
20

The Foliated Geodesic Flow on Riccati Equations *

C. Bonatti, X. G\’omez-Mont and R. Vila-Freyer

April 23, 2005

Abstract

We introduce the geodesic flow on the leaves of a holomorphic foliation with leaves of dimension
1 and hyperbolic, corresponding to the unique complete metric of curvature -1 compatible with its
conformal structure. We do these for the foliations associated to Riccati equations, which are the
projectivisation of the solutions of a linear ordinary differential equations over a finite Riemann
surface of hyperbolic type $S$ , and may be described by a representation $\rho$ : $\pi_{1}(S)$ $arrow GL(n, \mathbb{C})$ . We
give conditions under which the foliated geodesic flow has a generic repellor-attractor statistical
dynamics. That is, there are measures $\mu^{+}$ and $\mu^{-}$ such that for almost any initial condition with
respect to the Lebesgue measure class the statistical average of the foliated geodesic flow converges
for negative time to $72^{-}$ and for positive time to $\mu^{+}$ (i.e. $\mu+$ is the unique SRB-measure and its
basin has total Lebesgue measure). These measures are ergodic with respect to the foliated geodesic
flow.

Introduction

The objective of this work is to propose a method for understanding the statistical properties of the
leaves of a holomorphic foliation, and which may be carried out for a simple class of holomorphic
foliations: those obtained from the solutions of Riccati Equations. The method consists in using the
canonical metric of curvature -1 that the leaves have as Riemann surfaces, the Poincar\’e metric, and
then to flow along foliated geodesies. One is interested in understanding the statistics of this foliated
geodesic flow. In particular, in determining if the foliated geodesic flow has an SRB-measure (for
Sinai, Ruelle and Bowen [11], [10], [3] $)$ , or physical measure, which means that a set of geodesies of
positive Lebesgue measure have a convergent time statistics, which is shared by all the geodesies in
this set, called the basin of attraction of the SRB-measure, The SRB-measure is the spatial measure
describing this common time statistics of a significant set of geodesies.

The Riccati equations are projectivisations of linear ordinary differential equations over a finite
hyperbolic Riemann surface $S$ (i.e. compact minus a finite number of points and with universal cover
the upper half plane). Locally they have the form

$\frac{dw}{dz}=A(z)w$ $w\in \mathbb{C}^{n}$ , $z\in \mathbb{C}$ $A$ : $\mathbb{C}arrow Mat_{n,n}(\mathbb{C})$

with $A$ holomorphic. These equations may be equivalently defined by giving the monodromy repre-
sentations

$\tilde{\rho}$ : $\pi_{1}(S, z_{0})arrow GL(n, \mathbb{C})$ , $\rho:\pi_{1}(S, z_{0})arrow PGL(n, \mathbb{C})$ (1)
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and suspending them, to obtain flat $\mathbb{C}^{n}$ and $\mathbb{C}P^{n-1}$ bundles over $S$

$E_{\overline{\rho}}arrow S$ , $M_{\rho}arrow S$. (2)

The graphs of the local fiat sections of these bundles are the ’solutions’ to the linear differential
equation defined by the monodromy (1) and define holomorphic foliations I $\rho$

- and $\mathcal{F}_{\rho}$ of $E_{\overline{\rho}}$ and $M_{\rho}$

whose leaves $\mathcal{L}$ project as a covering to the base surface $S$ .

Introduce to the finite hyperbolic Riemann surface $S$ the Poincare’ metric, to the unit tangent
buridle $q$ : $T^{1}Sarrow S$ the geodesic flow $\varphi$ : $T^{1}S\mathrm{x}\mathbb{R}$ $arrow T^{1}S$ and the Liouville measure dLiouv
(hyperbolic area element in $S$ and Haar measure on $T_{p}^{1}S$ , normalised to volume 1). We may introduce
on the leaves $\mathcal{L}$ of the foliations $\mathcal{F}_{\tilde{\rho}}$ and $\mathcal{F}_{\rho}$ the Poincare metric, which is the pull back of the Poincare
metric of $S$ by the covering map $q$ : $\mathcal{L}arrow S$ . The unit tangent bundle $T_{\mathcal{F}_{\overline{\rho}}}^{1}$ to the foliation $\mathcal{F}_{\tilde{\rho}}$ in $E_{\tilde{\rho}}$

is canonically isom orphic to the vector })undle $q^{*}E_{\tilde{\rho}}$ over $T^{1}S$ , that we denote by $E$ . In the same
way the unit tangent bundle $T_{F_{\rho}}^{1}$ of tthh $\mathrm{e}$ foliation $\mathcal{F}_{\rho}$ is canonically identified to the projectivisation
Proj(E) of the vector bundle $E$ over $T^{1}S$ . Introduce on $E$ and on Proj(E) the foliated geodesic
flows $\tilde{\Phi}$ and 4 (see (2.2)), obtained by flowing along the foliated geodesies. Introduce also on $E$ a
continuous Hermitian inner product $|$ . $|_{v}$ .

Given a vector $v\in T^{1}S$ we have the geodesic

$\mathbb{R}arrow T^{1}S$ , $tarrow\varphi(v, t)$

determined by the initial condition $v$ and given $w_{0}\in E_{v}$ we also have the foliated geodesic

$\mathbb{R}arrow E$ , $tarrow\tilde{\Phi}(w_{0}, t)$

which is the solution to the linear differential equation defined by (1) along the foliated geodesic
determined by $v$ and $\mathrm{w}\mathrm{q}$ . The function

$tarrow|\tilde{\Phi}(w_{0}, t)|_{\varphi(v,t\rangle}$

describes the type of growth of the solution of (1) along the geodesic $\gamma_{v}$ with initial condition $w_{0}\in E_{v}$

and the function
$t arrow\frac{|\tilde{\Phi}(w_{1},t)|_{\varphi(v,t)}}{|\tilde{\Phi}(w_{2},t)|_{\varphi(v,t)}}$

describes the relative grow th of the solution of (1) along the geodesic $\gamma_{v}$ with initial condition $w_{1}\in E_{v}$

with respect to the growth of the solution of (1) along $\gamma_{v}$ with the initial condition m26 $E_{v}$ .

We say that the Riccati equation has a section of largest expansion $\sigma^{+}$ if for Liouville almost
any point $v$ on $T^{1}S$ we may measurably define a splitting $E_{v}=F_{v}$ % $G_{v}$ by linear spaces, which is
invariant by the foliated geodesic flow (I) with $F_{v}$ of dimension 1 and with the property that the map
$tarrow\tilde{\Phi}(w_{1}, t)$ with initial condition $w_{1}\in F_{v}$ grows more rapidly than the maps $tarrow\tilde{\Phi}(w_{2}, t)$ for any
$w_{2}\in G_{v}$ . That is, for almost any $v\in T^{1}S$ , for any compact set $K\subset T^{1}S$ and for any sequence $(t_{n})_{n\in \mathrm{N}}$

of times such that $\varphi(v, t_{n})\in K$ and $\lim_{narrow\infty}t_{n}=+\infty$ , one has:

$\lim_{narrow\infty}\frac{|\tilde{\Phi}(w_{1},t_{n})|_{\varphi(v.t_{n})}}{|\tilde{\Phi}(w_{2},t_{n})|_{\varphi(v,t_{n})}}=\infty$, for all non-zero $w_{1}\in F_{v}$ , and w2 $\in G_{v}$ .

So the section of largest expansion is defined as $\sigma^{+}:=$ Proj(F)$)$ : $T^{1}Sarrow$ Proj(E). Similarly, we may
define a section $\sigma^{-}$ of largest contraction (see (3.1))
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An elementary argument of Linear Algebra suggests that a section $\sigma^{+}=$ Proj(F)$)$ of largest

expansion is attracting all the points in Proj(E) – Proj(G) as they flow according to the action of
the foliated geodesic flow O. In fact, we prove:

Theorem 1. Let $S$ be a finite hyperbolic Riemann surface and $\tilde{\rho}$ : $\pi 1(S, z\mathrm{o})arrow GL(n, \mathbb{C})$ a repre-
sentation having a section $\sigma^{+}$ of largest expansion, then $\mu^{+}=\sigma_{*}^{+}$ (dLiouv) is a $\Phi$ -invariant ergodic
measure on $T^{1}\mathcal{F}_{\rho}$ which is an $SRB$-measure for the foliated geodesic flow 4 of the Riccati equation,

whose basin has total Lebesgue measure in $T^{1}\mathcal{F}_{\rho}$ . Similarly, if $\sigma^{-}$ is the section of largest contraction,

then $\mu^{-}=\sigma_{*}^{-}$ (dLiouv) is a $\Phi$ -invariant ergodic measure uthich is an $SRB$-measure whose basin has
total Lebesgue measure in $T^{1}\mathcal{F}_{\rho;}$ for negative times.

In the case that both $\sigma^{\pm}$ exist, the foliated geodesic flow has a very simple ‘north to south pole
dynamics’: almost everybody is being born in $\mu^{-}$ and is dying on $\mu^{+}$ . If the sections $\sigma^{\pm}$ are continuous
disjoint sections defined on all $T^{1}S$ then it is easy to imagine this north to south pole dynamics (see

section 7 for an example). If $\sigma^{\pm}$ are only measurable, then they describe more subtle phenomena.

The Lyapunov exponents measure the exponential rate of growth (for the metric $|$ $|_{v}$ in the
vectorial fibers) of the solutions of the linear equation along the geodesies (definition 4.2):

$\lim\underline{1}\log|\tilde{\Phi}(w_{0}, t)|_{\varphi(v,t)}$ .
$tarrow\pm\infty t$

Let $S$ be a finite hyperbolic Riemann surface, $\tilde{\rho}$ : $\pi_{1}(S, z_{0})arrow GL(n, \mathbb{C})$ a representation and $E$ the
previously constructed bundle. The association of initial conditions to final conditions for the linear
equation in $E$ over the geodesic flow of $S$ , after a measurable trivialisation of the bundle, gives rise to
a measurable multiplicative cocycle over the geodesic flow on $T^{1}S$

$\tilde{A}$ : $T^{1}S\mathrm{x}$ $\mathbb{R}arrow GL(n, \mathbb{C})$

(see (2.4)). The integrability condition

$\int_{T^{1}S}log^{+}||\tilde{A}_{\pm 1}||dL\mathrm{i}ouv<+\infty$, (3)

where $||||$ is the operator norm and $\tilde{A}_{t}:=\tilde{A}(\cdot, t)$ , asserts that the amount of expansion of $\tilde{A}_{\pm}1$ is
Liouville integrable.

As a consequence of the multiplicative Ergodic Theorem of Oseledec applied to the foliated geodesic
flow we obtain:

Corollary 2. Let $S$ be a finite hyperbolic Riemann surface, $\mathrm{p}:\pi_{1}(S, z_{0})arrow GL(n, \mathbb{C})$ a representa-
tion and let $\tilde{A}$ be the measurable multiplicative cocycle over the geodesic flow on $T^{1}S$ satisfying the
integrability condition (3), then:

$\bullet$ The Lyapunov exponents $\lambda_{1}<\cdots<\lambda_{k}$ of $\tilde{\Phi}$ are well defined and are constant on a subset of
$T^{1}S$ of total Liouville measure. Denote by $F_{i}(v)$ the corresponding Lyapunov spaces.

$\bullet$ For every $\mathrm{i}\in\{1, \ldots, k\}$ , $\lambda_{k+1-i}=-\lambda_{i}$ and $d\mathrm{i}m(F_{k+1-i})=d\mathrm{i}m(F_{i})$ .
$\bullet$ if $d\mathrm{i}mF_{k}=1$ , denote by $\sigma^{+}$ the section corresponding to $F_{k}$ and $\sigma^{-}$ the section corveponding to

$F_{1}$ , then $\sigma^{\pm}$ are sections of largest expansion and contraction, respectively
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Prom now on by the Lyapunov exponents of the linear equation obtained from the representation
$\tilde{\rho}$ we will understand the Lyapunov exponents of the above multiplicative cocycle $\tilde{A}$ over the geodesic
flow on $T^{1}S$ obtained from the foliated geodesic flow on $E$ and satisfying the integrability condition
(3). The relationship between the section of largest expansion and the Lyapunov exponents is:

Theorem 3. Let $S$ be a finite hyperbolic Riemann surface, $\mathrm{p}:\pi_{1}(S, z\mathrm{o})arrow GL(n, \mathbb{C})$ a representation
satisfying the integrability condition (3), then there exists a section of largest expansion if and only if
the largest Lyapunov exponent is positive and simple, if and only if the smallest Lyapunov exponent is

negative and simple, and if and only if there is a section of largest contraction,

So, a section of largest expansion is an extension for non-integrable cocycles $\tilde{A}$ of the notion of
having a simple largest Lyapunov exponent. We give an example of this in section 6.

In order to apply Oseledec’s Theorem, the prevailing hypothesis is the integrability condition (3).
This condition is always satisfied if the base Riemann surface is compact, and more generally:

Theorem 4. If $S$ is a finite hyperbolic Riemann surface, $\tilde{\rho}$ a representation (1) then the multiplicative
cocycle $\tilde{A}$ satisfies the integrability condition (3) if and only if the monodromy $\tilde{\rho}$ around each of the
punctures of $S$ corresponds to a matrix with all its eigenvalues of norm 1.

This paper is organised as follows. In section 1 we recall the Riccati equations and in section 2 we
set up the foliated geodesic flow on Riccati equations. In section 3 we introduce SRB-measures and
prove Theorem 1. In section 4 we prove Corollary 2 and Theorem 3,

We now describe the results obtained in parallel but independent works ([1], [2]). If $S$ is a compact
hyperbolic Riemann surface, then the foliated geodesic flow is a linear or projective multiplicative
cocycle over a hyperbolic dynamical system. This led us to think that it could be possible to adapt
Fustenberg’s theory of the existence of a positive Lyapunov exponent for random products of matrices.
This has been carried out in [2]. That is, we give a condition on the representation so that if $S$ is
a compact hyperbolic Riemann surface, then there is a positive and a negative Lyapunov exponent.
Morover this condition is satisfied for an open and dense set in the space of representations for $n=2$

or 3. Hence Theorem 1 implies that for the general representation with $n=2$ or 3 the foliated geodesic
flow of the Riccati equation has a unique SRB-measure.

Assume that $S$ is a finite hyperbolic Riemann surface, that the image of the representation $\rho$ :
$\pi_{1}(S)$ $arrow PSL(2, \mathbb{C})$ does not leave invariant a probability measure on $\mathbb{C}P^{1}$ and that the multiplicative

cocycle satisfies the integrability condition (3), then it is shown in [1] that projecting the measures $\mu^{\pm}$

to the projective bundle $M_{\rho}$ over $S$ gives rise to a measure $l/$ which describes effectively the statistical
behaviour of the leaves of the foliation $\mathcal{F}_{\rho}$ : For any compact set $K\subset M_{\rho}$ , for any sequence $(x_{n}\in K)_{n\in \mathrm{N}}$

and any sequence of real numbers $(r_{n})_{n\in \mathrm{N}}$ tending to $+\infty$ the family of probability measures $\nu_{r_{n}}(x_{n})$

obtained by normalizing the area element on the disk $D_{r_{n}}(x_{n})$ in the leafwise Poincare metric converges
towards $\nu$ for the weak topology when $n$ tends to $+\infty$ .

1 The Riccati Equation

1.1 Linear Ordinary Differential Equations

The classical linear ordinary differential equation is

$\frac{dw}{dz}=A(z)w$ $z\in \mathbb{C}$ , $w\in \mathbb{C}^{n}$ (1.1)
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where $A(z)$ is a matrix of rational functions (see [4]). The fundamental property of this equation is that
locally in $z$ we can find a basis of independent solutions of (LI) which accept analytic continuation to
the universal covering space of $S:=\overline{\mathbb{C}}$ -poles(A) as holomorphic vector valued functions $w$ satisfying
the monodromy relation:

$w(T_{\gamma}(z))=\tilde{\rho}(\gamma)(w(z))$ , $\gamma\in\pi_{1}(S, z_{0})$

where $T_{\gamma}$ is the covering transformation corresponding to the close loop $\gamma$ and

$\tilde{\rho}:\pi_{1}(S, z_{0})arrow GL(n, \mathbb{C})$ (1.2)

is the monodromy representation of the equation. The linear automorphism $\tilde{\rho}(\gamma)$ : $\mathbb{C}^{n}arrow \mathbb{C}^{n}$ contains
the information of how the initial conditions are transformed to final conditions by solving $(1,1)$ along
the closed loop $\gamma$ based at $z_{0}$ .

Another classical construction of linear ordinary differential equations is the suspension ([S]). As-
sume given a hyperbolic Riemann surface $S$ and a representation (1.2). We construct bom this data
a vector bundle Ep over $S$ and an equation of type (1.1). Let $\mathbb{H}^{+}$ be the upper half plane, considered
as the universal covering space of $S$ , with covering transformations (4) giving rise to the canonical
representation $\tilde{\rho}_{can}$ of the fundamental group of $S$ . Consider the trivial bundle $\tilde{E}:=\mathbb{H}^{+}\rangle\langle$

$\mathbb{C}^{n}$ on the
upper half plane $\mathbb{H}^{+}$ and the $\pi_{1}(S,$ $z_{0}\rangle$ action on $\tilde{E}$

$(z, w)arrow(\tilde{\rho}_{can}(\gamma)z,\tilde{\rho}(\gamma)w)$ , $\gamma\in\pi_{1}(S, z_{0})$ . (1.3)

The quotient of $\tilde{E}$ by this action gives rise to a vector bundle Ep over $S$ . On $\tilde{E}$ we can consider the
equation given by $\tilde{A}=0$ (i.e. $\frac{dw}{dz}=0$). Its solutions are the constant functions. Since this equation $\tilde{A}$

is invariant under the action in (1.3), it descends to a linear ordinary differential equation on Ep which
is holomorphic over $S$ . The construction gives directly that the monodromy transformation of this
equation is the given representation $\tilde{\rho}$. The graphs of the local solutions to (1.1) form a holomorphic
foliation $\mathcal{F}_{\overline{\rho}}$ in $E_{\tilde{\rho}}$ .

1.2 The Riccati Equation

Riccati equations may be obtained from a linear ordinary differential equation as (1.1) or (1.2) by
projectivising the linear variables of the vector bundle Ep over the Riemann surface $S$ . Denoting
$\zeta_{j}:=-w\mathrm{A}$ with $j=2$, $\ldots$ , $n$ , the Riccati equation associated to (1.1) in affine coordinates takes the
form $\mathrm{o}\mathrm{f}\mathrm{a}w_{1}$ quadratic polynomial in $\zeta_{2}$ , $\ldots$ , $\zeta_{n}$ with rational coeffcients in $z$ :

$(\begin{array}{l}\frac{d\zeta_{2}}{dz}\frac{d\zeta_{n}}{dz}\cdots\end{array})=(\begin{array}{l}a_{2\mathrm{l}}a_{n1}\cdots\end{array})$ $+($ $a_{22}.-..a_{11}a_{32}$ $a_{33}.-..a_{11}a_{2\mathrm{S}}$
$a_{nn}.\cdot-\cdot..\cdot a_{11}$ ) $(\begin{array}{l}\zeta_{2}\zeta_{n}\cdots\end{array})-(a_{12}(_{2}+\cdots+a_{1n}\zeta_{n})$ $(\begin{array}{l}\zeta_{2}\zeta_{n}\cdots\end{array})$ (1.4)

where $A=(a_{ij}(z))$ is the matrix of rational functions in (1.1). Similarly, given a representation
$\tilde{\rho}$ as in (1.2) we may also construct from the projectivised representation $p$ in (1) its suspension
$M_{\rho}=$ Proj(E$\tilde{\rho}$,) which gives a manifold which is a $\mathbb{C}P^{n-1}$ bundle over $S$ with a flat connection. The
set of flat sections form a foliation $\mathcal{F}_{\rho}$ of $M_{\rho}$ which is the projectivisation of the foliation $\mathcal{F}_{\tilde{\rho}}$ in $E_{\overline{\rho}}$ .
The foliations so constructed, will be called Riccati foliations
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2 The Foliated Geodesic Flow on Linear and Riccati Equations

2.1 The Geodesic Flow on Finite Hyperbolic Riemann Surfaces

We say that $S$ is a finite hyperbolic Riemann surface if $S$ is conformally equivalent to $\overline{S}-\{p_{1}, \ldots,p_{r}\}$ ,
where $\overline{S}$ is a compact Riemann surface of genus $g$ and $g>1$ or $g=1$ with $r\geq 1$ or $g=0$ with $r\geq 3$ .
In such a case $S$ has as a universal covering space the Poincare’ upper half plane $\mathbb{H}^{+}$ , with its complete
metric of curvature -1 given by $ds= \frac{|dz|}{y}$ . We introduce on $S$ the hyperbolic metric induced by the
Poincare metric via the universal covering map. For the measure associated to the hyperbolic metric,
the surface $S$ has finite area.

Let $T^{1}S$ be the unit tangent bundle of $S$ . The Liouville measure dLiouv on $T^{1}S$ is the measure
obtained from the hyperbolic area element in $S$ and Haar measure $d\theta$ on unit vectors, normalised so
as to have volume 1. The geodesic flow

$\varphi$ : $T^{1}S><\mathbb{R}arrow T^{1}S$
$\varphi_{t}:=\varphi$( ,t) (2.1)

is obtained by flowing along the geodesies (see [6] p. 209). The geodesic flow leaves invariant the
Liouville measure.

Theorem 2.1 (Hopf-Birkhoff). ([6] p. 217, 136) Let $S$ be a finite hyperbolic Riemann surface,
then the Liouville measure is ergodic with respect to the geodesic flow and the generic geodesic of $S$ is
statistically dist ributed in $T^{1}S$ according to the Liouville measure: For all Liouville integrable functions
$h$ on $T^{1}S$ and for almost any $v_{z}\in T^{1}S$ with respect to the Liouville measure

$\lim_{tarrow\infty}\frac{1}{t}\int_{0}^{t}h(\varphi\{v_{z}, t))dt=\int_{T^{1}S}$ hdLiouv

2.2 The Foliated Geodesic Flows

Let $S$ be a finite hyperbolic Riemann surface, and $\tilde{\rho}$ and $\rho$ representation as in (1) and let $\mathcal{F}_{\tilde{\rho}}$ and $\mathcal{F}_{\rho}$

be the foliations constructed in section 1. If $\mathcal{L}$ is a leaf of the foliation $\mathcal{F}_{\tilde{\rho}}$ or $\mathcal{F}_{\rho}$ , then the projection
map $p$ : $\mathcal{L}arrow S$ is a covering map, and hence the pull back of the Poincare metric of $S$ induces a
metric to the leaves of $\mathcal{F}$ , which coincides with the Poincare’ metric of each leaf $\mathcal{L}$ of $\mathcal{F}$ . This is the
Poincare’ metric of the foliations $\mathcal{F}_{\tilde{\rho}}$ or $\mathcal{F}_{\rho}$ .

Let $T^{1}\mathcal{F}_{\tilde{\rho}}$ be the manifolds formed by those tangent vectors to $E_{\tilde{\rho}}$ and $M_{\rho}$ which are tangent to $\mathcal{F}_{\tilde{\rho}}$

and $\mathcal{F}_{\rho}$ and are of unit length with respect to the Poincare’ metrics of the foliations. The derivative of
the projection map $E_{\tilde{\rho}}$ , $M_{\rho}arrow S$ induces the commutative diagram

$T^{1}\mathcal{F}_{\tilde{\rho}}T^{1}S\downarrow$
$arrowarrow qq$

$E_{\overline{\rho}}S\downarrow$

$T^{1}F_{\rho}T^{1}S\downarrow$
$arrowarrow$

$M_{\rho}S\downarrow$

The foliated geodesic flows 0 and $\Phi$ are defined by following geodesies along the leaves and is com-
patible with the geodesic flow $\varphi$ on $S$ , giving rise to the commutative diagram

$\tilde{\Phi}\varphi\cdot\cdot.\cdot$
$T^{1}F_{\tilde{\rho}}T^{1}S\downarrow$

$\mathrm{x}\mathrm{x}$

$\mathbb{R}\mathbb{R}\downarrow$

$arrowarrow$
$T^{1}F_{\tilde{\rho}}T^{1}S\downarrow$

$\Phi$ : $T^{1}F_{\rho}$ $\mathrm{x}$

$\mathbb{R}\downarrow$

$arrow$ $T^{1}F_{\rho}$

(2.2)
$\varphi$ :

$T^{1}S\downarrow$

$\mathrm{x}$
$\mathbb{R}$ $arrow$

$T^{1}S\downarrow$

For any $v\in T^{1}S$ and $t\in \mathbb{R}$ , the flow $\tilde{\Phi}_{t}:=\tilde{\Phi}(,t)$ induces a linear isomorphism

$\tilde{A}(v,t):=\tilde{\Phi}(v, , t)|_{E_{\tilde{\rho},v}}$ : $E_{\tilde{\rho},v}arrow E_{\tilde{\rho},\varphi(v,t)}$ (2.1)
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between the $\mathbb{C}^{n}$-fibres. After a measurable trivialisation of the bundles by choosing measurably an
othonormal basis of the fibers, the foliated geodesic flows may be seen as measurable multiplicative
cocycles over the geodesic flow on $T^{1}S$ :

$\tilde{A}$ : $T^{1}S\mathrm{x}$ $\mathbb{R}arrow GL(n,\mathbb{C})$ , $A\sim(v, t_{1}+t_{2})=\tilde{A}(\varphi(v, t_{1}),$ $t_{2})\tilde{A}(v, t_{1})$ , $t_{1},$ $t_{2}\in \mathbb{R}$ . (2.4)

Moreover the usual operator norm in $GL(n, \mathbb{C})$ coincides with the operator norm of ( $2.3\rangle$ as Hermitian
spaces with the metrics induced from the fibre bundle metric.

3 SRB-measures for Riccati Equations

3.1 SRB-measures

Let $M$ be a difTerentiable manifold. The Lebesgue measure class is the set of measures whose restriction
on any chart $U$ has a smooth strictly-positive Radom-Nikodyn derivative with respect to $dx_{1}\mathrm{A}dx_{2}\cdots \mathrm{A}$

$dx_{n}$ where the $x_{i}$ are coordinates on $U$ . A set $E\subset M$ has zero Lebesgue measure if there is a measure
$\mu$ in the Lebesgue class such that $\mu(E)=0$ .

Let $X$ be a complete vector field on the manifold $M$ , and denote by $\varphi_{t}$ its flow. A probability
measure $\mu$ on $M$ is invariant by $X$ if for any $t\in \mathbb{R}$ one has $\varphi_{t*}(\mu)=\mu$. The basin $E(\mu)$ of an
$X$ -invariant probability $\mu$ is the set of points $x\in M$ such that the positive time average along its
orbit of any continuous function $h:Marrow \mathbb{R}$ with compact support coincides with the integral of the
function by $\mu$ . In formula:

$\lim_{Tarrow+\infty}\frac{1}{T}\int_{0}^{T}h(\varphi_{\mathrm{t}}(x))dt=\oint_{M}hd\mu$

Definition 3.1. An $X$ -invariant probability measure in M is an SRB-measure if its basin has
non-zero Lebesgue measure in M.

3.2 Key Idea to Build SRB-measures for Riccati Equations

Let $S$ be a finite hyperbolic Riemann surface and $\tilde{\rho}$ and $\rho$ representations as in (1) and Tp and $F_{\rho}$

the foliations in $E_{\tilde{\rho}}$ and $M_{\rho}$ constructed in section 2. Consider a continuous Hermitian metric $|\cdot$ $|_{x}$ on
the fiber $E_{\tilde{\rho},x}$ of Ep and for each point $x\in S$ we endow the corresponding Fubini-Study (Riemannian)
metric $|\cdot|_{x}$ on $M_{\rho,x}=Proj(E_{\tilde{\rho},x})$ . The bundles $q^{*}E_{\overline{\rho}}\simeq T^{1}\mathcal{F}_{\overline{\rho}}$ and $q^{*}M_{\rho}\simeq T^{1}\mathcal{F}_{\rho}$ over $T^{1}S$ are endowed
in a natural way with the induced Hermitian or Fubini-Study metric, respectively.

Definition 3.2. Under the above setting, assume that the vector bundle $E:=T^{1}\mathcal{F}_{\tilde{\rho}}arrow T^{1}S$ admits
a measurable splitting $E_{v}=F_{v}\oplus G_{v}$ , defined for $v$ in a subset $A$ of $T^{1}S$ , and verifying the following
hypothesis:

1. A has total Lebesgue measure in $T^{1}S$ ;

2. A is invariant by the geodesic flow $\varphi \mathrm{i}$

3. the splitting is invariant by the foliated geodesic flow $\Phi\sim$ : for every t $\in \mathbb{R}$ and every v $\in A$ ,

$F_{\varphi(v,t)}=\tilde{\Phi}(F_{v},t)$ and $G_{\varphi(v,t)}=\tilde{\Phi}(G_{v},t)$ ;

4. $d\mathrm{i}m(F_{v})=1$ ;
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5. for any $v\in A$, for any compact set $K\subset T^{1}S$ and for any sequence $(t_{n})_{n\in \mathrm{N}}$ of times such that
$\varphi(v, t_{n})\in K$ and $\lim_{narrow\infty}t_{n}=+\infty$ , one has:

$\lim_{narrow\infty}\frac{|\tilde{\Phi}(w_{1},t_{n})|_{\varphi(v,t_{n})}}{|\tilde{\Phi}(w_{2},t_{n})|_{\varphi(v,t_{n})}}=\infty)$ , for all non-zero $w_{1}\in F_{v}$ , and $w_{2}\in G_{v}$ .

Under the above hypothesis denote by $\sigma^{+}:$ $A\subset T^{1}Sarrow T^{1}\mathcal{F}_{\rho}$ the mesurable section defined by let-
ting $\sigma^{+}(v)$ be the point of Proj $(E_{v})co$ responding to the line $Fv$ . A section $\sigma^{+}$ verifying the above
hypothesis is called a section of largest expansion.

Similarly, one defines the section $\sigma^{-}$ of largest contraction by requiring

$\lim\underline{|\tilde{\Phi}(w_{1},t_{n})|_{\varphi(v,t_{n})}}=0$

, for all non-zero $w_{1}\in F_{v}$ , and w2 $\in G_{v}$ . (3.1)
$narrow\infty|\tilde{\Phi}(w_{2}, t_{n})|_{\varphi(v,t_{\mathrm{n}})}$

where we are imposing the condition that the measurable sub-bundle $F$ is 1 dimensional.

Proof of Theorem 1: $\sigma^{+}$ induces an isomorphism of the measure dLiouv and $\mu^{+}=\sigma_{*}^{+}dL\mathrm{i}ouv$ , so
that the invariance and the ergodicity of $\mu^{+}$ follow from those of dLiouv and of $\sigma^{+}$ .

Let $h:T^{1}\mathcal{F}_{\rho}arrow \mathbb{R}$ be a continuous function with compact support, and denote by $K$ the projection
of this compact set on $T^{1}S$ . The function $h\circ\sigma^{+}:$ $T^{1}Sarrow \mathbb{R}$ is measurable and bounded, so it belongs
in $\mathcal{L}^{1}$ (dLiouv). As the Liouville measure is a $\varphi$ ergodic probability on $T^{1}S$ , there is an invariant set
$Y_{h}\subset T^{1}S$ of total Lebesgue measure such that, for $v\in Y_{h}$ , the average

$\frac{1}{T}\int_{0}^{T}h\mathrm{o}\sigma^{+}(\varphi(v, t))dt$ $arrow\int_{T^{1}S}h\circ\sigma^{+}dL\mathrm{i}ouv=\int_{T^{1}F_{\rho}}hd\mu^{+}$ . (3.2)

For each $v\in Y_{h}$ we denote by $\mathcal{Y}_{h}(v)$ the set of points in the fiber $y\in Proj(E_{v})$ corresponding to
a line of $E_{v}\backslash G_{v}$ . We denote by $\mathcal{Y}_{h}$ the union $\mathcal{Y}_{h}=\bigcup_{v\in Y_{h}}\mathcal{Y}_{h}(v)\subset M_{\rho}.\mathrm{T}\mathrm{h}\mathrm{e}$ set $y_{h}$ is invariant by $\Phi$

because $Y_{h}$ is invariant by $\varphi$ and the bundle $G$ is $\tilde{\Phi}-i\mathrm{n}\mathrm{v}\mathrm{a}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l}\mathrm{l}\mathrm{t}$ . By Pubini’s theorem, the set $y_{h}$ has
total Lebesgue measure in $M_{\rho}$ .

Claim . For every w $\in \mathcal{Y}_{h}$ , the average $\frac{1}{T}\int_{0}^{T}h(\tilde{\Phi}(w, t))dt$ converges to $\int_{T^{1}\mathcal{F}_{\rho}}hd\mu^{+}$

Before proving the claim let us show that this concludes the proof of Theorem 1: There is a
countable family $h_{\mathrm{z}\}}$

$\mathrm{i}\in \mathrm{N}$ of continuous functions with compact support which is dense (for the
uniform topology) in the set of all continuous functions of $T^{1}F$ with compact support. Look now at

the set $\mathcal{Y}=\bigcap_{0}^{\infty}\mathcal{Y}_{h_{j}}$ ; It is invariant by $\Phi$ , has total Lebesgue measure, and is contained in the basin
of $\mu^{+}$ by the claim. This proves Theorem 1.

Now we prove the claim: Let $w\in \mathcal{Y}_{h}(v)$ , for some $v\in Y_{h}$ , and denote $w_{0}=\sigma^{+}(v$ }. As the section
$\sigma^{+}$ is invariant by the foliated geodesic flow, for any $t$ , $\Phi(w_{02}t)=\sigma^{+}(\varphi(v, t))$ ;so for any $T\in \mathbb{R}$ the

averages $\frac{1}{T}f_{0}^{T}h\circ\Phi(w_{0}, t)dt$ and $\frac{1}{T}\int_{0}^{T}h\mathrm{o}\sigma^{+}(\varphi(v_{7}t))dt$ are equal and we get by (3.2)

$\lim_{Tarrow\infty}\frac{1}{T}\int_{0}^{T}h(\Phi(w0, t))dt=\int_{T^{1}F_{p}}hd\mu^{+}$ .

Consider a non-zero vector $\tilde{w}$ in the linear space $E_{v}$ in the line corresponding to $w$ . We can

write in a unique way $\tilde{w}=\tilde{w}0+\tilde{w}_{1}$ where $\tilde{w}_{0}\in F_{v}$ and $\tilde{w}_{1}\in$ Gv. Notice that $\tilde{w}0\neq 0$ projects on
$w_{0}\in Proj(E_{v})$ . By hypothesis 5 in Definition 3.2, when $t\in \mathbb{R}$ is very large, either $\varphi_{t}(v)\not\in K$ or
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2. Theorem 1 does not use our specific hypothesis (2-dimensional basis, geodesic flow, holomorphic
foliation). One has:

Theorem 1’: Let $B$ be a manifold and $\varphi$ a flow on $B$ admiting an ergodic invariant probability
A which is absolutely continuous (with strictly positive density) with respect to Lebesgue measure.
Let $\tilde{\rho}:\pi_{1}(B)arrow GL(n, \mathbb{C})$ be a representation, $(E_{\overline{\rho}},\tilde{F}_{\tilde{\rho}})$ be the vector bundle endowed with the
suspension foliation, and $M_{\rho}=(Proj(E_{\tilde{\rho}}), F_{\rho})$ the suspension of the corresponding representa-
than $\rho:\pi_{1}(B)arrow PGL(n, \mathbb{C})$ . Let $\Phi$ be the lift of the flow $\varphi$ to the leaves of $F_{\rho}$ . If the bundle Ep
adrnits a section $\sigma^{+}$ of largest expansion then $\sigma_{*}^{+}(\lambda)$ is an $SRB$-measure of the flow $\Phi$ , whose
basin has total Lebesgue measure in $M_{\rho}$ .

3. The geodesic flow (and the foliated geodesic flow) have a symmetry: denote by I the involution
map on the unit tangent bundle sending each vector $v$ to $-v$ and $\tilde{I}$ the involution $\tilde{I}(w_{v})=-w_{v}$

on $T^{1}F_{\tilde{\rho}}$ . Then I is a conjugation between the geodesic flow and its inverse $I\circ\varphi_{t}$ $\circ I=\varphi_{-t}$ . This
shows that $\sigma^{-}=\tilde{I}\circ\sigma^{+}\circ I$ is a section of largest expansion for the negative geodesic flow, and
$\mu^{-}=\sigma_{*}^{-}$ (dLiouv) will be an SRB-measure for the negative orbits of the geodesic flow. Then
Lebesgue almost every orbit in $T^{1}\mathcal{F}$ has negative average converging to $\mu^{-}$ and positive average
converging to $\mu^{+}$ .

Proposition 3.4. Let $E_{\tilde{\rho}}=F\oplus G$ be a $\tilde{\Phi}$ -invariant measurable splitting giving rise to a section of
largest expansion $\sigma^{+}:=$ proj(Fl, then the decomposition is measurably unique ($\mathrm{i}.e$ . over a set of full
Liouville measure in $T^{1}S$).

Proof: Let $E_{\tilde{\rho}}=F_{1}\oplus G_{1}$ be a $\tilde{\Phi}$-invariant measurable splitting giving rise to a section of largest
expansion, $\sigma_{1}^{+}:=proj(F_{1})$ . The line bundle $F_{1}$ is not contained in $G$ , for if it were contained, then
the order of growth of $\sigma^{+}$ would be larger than the order of growth of $\sigma_{1}^{+}$ . But then $G_{1}$ would not
be a subset of $G$ and any initial condition in $G_{1}-G$ has the same order of growth than $\sigma^{+}$ , which is
larger than the order of growth of sections in $G$ , like $\sigma_{1}^{+}$ , contradicting that the order of growth of $\sigma_{1}^{+}$

is larger than the order of growth of any section in $G_{1}$ .

Assume that $F\neq F_{1}$ . For $\epsilon$ $>0$ define the subset
$H_{\epsilon}:=$ { $v\in T^{1}S/d\mathrm{i}st$ ( $\sigma^{+}(v)$ , $G_{v})>\epsilon$ , $d\mathrm{i}st(\sigma_{1}^{+}(v)_{)}G_{v})>\epsilon$ , dist(\sigma $(v),$ $\sigma_{1}^{+}(v))>\epsilon$ }

where the distances are measured in the Pubini-Study metrics of $Proj(E_{v})$ . For small a the set $H_{\epsilon}$

will have positive Liouville measure. But since the Liouville measure is ergodic, almost all points in
$H_{\epsilon}$ are recurrent. But this cannot be, since both $\sigma^{+}$ and $\sigma_{1}^{+}$ are invariant and as time increases the
component in $F_{v}$ grows much more than the component on $G_{v}$ so that in $Proj(E_{v})$ the sections $\sigma^{+}$

and $\sigma_{1}^{+}$ are getting closer which contradicts the condition dist $(\sigma^{+}(v), \sigma_{1}^{+}(v))$ $>\epsilon$ . Hence we must
have $F=F_{1}$ (Liouville almost everywhere), as well as $\sigma^{+}=\sigma_{1}^{+}$ . Now $G$ is uniquely determined by
$\sigma^{+}$ , since any section outside $G$ has the same order of grow th as $\sigma^{+}$ , and those on $G$ have smaller
order of growth. $\square$
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4 Using Oseledec’s Theorem

4.1 A Corollary of Oseledec’s Theorem

Let
$f$ : $Barrow B$ $A$ : $Barrow GL(n, \mathbb{C})$

be measurable maps. For any $n\in \mathrm{N}$ and any $x\in B$ we denote

An{x) $=A(f^{n-1}(x))\cdots A(f(x))A(x)$ and $A^{-n}(x)=[A^{n}(f^{-n}(x))]^{-1}$ .

One says that the family $\{A^{n}\}$ form a multiplicative cocycle over $f$ .

Definition 4.1. A point x $\in B$ has Lyapunov exponents for the multiplicative cocycle $\{A^{n}\}$ over f if
there exists $0<k\leq n$ and for all i $\in$ {1, \ldots , k} there is $\lambda_{i}\in \mathbb{R}$ and a subspace $F_{i}$ of $\mathbb{R}^{n}$ such that:

1. $\mathbb{R}^{n}=\oplus_{i}F_{i}$

2. For any i and any non zero vector v $\in F_{i}$ one has

Jim $\underline{1}\log(|A^{n}(v)|)=\pm\lambda_{i}$

$narrow\pm\infty n$

Oseledec’s Multiplicative Ergodic Theorem ([6, p.666-667]): Let $f$ : $Barrow B$ be an invertible
measurable transformation, $\mu$ an $f$ -invariant probability measure and $A$ a mesurable multiplicative
cocycle over $f$ . Assume that the functions $\log^{+}||A||$ and $\log^{+}||A^{-1}||$ belong to $\mathcal{L}^{1}(\mu)$ . Then the set of
points for which the Lyapunov exponents of $A$ are well defined has $\mu$ measure 1. If $\mu$ is ergodic the
Lyapunov exponents are independent of the point in a set of total p-measure.

The Lyapunov exponents and the Lyapunov spaces above depend measurably of $x\in B$ on a set of
$\mu-$-total measure (see [6, p.666-667]), When the measure $\mu$ in Oseledec’s Theorem is ergodic, we can
then speak of the Lyapunov exponents of the measure $\mu$ .

We want to use Oseledec’s Theorem for flows when the base manifold is non-compact. Let $\varphi$ be a
complete flow on the manifold $B$ , $\pi:Earrow B$ a vector bundle over $B$ and 4) be a flow on $E$ inducing a
multiplicative cocycle as in (2.4) over $\varphi$ .

Definition 4.2. We say that the Lyapunov exponents of 4) are well defined at a point $v\in B$ if there
is a continuous Euclidean or Hermitian metric on the bundle $E$ , a finite sequence $\lambda_{1}<\cdots<\lambda_{k}$ and
a $\tilde{\Phi}$ -invariant splitting $E(v)=F_{1}(v)\oplus\cdots\oplus F_{k}(v)$ such that, for any non zero vector $w\in F_{i}(v)$ , any
compact $K\subset B$ and any sequence $\{t_{n}\}_{n\in \mathbb{Z}}$ with $\lim_{narrow\pm\infty}t_{n}=\pm\infty$ and $\varphi(v,t_{n})\in K$ one has:

$\lim$
$\underline{1}\log(|\tilde{\Phi}(w,t_{n})|)=\pm\lambda_{i}$.

$narrow\pm\infty t_{n}$

The existence and the value of the Lyapunov exponents does not depend of the continuous metric
on the vector bundle $E$ ; moreover we can allow the metric to be discontinuous if the change of metric
to a continuous reference metric is bounded on compact sets of the basis $B$ .

Lemma 4.3. With the notation above the Lyapunov exponents of $v\in B$ for the flow (I are well

defined if and only if they are well defined for the multiplicative cocycle $\{\tilde{A}_{1}^{n}\}$ over gi defined by

the diffeomorphism $\tilde{\Phi}_{1}$ . Moreover the Lyapunov exponents and spaces are equal for the flow and the

diffeomorphism
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Proof: One sense is evident, so we will assume that the diffeomorphism $\Phi_{1}$ has Lyapunov

exponents on $v$ . As the flow $\varphi$ is complete, for any compact set $K\subset B$ the union $K_{1}= \bigcup_{t\in[-1,1]}\varphi(K, t)$

is compact. Moreover for each $t_{n}$ such that $\varphi(v, t_{n})\in K$ , let $T_{n}$ be the integer part of $t_{n}$ , then
$\varphi_{1^{nn}}^{t-T}(v)\in K_{1}$ . We conclude the proof noticing that

$\tilde{A}(v, t_{n})=\tilde{A}(\varphi_{1}^{t_{N}-T_{n}}(v), T_{n})\tilde{A}(v, t_{n}-T_{n})$

and that the norm of $\tilde{A}$ ( $*$ , Tn) is uniformly bounded over $K_{1}$ independently of $t_{n}-T_{n}\in[0,1]$ . $\square$

Definition 4.4. Let $\mu$ be a $\varphi$-inwariant probability on B. We say that the flow $\tilde{\Phi}$ defining a measurable
multiplicative cocycle (2.4) is $\mu$-integrable if there is a continuous norm $|\cdot$ $|$ on the vector bundle $E$

such that the functions $\log^{+}||\tilde{A}_{1}||$ and $\log^{+}||\tilde{A}_{-1}||$ belong to $\mathcal{L}^{1}(\mu)$ , where $||||$ is the operator norm on
the normed vector spaces.

The condition of integrability of the norm of the multiplicative cocycle is always verified if the

manifold $B$ is compact.

Proof of Corollary 2: Consider $f=\varphi_{1\}}$ the time 1 of the geodesic flow on $T^{1}S$ , and let $\tilde{A}(v)$ : $E_{v}arrow$

$E_{f(v)}$ the linear multiplicative cocycle induced on the vector bundle $T^{1}\mathcal{F}_{\tilde{\rho}}$ by $\overline{\rho}$ in Oseledec’s Theorem.
By hypothesis, this multiplicative cocycle is integrable so that the Lyapunov exponent of the multi-
plicative cocycle $\overline{A}$ are well defined for a Liouville total measure set by Lemma 4.3. The Lyapunov
exponents and spaces depend measurably of $v\in T^{1}S$ which are invariant respectively by $\varphi$ and 0.
As the Liouville measure is ergodic, the Lyapunov exponents are constant on a set of total Liouville
measure. This ends the proof of item 1.

The proof of item 2 is a direct consequence of the symmetry of the flow $\Phi:\tilde{I}0\Phi_{t}\circ\tilde{I}=\Phi_{-t}$ (see

item 3 in remark 3.3). With the hypothesis of item 3 the section $\sigma^{+}$ is clearly a section of largest

expansion so that item 3 is a direct consequence of Theorem 1. $\square$

A direct corollary of Theorem 1’ and Oseledec’s Theorem is the following

Corollary $2’:Let$ $f$ be a diffeomorphism of a manifold $B$ , admitting an invariant ergodic probability
A in the class of Lebesgue and let $E$ be an $n$ -dimensionaf vector bundle over the basis $B$ and $M$ the
corresponding projective bundle. Assume that $\tilde{\Psi}$ is a diffeomorphism of $E$ leaving invariant the linear
fibration, inducing linear maps on the fibers and whose projection on $B$ is the diffeomorphism $f$ . We
denote by $\Psi$ the induced diffeomorphism on $M$ .

Let $U_{i}$ be a covering of $B$ by trivializing charts of the bundle $E\wedge\cdot$ then writing $\Psi$ in these charts we
get a multiplicative cocycle $\tilde{A}:Barrow GL(n, \mathbb{C})$ . Assume that $log^{+}||\tilde{A}||$ and $log^{+}||\overline{A}^{-1}||$ belong to $\mathcal{L}^{1}(\lambda)$

and that the largest Lyapunov exponent of the measure A for the multiplicative cocycle $\tilde{A}$ corresponds
to $a$ 1 dimensional space. Denote by $\sigma^{+}$ the corresponding measurable section defined on a Lebesgue
total measure set of $B$ to $M$ .

Then $\sigma_{*}^{+}(\lambda)$ is an $SRB$ measure for $\Psi$ and its basin has total Lebesgue measure in M. 0

4,2 Proof of Theorem 3

Proof: Due to Corollary 2 and the Remark 3.2, the only thing that remains to be proved is that,
under the integrablity condition (3), if there is a section of largest expansion then the largest Lyapunov
exponent is positive and simple.

We begin first with the case that $S$ is compact. So assume that there is a section $\sigma^{+}$ of largest
expansion providing a measurable decomposition Ep $=F$ ee $G$ , $\sigma^{+}:=$ Proj(F) and let $\lambda_{\mathrm{i}}$ and $F_{i}$ be
the Lyapunov exponents and spaces as in Corollary 2. We have $F\subset F_{k}$ , corresponding to the greates
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eigenvalue A&, and denote by $H$ the measurable bundle $F_{k}\cap G$ of dimension $n_{k}-1$ . Assume that the
dimension $n_{k}$ of $F_{k}$ is at least 2, and we will argue to obtain a contradiction to this assumption.

Since the foliated geodesic flow is leaving invariant the measurable bundle $F_{k}$ , after a measurable
trivialisation we will obtain a measurable cocycle

$B$ : $T^{1}S\mathrm{x}$ $\mathbb{R}arrow GL(nk, \mathbb{C})$

which carries the information of how initial conditions are transformed into final conditions, when
starting from the point $v\in T^{1}S$ , ut $\in F_{k,v}$ , and flowing a time $t$ along the geodesic.

Recall that we have introduced a Hermitian metric on the bundle $Ep$}, by pull back in the bun-
dle $q^{*}E_{\tilde{\rho}}=T^{1}\mathcal{F}_{\overline{\rho}}$ and by restriction into the bundle F&. Recall also that if we have a C-linear
map $L$ between Hermitian spaces, the determinant $det(L, W)$ of $L$ on a subspace $W$ is by definition
the quotient of the volumes of the paralelograms determined by $Lw_{1}$ , $\ldots$ , $Lw_{m}$ , $\mathrm{i}Lw_{1}$ , $\ldots$ , $\mathrm{i}Lw_{m}$ and
$w_{1}$ , . . . $w_{m}$ , $\mathrm{i}w_{1}$ , , . . , $\mathrm{i}w_{m}$ corresponding to any $\mathbb{C}$-basis $w_{1}$ , $\ldots$ , $w_{m}$ of $W$ . Define

$\Delta^{m}$ : $T^{1}Sarrow \mathbb{R}$ $\Delta^{m}(v):=\frac{det(B(v,m),F_{v})^{n_{k}-1}}{det(B(v,m),H_{v})}$

and note that the cocycle condition (2.4) for $B$ and the $\tilde{\Phi}$-invariance of $H$ and $F$ gives the multiplicative
condition

$\Delta^{m}(v)=\Delta(\varphi(v, m-1))\mathrm{A}(\mathrm{i}\mathrm{f}(\mathrm{v},m-2)\rangle\cdots$ A{ $\mathrm{v})$ , $\Delta.--\Delta^{1}$ . (41)

The volume in $H$ has exponential rate of growth $(n_{k}-1)\lambda_{k}$ , since it is the Lyapunov exponent of
$\Lambda^{n_{k}-1}H$ . The exponential rate of growth of $F$ is $\lambda_{k}$ , hence

$\oint_{T^{1}S}\log(\Delta)dL\mathrm{i}ouv=(n_{k}-1)\lambda_{k}-\lambda_{k}-\ldots-\lambda_{k}=0$ . (4.2)

Now we need the follow ing corollary of a general statement from Ergodic Theory, (see [7], Corollary
1.6.10):

Corollary 4.5. Let $\varphi$ : $Barrow B$ be a measurable transfor mation preserving a probability measure $lJ$

in $B$ , and $g$ : $Barrow \mathbb{R}$ a $\nu$ -integrable function such that $\lim_{narrow\infty}\sum_{j=0}^{n}(g\circ\varphi^{j})$ $=$ oo at $lJ$ -almost every
point, then $\int_{B}gd\nu$ $>0$ .

Proof: Consider the set

$A:= \{v\in T^{1}S/\sum_{j=0}^{\ell}(g\mathrm{o}\phi)(v)>0, \forall\ell\geq 0\}$ ,

and for $v\in A$ let

$S_{*}g(v):= \inf_{\ell}\{\sum_{j=0}^{f}(g\mathrm{o}\varphi^{\beta})(v)\}$ .

$A$ has a strictly positive $lJ$ measure since almost any orbit will have a point in $A$ , and $S_{*}g$ is a

measurable function on A which is strictly positive. By Corollary 1,6.10 in [7] we have

$\oint_{B}gd\iota\nearrow=\oint_{A}$ $S_{*}gdv$,

but this last number is strictly positive, since we are integrating a strictly positive function over a set
$\square$

of positive measure.
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We want to apply the above Lemma to $(X, \nu)=$ ( $T^{1}S$, dLiouv) and $g=\log\Delta$ . Note that the
multiplicative relation (4.1) implies

$\sum_{j=0}^{m-1}\log\Delta(\varphi_{j}(v))=\log\Delta^{m}(v)$ (4.3)

The hypothesis on the growth of the section $\sigma^{+}$ implies that $\lim_{narrow\infty}\log\Delta^{m}(v)arrow\infty$ . But on using
(4.3) this is the hypothesis in the Lemma, so as a conclusion of it we obtain that

$\int_{T^{1}\mathit{8}}\log(\Delta)dL\mathrm{i}ouv>0$,

which contradicts $(4,2)$ . Hence $F_{k}$ has dimension 1, so that the largest Lyapunov exponent is simple.

Assume now that $S$ is not compact. According to Lemma 4.3, it is sufficient to consider the
integrability condition for the time 1 flow $\varphi_{1}$ . Let $K$ be a compact set of positive Liouville measure
in $T^{1}S$ and partition

$K_{m}:=\{v\in K/\varphi^{?}(v)\not\in K,j=1, \cdots, m-1, \varphi^{m}(j)\in K\}$

according to the time of the first return to $K$ . Define the multiplicative cocycle generated by

$C$ : $Karrow GL(n, \mathbb{C})$ , $C(v):=\tilde{A}_{1}^{m}(v)$ , $v\in K_{m}$

corresponding to the first return map to $K$ . Since

$\mathrm{C}\{\mathrm{v}$ ) $=\tilde{A}_{1}(\varphi^{m-1}(v))\ldots$ $\tilde{A}_{1}(\varphi(v))\tilde{A}_{1}(v)$ ,

we have

$\log^{+}(||C(v)||)\leq\log^{+}(||\tilde{A}_{1}(\varphi^{m-1}(v))||)+\ldots+\log^{+}(||\tilde{A}_{1}(\varphi(v))||)+\log^{+}(||\tilde{A}_{1}(v)||))$,

and hence on $K$ we obtain

$\sum_{m=1}^{\infty}\int_{K_{m}}\log^{+}(||C(v)||)\leq\sum_{m=1}^{\infty}[\log^{+}(||\tilde{A}_{1}(\varphi^{m-1}(v))||)+\ldots+\log^{+}(||\tilde{A}_{1}(\varphi(v))||)+\log^{+}(\overline{A}_{1}(v))]\leq$

$\leq\int_{T^{1}S}\log^{+}(||\tilde{A}_{1}(v)||)$

since the sets
$\varphi_{j}(K_{m})$ , $j=0$, $\ldots$ , $m-1$ , , $m=1$ , $\ldots$

are disjoint. Hence the cocycle generated by $C$ is integrable, and we may repeat the argument presented
for the case that $T^{1}S$ is compact.

$\square$

5 Using Oseledec’s Theorem in the Non-compact case
The objective of this paragraph is to prove Theorem 4. The proof of the parts “if” and “only if’ are
given by some estimates over the punctured disc $\mathrm{D}^{*}$ . As both proofs are long, we will treat them
separately. The common argument is the following estimate about the geodesic flow of $\mathrm{D}^{*}$ .
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5.1 Estimates on the Geodesic Flow on a Punctured Disc

Denote by $\mathrm{D}$’ the punctured disc endowed with the usual complete metric of curvature -1, that is,
its universal cover is the Poincare half plane $\mathbb{H}^{+}$ with covering group generated by the translation
$T(z)=z+1$ and define

$D^{*}:= \frac{\{z\in \mathbb{H}^{+}/Im(z)>1\}}{(T^{n})}\subset \mathrm{D}^{*}$ $S^{1}:= \partial D^{*}=\frac{\{z\in \mathbb{H}^{+}/Im(z)=!\}}{(T^{n})}\sim.\subset \mathrm{D}^{*}$ .

$\overline{D}^{*}:=\frac{\{z\in \mathbb{H}^{+}/Im(z)\geq 1\}}{(T^{n})}\subset \mathrm{D}^{*}$

A unit vector $u\in T^{1}D^{*}$ at a point $z\in D^{*}$ is called a radial vector if $u\in \mathbb{R}w_{\mathrm{R}}^{\partial}$ . Note that for
any non-radial vector $u\in T^{1}D^{*}$ the geodesic $\gamma_{u}$ through $u$ in $\overline{D}^{*}$ is a compact segment $\gamma_{u}$ whose
extremities are on the circle $S^{1}$ . We will denote the tangent vector of the geodesic $\gamma_{u}$ on $S^{1}$ by $\alpha(u)$

(the incoming) and $\omega(u)$ (the outgoing) , and let $t(u)$ be the lenght of $\gamma_{u}$ . The set of radial vectors has
zero Lebesgue measure. We will denote by $M$ the set of nonradial unit vectors on $T^{1}\mathrm{D}^{*}|_{\overline{D}^{*}}$ and by $N$

the subset of $M$ over the circle $S^{1}$ . We denote $N^{+}$ the set of vectors in $N$ pointing inside $D^{*}$ and by

$A=\{(u, t), u\in N^{+}, t\in[0, t(u)]\}\subset N^{+}\mathrm{x}$ $[0,$ $+\infty[$ .

The geodesic flow $\varphi$ on $T^{1}\mathrm{D}^{*}$ induces a natural map $F:Aarrow M$ defined by $F(u, t)=\varphi(u, t)$ . The
unit tangent bundle over $S^{1}$ admits natural coordinates :If $u$ is a unit vector at ut we will denote $\theta(u)$

the argument of $w$ , and $\eta(u)$ the angle between $u$ and the radial vector $-z\partial/\partial z$ . We denote by $\mu$ the
measure on $A$ defined by $d\mu=\cos(\eta)\cdot$ $d\theta\wedge d\eta$ A $dt$

Lemma 5.1. The Liouville measure on $T^{1}D^{*}$ is $F_{*}(d\mu)$ (up to a multiplicative constant).

Proof: The measure $F_{*}^{-1}$ (dLiouv) $:=hd\theta$ A $d\eta\Lambda dt$ for a certain function $h$ . Since the Liouville
measure is invariant under the geodesic flow, and in $M$ the geodesic flow has the expression $\frac{\partial}{\partial t}$ , then
$h$ is independent of $t$ . Since the Liouville measure is invariant under rotations in 0 then $h$ is also
independent of $\theta$ . Hence $h$ is only a function of $\eta$ . To compute the value of $h$ it is enough to compute
for an arbitrary $\eta$ at a point in $N^{+}$ . We have $F_{*}(d\theta\Lambda dt)=h(\eta)dArea$ . The variable $\theta$ is parametrizing
according to geodesic length and since the angle between the vertical and the geodesic at $Im(z)=1$ is
$\eta$ , we project the tangent vector to the geodesic to the vertical direction to obtain the weight $cos(\eta)$ .
$\square$

We will denote by $\mu 0$ the measure on $N^{+}$ defined by $d\mu 0=d\theta$ A $d\eta$ .

Proposition 5,2. Let $\tilde{A}_{t}$ : $T^{1}D^{*}\mathrm{x}$ $\mathbb{R}arrow GL(n, \mathbb{C})$ be a linear multiplicative cocycle over the geodesic

flow of $D^{*}$ . For every unit vector $u\in N^{+}$ , we denote

$B$ : $N^{+}arrow GL(n, \mathbb{C})$ , $B(u)=\tilde{A}_{t\{u)}(u)$

the matrix corresponding to the geodesic $\gamma_{u}$ of length $t(u)$ going from $\alpha(u)$ to $\beta(u)$ . Then the two
following sentences are equivalent:

1. There is a Hermitian metric $|\cdot|$ on the vector bundle over $T^{1}D^{*}$ such that the multiplicative
cocycle $\tilde{A}_{1}$ is integrable for Liouville, that is

$\int_{T^{1}D^{*}}\log^{+}||\tilde{A}_{\pm 1}||dL\mathrm{i}ouv<+\infty$ . (5.1)
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2. The function $\log^{+}(||B||)$ belongs to $\mathcal{L}^{1}(\mu_{0})$ , that is

$\int_{N}+\log^{+}(||B(u)||)d\mu 0<+\infty$ . (5.2)

Remark 5,3. (5.2) does not depend of the choice of the continuous Euclidean metric : Tuto continuous
Her mitian metrics $|$ . $|_{1}$ and $|\cdot|_{2}$ on the bundle over $T^{1}\mathrm{D}^{*}|_{\partial D}*$ are equivalent because $\partial D^{*}$ is compact
so that the difference $|\log(||B(u)||_{1})|-|\log(||B(u)||_{2})|$ is uniformly bounded on $N^{+}$ .

Proof: For every $u\in N^{+}$ set $t_{u}:=t(u)$ , and divide the interval $[0, t_{u}]$ in

$[0_{\dagger}1]\cup[1,2]\cup\cdots\cup[E(t_{u})-1, E(t_{u})]\cup[E(t_{\mathrm{u}}),t_{u}]$ ,

so that if $u$ is a vector at a point $x\in\partial D^{*}$ one gets on setting $\varphi$ $:=\varphi_{1}$ the geodesic flow at time 1:

$B(u)= \tilde{A}_{t_{\mathfrak{U}}-E(t_{u})}(\varphi^{E(t_{u})}(u)\circ\prod_{0}^{E(t_{u})-1}\tilde{A}_{1}(\varphi^{i}(u))$

So for any Hermitian norm $|\cdot$ $|$ we get

$||B(u)|| \leq||\tilde{A}_{t_{u}-E(t_{u})}(\varphi^{E(t_{u})}(u))||\prod_{0}^{E(t_{u})-1}||\tilde{A}_{1}(\varphi^{i}(u))||$

So
$\log^{+}(||B(u)||)\leq\log^{+}||\overline{A}_{t_{u}-E(t_{u})}(\varphi^{E\langle t_{u})}(u))||+\sum_{0}^{E(t_{u})-1}\log^{+}||\tilde{A}_{1}(\varphi^{i}(u))||$

Remark that $\log^{+}||\overline{A}_{t_{u}-E(t_{u})}(\varphi^{E(t_{u})}(u))||$ is uniformly bounded by a constant $K$ depending on $\tilde{A}$

and $|\cdot|$ , because $t_{u}-E(t_{u})\in[0,$ $1$ [ and $\varphi^{E(t_{u})}(u)=\varphi_{E\langle t_{u})-t_{u}}(\varphi_{t_{u}}(u))$ remains in a compact set (recall
that $\varphi_{t_{u}}(u)$ $\in\partial D^{*})$ . So we get that there is a constant $K_{1}$ such that for every $u\in N^{+}$ one has

$\log^{+}(||B(u)||)\leq K_{1}+\oint_{0}^{t_{u}}\log^{+}||\tilde{A}_{1}(\varphi t(x))||dt$

Notice now that, for any $\in$ $\in[0,1$ [ there is $\delta$ $>0$ such that if $\cos(\eta)\leq\Xi$ then $t_{u}\leq\delta$ . So it is
equivalent that the function $\log^{+}(||B||)$ is integrable for the measure $d\mu 0$ or for $\cos(\eta)d\theta$ A dry.

Hence we obtain that if $\int_{N}+\log^{+}(||B||)d\mu_{0}=+\infty$ then for any Riemannian metric $|\cdot|_{2}$ the function
$\log^{+}(||\tilde{A}_{1}||_{2})$ is not Liouville integrable. We have proven that item 1 $\supset$ item 2.

For the other implication, choose a continuous Riemannian metric on the bundle over $N$ , assume
the integral ility condition (5.2) and let $v\in T^{1}\mathrm{D}|_{\overline{D}^{*}}$ . If $v$ is a radial vector, then push forward the
metric over $\alpha(v)$ along the geodesic using the flat structure of the bundle. If $v$ is not a radial vector
then push forward the metric on $\alpha(v)$ on the first third of $\gamma_{v}$ , on the last third of the geodesic push
forward the metric on $\mathrm{w}(\mathrm{u})$ and on the middle third of $\gamma_{u}$ put the corresponding convex combination
of the metrics on $\alpha(u)$ and $\mathrm{w}(\mathrm{u})$ . This produces a continuous metric on the bundle over $T^{1}\mathrm{D}|_{\overline{D}^{*}}$ such
that $||\tilde{A}_{\pm 1}||$ does not expand except in the middle part, and there it expands in a constant way. Hence
for this metric the integral (5.2) coincides with $(5,1)$ . $\square$

To use Proposition 5.2 we will need to estimate $||B(u)||$ , $u\in N^{+}$ . For that we will use the
following estimate of $t_{u}$ and the estimate of the variation of the argument along the geodesic $\gamma_{u}$ :
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Proposition 5.4. 1. There is a constant T such that $t_{u}\in[-2\log|\eta|-T,$-2 $\log|\eta|+T]$ .
2. Denote by $a_{u}$ the variation of the argument along $\gamma_{u}$ . Then $a_{u}=2 \frac{\cos\eta}{\sin\eta}$

Proof: The easiest way is to look at the universal cover $\mathbb{H}$ . Recall that in this model the
geodesic for the hyperbolic metric are circles or straight lines (for the Euclidean metric) orthogonal
to the real line. Let $u\in E_{1}^{+}$ at a point $x\in\partial D^{*}$ . Denote by $u$ the corresponding vector at a point
$\tilde{x}\in \mathbb{H}$, $Im(x)=1$ , where $\tilde{x}$ is a lift of $x$ . The angle $\eta(u)$ is the angle between the vector and the
vertical line. Consider the geodesic $\tilde{\gamma}_{u}$ throught $u$ . The Euclidean radius $R_{u}$ of this circle verifies
$1=|\sin(\eta)|\cdot$ $R_{u}$ . Now denote by $\tilde{y}\neq\tilde{x}$ the intersection point of $\tilde{\gamma}_{u}$ with the boundary $Im(z)=1$ of
$D^{*}$ . Then $a_{u}= \tilde{y}-\tilde{x}=2\frac{\cos(\eta)}{\sin\{\eta]}$ . So the second item of Proposition 5.4 is proved.

To give an estimate of $t_{u}$ let us consider the following curve $\sigma_{u}$ joining the points $\tilde{x}$ and $\tilde{y}:\tilde{\sigma}_{u}$ is
the union of the vertical segment $\sigma_{u}^{1}$ joining $\tilde{x}=(\mathcal{R}e(\tilde{x}), 1)$ to $(\mathcal{R}e(\tilde{x}), R_{u})$ the horizontal segment $\sigma_{2}^{u}$

joining $(\mathcal{R}e(\tilde{x}), R_{u})$ to $(\mathcal{R}e(\tilde{y}), R_{u})$ and the vertical segment $\sigma_{u}^{3}$ joining $(\mathcal{R}e(\tilde{y}), R_{u})$ to (Ke(y), $1$ ) $=\tilde{y}$ .
The hyperbolic length of the vertical segments is $\log(R_{u})$ . The hyperbolic length of the horizontal

segment 1s $\frac{|a_{u}|}{R_{u}}=2cos(\eta)$ . So we get:

$\ell(\tilde{\gamma}_{u})<\ell(\sigma_{u})=-2\log(|\sin(\eta)|)+2\cos(\eta)$

On the other hand, consider the point $z_{u}\in\gamma_{u}$ whose imaginary part is $R_{u}$ . This point is the
middle of the horizontal segment of $\sigma_{u}$ . Denote by $\gamma_{u}^{0}$ the segment of $\gamma_{u}$ joining $\tilde{x}$ to $z_{u}$ and $\sigma_{u}^{0}$ the
segment of $\sigma_{u}^{2}$ joining zu to the point $(\mathcal{R}e(\tilde{y}), R_{u})$ . The union of these 2 segments is a segment joining
the two extremities of $\sigma_{u}^{1}$ which is a geodesic. So we get

$- \log(|\sin(\eta)|)<\ell(\gamma_{u}^{0})+l(\sigma_{u}^{0})=\frac{1}{2}l(\tilde{\gamma}_{u})+\cos(\eta)$.

So we get

$t_{u}=\ell(\tilde{\gamma}_{u})\in$ $[-2\log(|\sin_{\acute{(}}\eta)|)-2\cos(\eta), -2\log(|\sin(\eta)|)+2\cos(\eta)]$

So
$t_{u}\in[-2\log(|\sin(\eta)|)-2, -2\log(|\sin(\eta)|)+2]$

To conclude the first item it is enought to note that $|\log(|\eta|)-\log(|\sin(\eta)|)|$ is bounded for
$\eta\in[-\pi/2, \pi/2]$ . $\square$

5.2 The Parabolic Case

Proposition 5.5. ij for each i all the eigenvalues of $\rho(\gamma_{i})$ have modulus 1, then the multiplicative
cocycle flow is integrable.

As the function $\log^{+}|\tilde{A}_{1}|$ is continuous, it is integrable for the Liouville measure over every compact
set of $T^{1}S$ . So the problem is purely local, in the neighbourhood of the punctures of $S$ . So it is enough
to look at a multiplicative cocycle $\tilde{A}_{t}$ over the geodesic flow of the punctured disc $D^{*}$ . The proposition
is a direct corollary of the following proposition:

Proposition 5.6. $Lei$ $B\in GL(n, \mathbb{C})$ be a matrix and $\mathcal{F}_{B}$ be the corresponding suspension foliation
over $\mathrm{D}$

’
$($as $B$ is isotopic to identity the foliation $\mathcal{F}_{B}$ is on $\mathrm{D}^{*}\mathrm{x}$ $\mathbb{C}^{n})_{f}$ and denote by $\overline{A}_{t}$ the linear

multiplicative cocycle over the geodesic flow $\varphi$ of $\mathrm{D}^{*}$ induced by $\mathcal{F}_{B}$ . Assume that all the eigenvalues
of $B$ have modulus equal to 1. Then the functions $\log^{+}(||\tilde{A}\pm 1||)$ are in $\mathcal{L}^{1}(dL\mathrm{i}ouv|_{D}*)$ .
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We begin the proof of Proposition 5.6 by the following remarks allowing us to reduce the proof to
an easier case:

Remark 5.7. 1. If two matrices $B_{1}$ and $B_{2}$ are conjugated then the corresponding cocycles are
both integrable or both non-integrable.

2. If $B$ is a matrix on $\mathbb{C}^{k}\mathrm{x}\mathbb{C}^{m}$ leaving invariant $\mathbb{C}^{k}\mathrm{x}\{0\}$ and {0} $\mathrm{x}$ Cm, then the multiplicative
cocycle induce by $B$ is integrable if and only if the cocycles induced by the restrictions of $B$ to
$\mathbb{C}^{k}\mathrm{x}$

$\{0\}$ and {0} $\mathrm{x}\mathbb{C}^{m}$ are both integrable.

3. As a consequence of item 2, we can assume that $B$ is a matrix which doesn’t leave invariant any
splitting of $\mathbb{C}^{n}$ in a direct sum of non-trivial subspaces. In particular $B$ has a unique eigenvalue
$\lambda_{B}$ and by hypothesis $|\lambda_{B}|=1$ . Moreover two such matrices are conjugate: their Jordan form is

$(\begin{array}{llllll}\lambda_{B} 1 0 00 \lambda_{B} 1 0\cdots \cdots \cdots \cdots \cdots \cdots 0 0 0 \lambda_{B} 10 0 0 0 \lambda_{B}\end{array})$

Using the remarks above, it is enough to prove Proposition 5.6 for the matrices $B_{\theta}$ define as follows.
Let

$A_{\theta}=$ ( $.i.\theta 000$. $\mathrm{i}\theta 001$

$.\cdot 0.\cdot 1.$

.

$\cdot$

$00^{\cdot}0^{\cdot}$

$.\mathrm{i}.\theta 00^{\cdot}$ $.\mathrm{i}.\theta 001^{\cdot}$ ).
We define $B_{\theta}=exp(A_{\theta})$ . Notice that

$exp(t\cdot A_{\theta})=e^{it\theta}($ . $00^{\cdot}01$ . $001t$

$t$

$00$

$\frac{t^{n-2}}{(n-2)!}01^{\cdot}\frac{}{\Gamma n-2)!}\frac{t^{n-1}}{(n-1,t^{n-\mathit{1}^{!}}}1t\cdot\cdot’\ovalbox{\tt\small REJECT}$

Consider the holomorphic foliation defined by the linear equation

$(\begin{array}{l}\dot{z}\dot{w}\end{array})=(\begin{array}{ll}i 00 A_{\theta}\end{array})(\begin{array}{l}zw\end{array})$

on $\mathrm{D}$
’

$\mathrm{x}$
$\mathbb{C}^{n}$ such that the holonomy map from $\{e^{-2\pi}\}\mathrm{x}\mathbb{C}^{n}arrow\{z\}\mathrm{x}$ $\mathbb{C}^{n}$ with $z\in S^{1}$ i $\mathrm{s}$ $exp(arg(z)A_{\theta})$ .

The monodromy of this foliation is $B_{\theta}=e^{2i\pi\theta}exp(2\pi A_{0})$ .

Lemma 5.8. The multiplicative cocycle $\tilde{A}_{t}$ obtained by lifting the geodesic flow of $\mathrm{D}^{*}$ on the leaves of
$\tilde{\mathcal{F}}_{\theta}$ is integrable over $T^{1}\mathrm{D}|_{D}*$ .

Proof: For any $u\in N^{+}$ one has $B(u)=A_{t_{u}}(u)=exp( \frac{a}{2}\mathrm{J}\iota.A_{\theta})\pi$
’ so that there is a constant $K$ such

that $||B(u)||<K(1+a_{u}^{n-1})$ , so that $\log^{+}||B(u)||$ is integrable if and only if $\log^{+}(|a_{u}|)$ is integrable for
$\mathrm{P}0$ .

By Proposition 5.4 one has $a_{u}=2\cos(\eta)/\sin(\eta)$ so that $a_{u}<2/\eta$ . As $\int_{-1}^{1}|\log(|1/x|)|dx<+\infty$ ,
we get easily that $\int_{N_{1}^{+}}\log^{+}(|a_{u}|)d\mu_{0}<+\infty$ , concluding the proof. $\square$
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5.3 The Hyperbolic Case

Proposition 5.9. ij there is 2 such that the matrix B $=\rho(\gamma_{i})$ has an eigenvalue with modulus different
from 1, then the multiplicative cocycle is not integrable.

If $B\in GL(n, \mathbb{C})$ has an eigenvalue with modulus different from 1, we may suppose that its modulus
is greater than 1, since the suspension of $B$ and $B^{-1}$ are isomorphic. As in the parabolic case the
proof of Proposition 5.9 follows directly from a local argument in a neighbourhood of the puncture
corresponding to 7: .
Proposition 5.10. Let B $\in GL(n, \mathbb{C})$ having an eigenvalue $\lambda>1$ and $F_{B}$ the suspension folition on
$D^{*}$ . Then the multiplicative cocycle $\tilde{A}_{t}$ induced by $F_{B}$ over the geodesic flow $\varphi$ of $D^{*}$ is not integrable.

Proof: We begin by an estimative of the norm of the multiplicative cocycle corresponding to the
“in-out” map :

Lemma 5.11. There is a constant K $>0$ such that for any u $\in N^{+}$ one has:

$|\tilde{A}_{t_{u}}(u)|\geq K\cdot\lambda^{a_{u}/2}$ .

So $\log^{+}|\tilde{A}_{t_{u}}(u)|\geq\log K+\frac{|a_{u}|}{2}\log$ A. One deduces that $\log^{+}|\tilde{A}_{t_{u}}(u)|$ cannot be $\mu 0$ integrable if $|a_{u}|$

is not integrable. By Proposition 5.4 one knows that $a_{u}=2 \frac{\cos\zeta\eta)}{\sin(\eta]}$ and this function is not integrable

for $d\mu 0=d\eta$ A $\mathrm{d}9$ . Prom Proposition 5.2 we get that the multiplicative cocycle $\tilde{A}_{1}$ is not integrable
for Liouville, finishing the proof the Proposition 5.10. $\square$

Remark: If $\rho$ : $\pi 1(S)$ $arrow PGL(n, \mathbb{C})$ is a representation that does not admit a lifting to a repre-
sentation in $GL(n, \mathbb{C})$ we may still define a flat bundle over $S$ but with fibres $\mathbb{C}^{n}/\mathbb{Z}_{n}$ and transition
coordinates in $SL(n, \mathbb{C})/\mathbb{Z}_{n}\cdot Id$, and hence a foliation $\mathcal{F}_{\overline{\rho}}$ on this singular bundle, where $\mathbb{Z}_{n}$ is the
group of $n$ roots of unity. We may introduce a continuous Hermitian norm on this bundle (locally

induced from a Hermitian norm in $\mathbb{C}^{n}$ as well as choosing a trivialisation of the generator of the

discrete dynamics $\tilde{A}_{1}$ , and the statements and arguments given in the text extend to this situation.
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