$ are the restrictions of holomorphic functions
$f1$ and $f_{2}$ on $U$ . Suppose $f1$ and $f_{2}$ have no common irreducible factors at 0. Then
the intersection number of $D_{1}$ and $D_{2}$ at 0 is defined by

$(D_{1}\cdot D_{2})_{0}={\rm Res}_{0}\ovalbox{\tt\small REJECT}^{df_{1}\Lambda df_{2}}f_{1},f_{2}\ovalbox{\tt\small REJECT}_{X}$

If $D$ is a Cartier divisor defined by $f$ and if $Y$ is a Cartier curve, by the
projection formula, we have

$(D\cdot Y)_{0}={\rm Res}_{0}$ $\{\begin{array}{l}dff\end{array}\}$

$Y$

,

which may be used to define the intersection number of $D$ and $Y$ , even if $Y$ is not
Cartier.

2.4. Intersections, global theory
Let $X$ be a surface with isolated singularities in a complex manifold $W$ . Let

$D_{1}$ be a Cartier divisor on $X$ and denote by $L_{D_{1}}$ the associated line bundle over $X$ .

Let $D_{2}$ be a divisor (which may be only Weil) on $X$ with compact support ( $X$ may
not be compact). Then the (global) intersection number of $D_{1}$ and $D_{2}$ in $X$ is defined
by

$D_{1}\cdot D_{2}=c^{1}(L_{D_{1}})\wedge$ $[D_{2}]$ .
In the algebraic category, this definition coincides with the one in [F], If $D_{1}$

extends to a divisor on $W$ and if $D_{1}$ and $D_{2}$ do not have common components, then
the Cech-de Rham theory applies (see, e.g., [Su2]) so that we have

$D_{1}$ .
$D_{2}= \sum_{p}(D_{1}\cdot D_{2})_{p}$

,

where $p$ runs through the intersection points of $D_{1}$ and $D_{2}$ .

2.5. Effect of blowing-up
Let $X$ be a surface with isolated singularities in $W$ , as in the previous section,

and $p$ a point of $X$ . Let $\pi$ : $\tilde{W}arrow W$ be the blow ing-up of $W$ at $p$ , $D=\pi^{-1}(p)$ the
exceptional divisor, $\tilde{X}$ the strict transform of $X$ and $\rho$ : $\tilde{X}arrow X$ the restriction of $\pi$ .
We set $E=D\cdot$ $\tilde{X}$ . Note that the support of $E$ is $\mathrm{r}$

$-1(p)\cap\tilde{X}=p^{-1}(p)$ and as an
analytic subspace of $D=\mathbb{P}^{r-1}$ , it coincides with the projective cone $PC_{p}(X)$ of $X$ at
$p$ . It is also considered as a Cartier divisor in $\tilde{X}$ . In the sequel, we assume that $\tilde{X}$ has
only isolated singularities.

Let $Y$ be a curve through $p$ in $X$ . Note that the strict transform of $Y$ by $\rho$ is
equal to that of $Y$ by $\pi$ , which is denoted by $\tilde{Y}$ .
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Lemma. If $Y$ is Cartier, the multiplicity $m(Y_{7}p)$ is divisible by $m(X,p)$ and if we set
$m(Y,X;p)=m(Y,p)/m(X,p)$ , we have

$\rho^{*}Y=\tilde{Y}+m(Y,X;p)E$ .

Theorem. Let YJ aann $dY_{2}$ be curves iinn X, with $Y_{1}$ Cartier.
(1) We have

$(Y_{1} \cdot Y_{2})_{p}=\sum_{q\in\rho^{-1}(p)}(\tilde{Y}_{1}\cdot\tilde{Y}_{2})_{q}+m(Y_{1},X;p)\cdot m(Y_{2},p)$
.

(2) If $Y_{1}$ is compact, then

$Y_{1}\cdot$
$Y_{2}=\tilde{Y}_{1}\cdot$ $\tilde{Y}_{2}+m(Y_{1},X;p)\cdot$ $m(Y_{2},p)$ .

2.6. Intersections of Weil curves
Let $X$ be a surface in a complex manifold $W$ . In this subsection, we assume

that $X$ has only absolutely isolated singularities. Let $Y_{1}$ and Y2 be two (distinct)
curves in $X$ . If at least one of them is Cartier, the previous subsections 2.3 and 2.4
give a way to define the local and global intersection numbers of $Y_{1}$ and $Y_{2}$ . If $Y_{1}$ and
Y2 are only Weil curves, we proceed as follows. Let $p\in Y_{1}\cap$ Y2 and let $\pi$ : $\tilde{W}arrow W$ be
the blowing-up at $p$ . We use the notation of the subsection 2.5 for strict transforms
etc. In view of Theorem in 2.3, we define

$(Y_{1} \cdot Y_{2})_{p}=\sum_{q\in\rho^{-1}(p)}(\tilde{Y}_{1}\cdot\tilde{Y}_{2})_{q}+\frac{m(Y_{1\gamma}p)\cdot m(Y_{2},p)}{m(X,p)}$ ,

where $(\tilde{Y}_{1}\cdot\tilde{Y}_{2})_{q}$ is defined as in 2.3, if $\tilde{Y}_{1}$ or $\tilde{Y}_{2}$ is Cartier at $q$ , or by recursion of the
above formula if either is not Cartier at $q$ . If at least one of $Y_{1}$ and $Y_{2}$ is compact,
define

$Y_{1} \cdot Y_{2}=\sum_{p\in Y_{1}\cap Y_{2}}(Y_{1}\cdot Y_{2})_{p}$
.

Note that if either of $Y_{1}$ and Y2 is not Cartier at $p$ then $(Y_{1}\cdot Y_{2})_{p}$ is only
a rational number, in general, for $m(X,p)$ might not divide $m(Y_{1},p)\cdot$ $m(Y_{2},p)$ , see
Example below.

Also, in view of Lemma in 2.2, for a compact curve $Y$ in X. we define the
inverse image (total transform) by

$p^{*}Y= \tilde{Y}+\frac{m(Y,p)}{m(X,p)}E$ .

Then we can define by recursion the self-intersection number of $Y$ as

$Y\cdot Y=\rho^{*}Y\cdot\rho^{*}Y$.

Note that, in the above, we need not to resolve the singularities of X. we only
need to take blow ing-u ps sufficiently many times so that the curve becomes Cartier.



244

Example. Let $X$ be defined by $xy=z^{2}$ in $\mathbb{C}^{3}=\{(x, y, z)\}_{t}$ and $Y_{1}$ and Y2 by
$x=z=0$ and $y=z=0$, respectively. Then $Y_{1}$ and $Y_{2}$ are Weil divisors (only
$Y_{1}\cup Y_{2}$ is Cartier). Since $m(X, 0)=2$ , $m(Y_{1}, \mathrm{O})=m(Y_{2},0)=1$ and $\tilde{Y}_{1}$ and $\tilde{Y}_{2}$ are
non-singular, we compute

$(Y_{1} \cdot Y_{2})_{0}=\tilde{Y}_{1}\cdot\tilde{Y}_{2}+\frac{m(Y_{1},0)\cdot m(Y_{2},0)}{m(X,0)}=0+\frac{1\cdot 1}{2}=\frac{1}{2}$ .

3. The residue theorem
Here is the residue theorem we need:

Theorem [BS1]. Let $W$ be a complex manifold, $P\subset W$ a non-singular hypersurface
and $X$ a surface with isolated singularities in W. Suppose $P$ intersects with $X$ gener-
ically transversely. Let $Y$ he a curve in $X\cap P$ . Suppose there exists a holomorphic
map $f$ : $Warrow W$ such that $f|_{P}=Jdp$ , $f(X)\subset X$ and $f|x$ is tangential on the
non-singular part of Y. Let $\mathrm{I}=$ Sing(r) $)$ $\cup$ (Sing( $f|_{X})\cap Y$ ). Then
(1) For each point $p$ in $\Sigma$ , we have a residue ${\rm Res}(f,Y;p)\in \mathbb{C}$, which is determined
only by the local behavior of $f$ near $p$ .
(2) If $Y$ is compact,

$\sum_{p\in\Sigma}$

${\rm Res}(f, Y;p)=Y\cdot Y$.

We give the idea of proof. For simplicity, we consider the case $Y=P\cap X$ .
First, for the map $f$ , we associate a one-d imensional singular foliation $\mathcal{F}$ on $Y\backslash \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(Y)$ .
We set Sing $(f|x)=\mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(X)\cup \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(\mathcal{F})$ , $\Sigma=$ Sing(r) $)\mathrm{U}$ (Sing( $f|_{X})\cap Y$ ) and $Y’=Y\backslash \Sigma$ .
Then there is an action (cf. e.g., [Su2, Ch.II, 9]) of $T$ on the normal bundle $N_{Y’,X’}$ of
$Y’$ in $X’=X\backslash \mathrm{S}\mathrm{i}\mathrm{n}\mathrm{g}(X)$ and, by a Bott type vanishing theorem, we have the vanishing
of the first Chern class of $N_{Y’}$ , $X$ ’ (in fact on the form level):

$c^{1}$ (Nyt , $X^{l}$ ) $=0$ .

In the above situation, there is a natural extension $N_{Y}$ of $N_{Y’,X’}$ to $Y$ , namely
$N\mathrm{y}$ $=N_{P,W}|_{Y}$ , and if we compute $c^{1}(N_{Y})$ , we see that it is localized at $\Sigma$ and produces
the above residues.

Finally we give an explicit expression for the residue. Let $p$ be a point in I
and take a coordinate system $(z_{1}, \ldots, z_{r})$ near $p$ so that $P$ is given by $z_{1}=0$ . We take
a holomorphic function $h$ near $p$ on $W$ such that $dz_{1}$ A $dh|x’\neq 0$ . Then we have

${\rm Res}(f, Y;p)= \frac{1}{2\pi\sqrt{-1}}\int_{L}\frac{(z_{1}\mathrm{o}f-z_{1})|_{X}}{z_{1}(h\mathrm{o}f-h)|_{X}}dh$,

where $L$ denotes the link of $Y$ at $p$ .
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