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Abstract

Fibre expanding systems have been introduced in [6]. Here we show
the existence of a finite partition for such systems which is fibrewise
a Markov partition. Such partitions have direct applications to the

Abramov-Rokhlin formula for relative entropy and certain polynomial
endomorphisms of $\mathbb{C}^{2}$ .

1 Fibre expanding systems

Let $\mathrm{Y}$ be a compact metric space and $T$ : $\mathrm{Y}arrow \mathrm{Y}$ be a continuous surjective
map. Consider a fibred situation of a dynamical system $(\mathrm{Y}, T)$ , where the
map $T$ is foliated over a continuous map $S$ : $Xarrow X$ on some compact
metric space $X$ , with a continuous surjective factor map $\pi$ : $\mathrm{Y}arrow X$ which
semi-conjugates $T$ to $S$ :

$\mathrm{Y}arrow^{T}\mathrm{Y}$

$\pi\downarrow\downarrow\pi Xarrow^{S}X$

$X$ is called the base space and $S$ the base transformation. According to [6]
$T$ is said to be fibre expanding if there exist $a>0$ and A $\in(0,1)$ such that
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the following holds:
If $u$ , $v^{l}\in \mathrm{Y}$, $\pi(T(u))=\pi(v’)$ and $d(T(u), v’)<2a$ , there exists a unique
$v\in \mathrm{Y}$ such that $\pi(v)=\pi(u)$ , $T(v)=v’$ and $d(u, v)<2a$ . Furthermore,

$d(u, v)\leq$ Ad(T (u), $T(v)$ ).

The situation was examined from a purely topological point of view by Roy
([17]), who discussed the relations to expansiveness and openness of fibre
maps.

When extending the thermodynamical formalism to the fibred situation, the
first question is to generalize the notion of Gibbs measures to the relative
case. A Gibbs measure is defined by the usual property that the Jacobian
(of the disintegration measures) under fibre maps has a prescribed fibrewise
(H\"older) continuous version. Problems of this type in the relativized con-
text of fibred systems have been considered in the literature. In the work
of Ferrero and Schmitt ([8]) and later of Bogenschiitz and Gundlach ([2],
[4] $)$ , this problem has been considered when the base transformation $S$ is
an invertible measure-preserving map of some probability space. The case
of non-invertible transformations and fibrewise expanding system was con-
sidered in [6], while a Gibbs family for certain fibrewise expansive systems
appears in [18].

In the present situation the classical Frobenius-Perron theory or spectral
theory is not applicable, since the transfer operators act between different
function spaces (see [7]). However, the construction of equilibrium measures
has been accomplished in some cases (e.g. [12], [13], [11], [7]). The associated
pressure (in the relative setting) is defined in [16] and a variational formula
is proved. Bogenschiitz in [2] and [4], and Kifer in [14] studied pressure
functions for random bundle maps and their relative variational formulas. A
new type of relative variational formula using the Abramov-Rohklin relative
entropy formula has been derived in [7], where the maximum of the sum
of conditional entropy and expectation over potentials is described by the
integral of some generalized eigenvalue function over the module of functions
constant on fibres.

The existence of relative generators has been studied in the invertible case
by Kifer and Weiss (cf. [15]), independently by Danilenko and Park ([5]). In
the non-invertible case the problem is more delicate (as in the non-relativised
case). Some results in this direction are contained in [20].

The theory has been developed without the use of Markov partitions. This is
because the existence of such a partition does not seem to be known. In this
note we prove that there is a partition which, restricted to each fibre, is a
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generator and has the Markov property with respect to fibre maps. When the
base space is reduced to a one point space, this partition will be a Markov
partition in the usual sense (cf. [19]). It should be noted that our proof
(when reduced to this particular case) gives a new and direct proof for the
existence of a Markov partition for expanding and open maps.

2 Markov partitions

Let $(\mathrm{Y}, T)$ denote a fibred system which is fibrewise expanding over $(X, S)$

as defined in section 1. The fibres over $X$ will be denoted by $\mathrm{Y}_{x}=\pi^{-1}\{x\}$ .
$T_{x}$ : $\mathrm{Y}_{x}arrow \mathrm{Y}_{S(x)}$ denotes the map $T$ restricted to the fibre over $x\in X$ . We
shall prove the following theorem:

Theorem 1 There exists a finite partition $\gamma$ of Y such that

(A) $TX(G \cap \mathrm{Y}_{x})=\bigcup_{g\in\gamma;g\cap T(G)\neq\emptyset}g\cap \mathrm{Y}_{S(x)}$ for all $G\in\gamma$ and $x\in X$ .

(B) There is a constant $C$ such that

$\sup_{x\in X}\sup_{G\in\gamma_{0}^{n}}$

$d\mathrm{i}am(G\cap \mathrm{Y}_{x})\leq C\lambda^{n}$ .

Proof Let $a$ and A be as in the definition of the fibrewise expanding property.

Choose $\delta$ so small that $\frac{\delta}{1-\lambda}<a$. Let $\mathcal{U}_{0}$ be a finite open cover of $\mathrm{Y}$ of sets of
diameter $\leq\delta$ .
For $U\in \mathcal{U}_{0}$ define

$\mathcal{U}(U)=\{V\in \mathcal{U}_{0} : V\cap T(U)\neq\emptyset\}$ .

Recursively, we let

$\Psi_{0}(U)=U$

$\Psi_{n}(U)=\{y\in\pi^{-1}(\pi(U))$ : $T(y)\in\Psi_{n-1}(V)\mathrm{a}\mathrm{n}\mathrm{d}d(y, U)<a$

for some
$V\in \mathcal{U}(U)\}$ .

We first claim that

(a) $U\subset\Psi_{n-1}(U)\subset\Psi_{n}(U)\subset B(U, (\lambda+\ldots+\lambda^{n})\delta)$

(b) $\pi(\Psi_{n}(U))=\pi(U)$
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(c) $T_{x}( \Psi_{n}(U)\cap \mathrm{Y}_{x})=\bigcup_{V\in u(U)}\Psi_{n-1}(V)\cap \mathrm{Y}_{S(x)}$ for all $x\in\pi(U)$ .

This is proved by induction over $n$ . For $n=1$ we obtain:

(a): $y\in U$ , $T(y)\in V=\Psi_{0}(V)\in \mathrm{U}(\mathrm{U})$ implies $y\in\Psi_{1}(U)$ , hence $U\subset$

$\Psi_{1}(U)$ . If $y\in\Psi_{1}(U)\cap \mathrm{Y}_{ff,}$ , there exist $V\in \mathcal{U}(U)$ and $z\in U\cap \mathrm{Y}_{x}$
, such that

$T(y)$ , $T(z)\in V\cap \mathrm{Y}_{S(x)}$ . Therefore $d(T(z), T(y))<\delta$ , and by the expanding
property $d(z, y)$ $<\lambda\delta$ , i.e. $y\in B(U, \lambda\delta)$ .

(b): Let $y\in\Psi_{1}(U)$ . Then $\pi(y)\in\pi(U)$ by definition, so $\pi(\Psi_{1}(U))\subset\pi(U)$ .
The converse follows from $U\subset\Psi_{1}(U)$ .
(c): Let $x\in\pi(U)$ and $y\in\Psi_{1}(U)\cap \mathrm{Y}_{x}$ . Then there exists $V\in \mathcal{U}(U)$ such
that $T_{x}(y)=T(y)\in V$ . Therefore

$T_{x}(\Psi_{1}(U)\cap \mathrm{Y}_{x})\subset\cup V\cap \mathrm{Y}_{S(x)}V\in \mathcal{U}(U\}$
.

Conversely, if $z\in V\cap \mathrm{Y}_{S(x)}$ , where $V\in \mathcal{U}(U)$ , there exists $y\in T(U)$ with
$d(z,T(y))<\delta<2a$ . By the expanding property there exists $z’\in B(y, 2a)\cap$

$\mathrm{Y}_{x}$ such that $T(z’)=z$ and $d(z’,y)<\lambda\delta<a$ , whence $z’\in\Psi_{1}(U)$ .
Assume that $(\mathrm{a})-(\mathrm{c})$ hold for $n-1$ .
(a): Prom the induction hypothesis we have that

$U\subset\Psi_{n-2}(U)\subset\Psi_{n-1}(U)\subset B(U, (\lambda+\ldots+\lambda^{n-1})\delta)$.

Let $y\in\Psi_{n-1}(U)$ . Then

$\bullet$ (i) $T(y)\in\Psi_{n-2}(V)\subset\Psi_{n-1}(V)$ for some $V\in \mathcal{U}(U)$ .

$\bullet$ (ii) $y\in\pi^{-1}(\pi(U))$

$\bullet$ (i) $d(y, U)<a$ ,

hence $y\in\Psi_{n}(U)$ and $U\subset\Psi_{n-1}(U)\subset\Psi_{n}(U)$ .

Let now $y\in\Psi_{n}(U)$ . Then there exists $V\in \mathcal{U}(U)$ such that $T(y)\in\Psi_{n-1}(V)$ .
Choose $z\in V$ such that $d(z, T(y))=d(V, T(y))$ and $z’\in U$ such that
$T(z’)\in V$ . Then

$d(T(y), T(z’))\leq d(T(y), z)+d(z, T(z’))\leq(\lambda+\ldots+\lambda^{n-1})\delta+\delta<2a$ ,

hence by the expanding property,

$d(y, z’)\leq\lambda(1+\lambda+\ldots+\lambda^{n-1})\delta=(\lambda+\ldots+\lambda^{n})\delta$.
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(b): Let $y\in\Psi_{n}(U)$ . Then $\pi(y)\in\pi(U)$ by definition, so $\pi(\Psi_{n}(U))\subset\pi(U)$ .
The converse follows from $U\subset\Psi_{n}(U)$ (the induction hypothesis, resp. (a)
as proved above).

(c): Let $x\in \mathrm{x}(\mathrm{U})$ and $y\in \mathrm{x}(\mathrm{U})\cap$ Yx. Then there exists $V\in \mathcal{U}(U)$ such
that $T_{x}(y)=T(y)\in\Psi_{n-1}(V)$ . Therefore

$T_{x}(\Psi_{n}(U)\cap \mathrm{Y}_{x})\subset\cup\Psi_{n-1}(V)\cap \mathrm{Y}_{S(x)}V\in \mathcal{U}(U)$
.

Conversely, if $z\in\Psi_{n-1}(V)$ $\cap \mathrm{Y}_{S(x)}$ , where $V\in \mathcal{U}(U)$ , there exist $z_{1}\in V$

and $T(y)=z_{2}\in \mathrm{x}(\mathrm{U})$ with $\mathrm{d}(\mathrm{z}, z_{1})\leq$ (A $+\ldots+\lambda^{n-1}$ ) $\delta$ and $d(z_{1}, z_{2})<$

$\delta<2a$ . Therefore $d(z, z_{2})<2a$ and by the expanding property there exists
$z’\in B(y, 2a)\cap \mathrm{Y}_{x}$ such that $T(z’)=z$ and $d(z’, y)$ $<\lambda\delta<a$ , whence
$z’\in\Psi_{n}(U)\cap \mathrm{Y}_{x}$ .

The theorem follow $\mathrm{s}$ from $(\mathrm{a})-(\mathrm{c})$ in a canonical way. Define

$\Psi(U)=\lim_{n\prec\infty \mathrm{J}}\Psi_{n}(U)$ .

Then, with $\Lambda=\frac{\lambda\delta}{1-\lambda}$ , we have that

(a) $U\subset\Psi(U)\subset B(U_{?}\Lambda\delta)7$

(b) $\pi(\Psi(U))=\pi(U)$ ,

(c) For $(x\in\pi(U))$ , $T_{x},( \Psi(U)\cap \mathrm{Y}_{x})=\lim_{narrow\infty}T_{x}(\Psi_{n}(U)\cap \mathrm{Y}_{x})$

$= \lim_{narrow\infty}\bigcup_{V\in \mathcal{U}(U)}\Psi_{n-1}(V)\cap \mathrm{Y}_{S(x)}=\bigcup_{V\in \mathcal{U}(U)}\Psi(V)\cap \mathrm{Y}_{S(x)}$

Now we construct the partition $\gamma$ . Write $\mathcal{U}_{0}=\{U_{1}, \ldots, U_{s}\}$ for some $s\geq 1$

and define the atoms of $\gamma$ by

$G=\cap\Psi(U_{j})\cap\cap \mathrm{i}\in I(G)j\not\in I(G)\Psi(U_{j})^{c}$
,

where $I(G)$ is any (nonempty) subset of $\{$ 1, ..., $s\}$ . If

$H=\cap\Psi(U_{J})j\in I$
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for some $I$ $\subset\{1$ , ..., $s\}$ , then by invertibility of $T_{x}$ on sets of diameter $<2a$

$T_{x}(H\cap \mathrm{Y}_{x})=\cap T_{x}(\Psi(U_{j}))\cap\cap \mathrm{Y}_{S\{x)}j\in I$

$=\cap\cup\Psi(V)\cap\cap \mathrm{Y}_{S(x)}j\in IV\in \mathcal{U}(U_{j})$

$=\cup.\cap\Psi(V_{j})\cap \mathrm{Y}_{S(x)}V_{\mathrm{j}}\in \mathcal{U}(U_{\mathrm{j}}),j\in Ij\in I$
’

hence $T_{x}(H\cap \mathrm{Y}_{x})$ is a union of elements in $\gamma\cap \mathrm{Y}_{S(x)}$ . This proves (A) by
taking differences of appropriate sets.

It is left to show (B). Clearly, since diam(G ) $<\delta$ for every $G\in\gamma$ , we have
that

diam $(_{j=}^{n1}\overline{\cap}_{0}T^{-j}(G_{i_{\mathrm{j}}})\cap \mathrm{Y}_{x})=\mathrm{d}\mathrm{i}\mathrm{a}\mathrm{m}(T^{-n+1}(G_{i_{n-1}})\cap \mathrm{Y}_{x})\leq\lambda^{n-1}\delta$ .

$\square$

3 Conditional entropy

Let $(\mathrm{Y}, T)$ be a dynamical system which is fibred over the base $(X, S)$ . We
fix a $T$-invariant measure $\mu$ on $\mathrm{Y}$ and denote the conditional entropy of
measurable partitions 4 and $\eta$ by $H(\xi|\eta)$ . We denote by $\epsilon_{\mathrm{Y}}$ (resp. $\mathrm{e}\mathrm{x}$ )

the partitions of $\mathrm{Y}$ (resp. $X$ ) into points. Let $\{\mu_{x} : x\in X\}$ denote the
disintegration of $\mu$ with respect to $r_{\iota}^{-1}\epsilon_{X}$ and let $\nu=\mu 0\pi^{-1}$ .

The relative entropy $h(T|S)$ of the endomorphism $T$ with respect to its factor
$S$ is defined by the expression

$h(T|S)= \sup${ $h(T|S_{j}\xi)$ : $\xi$ meas. partition of $\mathrm{Y}\mathrm{s}.\mathrm{t}$ . $H(\xi|\pi^{-1}\epsilon x)<\infty$ },

where
$h(T|S, ()$ $= \lim_{narrow\infty}H(T^{-n}\xi|T^{-(n+1)}\xi^{-}\vee\pi^{-1}\epsilon_{X})$

is called the entropy of 4 relative to $T|S$ , and where $\xi^{-}=_{n=1}^{\infty}T^{-n}\xi$ . It is
known ([7]) that

$h(T|S, \xi)=\lim\underline{1}_{H(\xi^{(n)}|\pi^{-1}\epsilon_{X}\vee T^{-n}\xi^{-})}$

$narrow\infty n$
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and
$h(T|S, \xi)=$ Jim $\underline{1}_{H(\xi^{(n)}|\pi^{-1}\epsilon_{X})}$ . (1)

$n\prec\infty n$

Corollary: Let $(\mathrm{Y},T)$ be fibre expanding. For every -invariant measure $\mu$

on $\mathrm{Y}$ with disintegration $\mu_{x}$ on $\mathrm{Y}_{x}$ we have

$h_{\nu}(T|S)= \lim_{narrow\infty}\frac{1}{n}\int_{X}H_{\mu_{x}}(\gamma_{0}^{n-1}\cap \mathrm{Y}_{x})\nu(dx)$ ,

have $\gamma$ denotes the Markov partition of section 2.

Proof. Since
$\pi^{-1}(\epsilon_{X})\vee\vee T^{-n}\gamma=\epsilon_{Y}n\geq 0\backslash$

,

$\gamma$ is a unilateral relative generator for $T$ and $S$ . By Proposition 3.10 in [7]

$h(T|S, \gamma)=h(T|S)=\lim_{n\prec\infty}H(T^{-n}\epsilon_{Y}|T^{-(n+1)}\epsilon_{\mathrm{Y}}\vee\pi^{-1}\epsilon_{X})$ .

The corollary follows from (1). $\square$

Prom the corollary we immediately obtain the following version of the Abra-
$\mathrm{m}\mathrm{o}\mathrm{v}$-Rokhlin formula for the entropies $h(T)$ of the transformation $T$ with
respect to the invariant measure $\mu$ and the entropy $h(S)$ of $S$ with respect
to the image measure $\nu$ :

$h(T)-h(S)= \lim_{narrow\infty}\frac{1}{n}[_{X}H_{\mu_{x}}(\gamma_{0}^{n-1}\cap \mathrm{Y}_{x})\nu(dx)$.

4 Polynomial endomorphisms of $\mathbb{C}^{2}$

Let $\hat{T}$ denote a polynomial mapping of $\mathbb{C}^{2}$ . Such a mapping can be written
in the form

$\hat{T}(x, y)=(p(x, y),$ $q(x, y))$ ,

where $p$ and $q$ are polynomials in $x$ , $y\in$ C. It is called $(d, d’)$-regular where
$d\in \mathbb{Q}$ and $d^{t}\in \mathrm{N}$, if there are constants $k_{1}$ , $k_{2}>0$ and $r\geq 0$ such that for
every $z\in \mathbb{C}^{2}$ , $||z||\geq r$

$k_{1}||z||^{d}\leq||\hat{T}(z)||\leq k_{2}||z||^{d’}$

In case that $d=d’,\hat{T}$ is called strict. A special case are skew products when
$p$ does not depend on $y$ . Then $\pi 0\hat{T}=p\circ\pi$ where $\pi$ : $\mathbb{C}^{2}arrow \mathbb{C}$ denotes the
projection map onto the first factor
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A point $z\in \mathbb{C}^{2}$ is called weakly normal if there exists an open neighborhood
$V$ of $z$ and a family $\{\mathcal{K}_{x} : x\in V\}$ of at least one-dimensional complex
analytic sets $\mathcal{K}_{x}$ such that $x\in \mathcal{K}_{x}$ and the family $\{\hat{T}^{n}|_{\mathcal{K}_{x}} : n\geq 0\}$ is normal
in $x$ . The complement of the set of normal points is called the Julia set of
$\hat{T}$ and is denoted by $J(\hat{T})$ . It is shown in [9] that for regular polynomial
mappings $J(\hat{T})$ is compact and fully invariant. In particular, it follows that
a regular skew product restricted to $J(\hat{T})$ is a fibred system, but not a skew
product in general. It is worth mentioning that $J_{x}=\pi^{-1}(x)\cap J(\hat{T})$ is the
fibre over $x$ , and (for certain maps $\hat{T}$ at least) is the Julia set of $\hat{T}_{x}^{n}$ in case
$x$ is periodic with period $n$ .

Let $\hat{T}$ : $\mathbb{C}^{2}arrow \mathbb{C}^{2}$ be a skew product and $T=\hat{T}|_{J(\hat{T})}$ be its restriction to the

Julia set $J=J(\hat{T})$ . Denote by $J_{x}^{*}$ the Julia set for the family of maps

$q_{p^{n}(x)}\mathrm{o}q_{p^{\tau\iota-1}(x)}\mathrm{o}\cdots \mathrm{o}q_{x}$
$(n\underline{>}0)$ .

Then $J= \bigcup_{x\in J(p)}\{x\}\mathrm{x}$ $J_{x}^{*}$ if each $q_{x}$ for $x\in J(p)$ is hyperbolic (see [10]).
If in addition, $p$ is a hyperbolic polynomial, then $T$ is hyperbolic as well (on
$J)$ (see [9] and theorem 2.3.1 in [10]). In particular, these maps are fibrewise
expanding. Hence we obtain from theorem that it has a fibrewise Markov
partition.

The same result can be proved for hyperbolic rational semigroups (see e.g.
[21] for a definition).
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