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Instability of nondiscrete free subgroups in Lie groups
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Abstract

Consider a nondiscrete free subgroup with two generators in a Lie group.
We study the following question stated by Etienne Ghys: is it always possible to make

arbitrarily small perturbation of the generators of the free subgroup in such a way that

the new group formed by the perturbed generators be not free? In other te$\mathrm{r}\mathrm{m}\mathrm{s}$ , is it

possible to generate relations by arbitrarily small perturbation of the generators?
We prove the positive answer. We give a survey of related results and open questions.
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1 Introduction and the plan of the paper

1.1 Statement of result and open questions

Let G be a nonsolvable Lie group. It is well-known (see [E]) that almost each (in the sense of

the Haar measure) pair of elements (A,$B)\in G\mathrm{i}<$ G generates a free subgroup in G. At the

same time in the case, when G is semi-simple, there is a neighborhood U $\subseteq G$ x G of unity in

Gx G where a topologically-generic pair $(A_{\dagger}B)\in U$ generates a dense subgroup: the latter

pairs form an open dense subset in U.
The pairs generating groups with relations form a countable union of surfaces (relation

surfaces) in GxG. We show that the relation surfaces are dense in U.

The main result of the paper is the following

1.1 Theorem Any nondiscrete free subgroup with two generators in a nonsolvable Lie group

G is unstable. More precisely, consider two elements A, B $\in G$ generating a free subgroup

数理解析研究所講究録 1447巻 2005年 72-85



73

A. Glutsyuk

$\mathrm{F}$ $=<A$ , $B>$ . Let $\Gamma$ be not discrete. Then there exists a sequence $(A_{k}, B_{k})\backslash$ $arrow(A, B)$ of pairs
converging to $(A, B)$ such that the corresponding groups $<A_{k}$ , $B_{k}>have$ relations: there
exists a sequence $wk=w_{k}(a, b)$ of nontrivial abstract words in symbols $\mathrm{a}$ } $b$ and their inverses
$a_{J}^{-1}b^{-1}$ such that $w_{k}(A_{k}, B_{k})=1$ for all $k$ .

1.2 Remark The lengths of the words $w_{k}$ constructed in the paper tend to infinity expo-
nentially in k, as k $arrow\infty$ . If G $=SL_{n}(\mathbb{R})$ , $\overline{<A,B>}=G$ and the pair (A, B) satisfies some
additional genericity condition, then the pairs (Ak, Bk) corresponding to the relations Wk
tend to (A, B) also exponentially,

1.3 Remark The condition that the subgroup under consideration be nondiscrete is natural:
one can provide examples of discrete free subgroups of $PSL_{2}(\mathbb{C})$ (e.g., the Schottky group)

that remain free under any small perturbation of the generators.

The question of instability of nondiscrete free subgroups was stated by \’E Ghys.

1.4 Definition A real Lie group is said to be essentially compact, if its adjoint action pre-
serves a positive definite scalar product.

1.5 Remark In the case, when the Lie group under consideration is $PSL_{2}(\mathbb{R})$ , the Theorem
easily follows from the density of ellptic elements of finite orders in an open domain of
$PSL_{2}(\mathbb{R})$ . A similar argument proves Theorem 1.1 in the case of essentially compact Lie

group. The case of $PSL_{2}(\mathbb{C})$ is already nontrivial (in some sense, this is a first nontrivial case).

In this case the previous argument cannot be applied, since eliptic elements in $PSL_{2}(\mathbb{C})$ are
nowhere dense. At the same time, there is a short proof of Theorem 1.1 for $PSL_{2}(\mathbb{C})$ that

uses holomorphic motions and quasiconformal mappings. We present it at the end of the

paper.

Ghys have also proposed to study approximations of free subgroups by nonfree ones in

the following sense. It is well-known that for any $\epsilon>0$ and a generic (more precisely, $\epsilon-$

Diophantine) irrational number $r$ there exists a $C>0$ such that for any irreducible fraction
$7\in \mathbb{Q}$ one has $|r- \frac{m}{n}|>\frac{c}{n^{2+\epsilon}}$ . This approximation accuracy is optimal in some sense: the

continuous fractions give approximations of accuracy no worse than $\frac{1}{n^{2}}$ .
Les $\mathrm{u}\mathrm{s}$ say that a pair of elements of a Lie group is irrational, if it generates a free dense

subgroup. A pair of elements generating a group with relations $\mathrm{w}\mathrm{i}\mathbb{I}$ be called rational; its

denominator is the minimal length of relation.

Question 1 (E.Ghys). Given a generic irrational pair of elements in a Lie group. What

is the optimal asymptotic accuracy of its approximations by rational pairs, as their denomi-

nators tend to infinity?

1.6 Remark The number of (red uced) words $w(a,$b) of a given length l grow s exponentially

in l. This motivates the following

Question 2 Is it true that for any irrational pair $(A, B)\in G\mathrm{x}$ $G$ there exist a $c>0$ and

a sequence of rational pairs $(A_{k}, Bk)$ with denominators $l_{k}$ such that $d\mathrm{i}st((A_{k}, Bk),$ $(A,B))<$
$e^{-d_{k}}$ for $\mathrm{a}\mathrm{D}$ $k$ ?
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A question (related to the latter one) concerning Diophantine properties of and in dividual

pair $A$ , $B\in SO(3)$ was studied in [KR]. We say that a pair $(A, B)\in SO(3)\mathrm{x}$ SO(3) is

Diophantine (see [KR]), if there exists a constant $D$ depending on $A$ and $B$ such that for any

(reduced) word $w_{k}=w_{k}(a, b)$ of length $k$

$|w_{k}(A, B)-1|>D^{-k}$ .

A.Gamburd, $\mathrm{D}$ Jacobson and P.Sarnak have stated the following question in their joint paper

[GJS]: is it true that almost each pair $(A, B)\in SO(3)\mathrm{x}$ SO(3) is Diophantine? V.Kaloshin

and LRodnianski [KR] proved that almost each pair $(A, B)$ satisfies a weaker inequality with

the latter right-hand side replaced by $D^{-k^{2}}$

Question 3 Is there an analogue of Theorem 1.1 for the group of

-germs of one-dimensional real diffeomorphisms?
-germs of one-dimensional conformal diffeomorphisms?
-difTeomorphisms of compact manifold?

The latter question concerning conformal germs is related to study of one-dimensional
holomorphic foliations on $\mathbb{C}\mathbb{P}^{2}$ with isolated singularities. A generic vector field on $\mathbb{C}^{2}$ defines

a foliation on $\mathfrak{M}^{2}$ with invariant line $L$ at infinity; the line $L$ contains a finite number of
$\sin$ gularities $a_{1}$ , $\ldots$ , $a_{n}\in L$ .

Let A $\subseteq \mathbb{C}\mathbb{P}^{2}$ be a transversal cross-section to $L$ , $a$ be its point of intersection with $L$ .

A circuit in $L$ around each $ai$ with base point at $a$ defines a germ of conformal holonomy

mapping $h_{i}$ : $(\Delta, a)arrow(\Delta, a)$ . Let us choose the circuit aroun $\mathrm{d}$ each$\mathrm{h}ai$ so that the $n$ circuits

generate the fundamental group of $L\backslash \{a_{1}, \ldots ,a_{n}\}$ . The rnonodrorny group is the group
generated by the holonomy germs $h_{i}$ .

Yu.S .Ilyashen ko and A.S.Pyartli have proved [IP] that for a generic polynomial vector field

of degree greater than two the monodromy group is free. “Generic” means “lying outside at

most a countable union of analytic surfaces”.

Question 3. Does there exist an open (or open and dense) subset $U$ in the space of

polynomial vector fields of fixed degree (say, greater than two) such that the monodromy

group of each vector field from $U$ is free?

1.2 Historical remarks

The famous Tits’ alternative [T] says that any subgroup of linear group satisfies one of the

two following incompatible statements:
-either it is solvable up-to-ffnite, i.e., contains a solvable subgroup of a finite index;

-or it contains a free subgroup with two generators.
Any dense subgroup of a semisimple real Lie group satisfies the second statement; it

contains a free subgroup with two generators.
The question of possibility to choose the latter free subgroup to be dense was stated in

[CG] and studied in [BZ] and [CG]. E.Ghys and Y.Carriere [CG] have proved the positive
answer in a particular case. B.Breuilard and T.Gelander [BZ] have proved the positive
answer in the general case
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1.3 Motivation and proof of Theorem 1.1 modulo technical details

Let $G$ be the Lie group under consideration, $n=dimG$, Without loss of generality we assume
that the group $<A$ , $B>$ is dense (passing to a Lie subgroup).

We prove Theorem 1.1 for a connected simple (real or complex) Lie group (that is not
essentially compact in the real case). Theorem 1.1 in the general case then follows easily

by using the classical decomposition theorems for Lie algebras: any Lie algebra splits into
a semidirect product of a semisimple Lie algebra and a solvable one (the maximal solvable
ideal); any semisimple Lie algebra is a direct product of simple ones, see [VO].

In the present note we give a proof of Theorem 1.1 only in the case, when $G$ is a connected
complex simple Lie group.

Consider the abstract words $w(a, b)$ as functions in $(a, b)\in G\mathrm{x}$ $G$ with values in $G$ .
Theorem 1.1 says that $(A, B)$ is a limit point of relations, see the following Definition.

1.7 Definition Let G be a Lie group, $\gamma_{1}(s)$ , $\gamma_{2}(s)$ , \cdots $\in G$ be a countable collection of

families of its elements depending on a (finite-dimensional) parameter s. We say that a

parameter value $s_{0}$ is a limit point of relations in the group family $\Gamma(s)=<\gamma_{1}(s)$ , $\gamma_{2}(s)$ , \cdots $>$ ,

if there exist a sequence $w_{k}(\gamma_{i})$ of abstract words (of ffnite lengths) in symbols $\gamma_{i}$ , $\gamma_{i}^{-1}$

(i $=1,$2, \ldots ) and a sequence $s_{k}arrow s_{0}$ such that $w_{k}(\gamma_{i}(sk))=1$ for any k $=1,$ 2, \ldots , but

$w_{k}(\gamma_{i}(s))\not\equiv 1$ .
For any $\delta>0$ and $Q=$ $(Q_{1}, \ldots, Q_{n})\in \mathbb{C}^{n}$ denote $I_{\mathit{5}}(Q)$ the $\delta-$ polydisc centered at $Q$ .
To prove the Theorem, we construct a n- parametric deformation $a(S)$ , $b(S\grave{)}$ of the $\mathrm{e}1$,

ements $A_{j}B$ , $S=$ $(s_{1}, . . . , s_{n})$ , si $\in \mathbb{C}$ , $|si|<1$ , such that the initial parameter value
$S^{0}$ – $(s_{01}, \ldots, s_{0n})$ , $A=a(S^{0})$ , $B=b(S^{0})$ , is a limit point of relations in the groups
$<a(S)$ , $b(S)>$ . The deformation $\mathrm{w}\mathrm{i}\mathrm{l}$ be chosen to satisfy a certain genericity condition. For

any $\mathrm{w}$ ord $w(a, b)$ denote
$W(S)=w(a(S), b(S))$.

To show that $S^{0}$ is a limit point of relations, for appropriate $\delta>0$ we construct a sequence

of words $wk(a, b)$ such that the images under $W_{k}$ : $S\mapsto wk(a(S), b(S))$ of small polydiscs
$I_{\epsilon_{k}}(S^{0})$ , $\epsilon_{k}=O(\frac{1}{k})arrow \mathrm{O}$ , contain one and the same polydisc I5(1):

$W_{k}(I_{\epsilon_{k}}(S^{0}))\supset\supset \mathrm{I}\mathrm{Q})$ , see Fig.1. $(1\mathrm{i})$

This implies that the equation $W_{k}(S)$ $=1$ has a solution $S^{k}\in I_{\epsilon_{k}}(S^{0})$ . One has $S^{k}arrow S^{0}$ , as
$karrow\infty$ , since $\epsilon_{k}arrow 0$ .

Motivation of the proof of Theorem 1.1. By density, we can always construct

a sequence of words $wk$ so that $w_{k}(A, B)arrow 1$ . In the case, when $A$ and $B$ are close to

unity, an explicit way to do this is to take $wk$ to be a sequen ce $u_{k}$ of appropriate successive

commutators.
To achieve inclusion (1.1), we have to guaran tee that the derivative $\mathrm{i}_{\mathrm{I}1}S$ of $W_{k}(S)$ at $S^{0}$

tend to infinity. On the other hand, the previous commutators $uk$ converge expomentialy to

unity and have exponentially decreasing derivatives in the parameters of the pair $(A, B)$ .
Thhe starting point of the construction of $w_{k}$ is the folowing observation. Take a commu-

tator $uk$ from the previously mentioned sequence and take its power $u_{k}^{m_{k}}$ so that the value

$u_{k}^{m_{k}}(A, B)$ be distant from unity (uniformly in $k$ ) an$\mathrm{n}\mathrm{d}$ belong to some fixed neighborhood

of unity (independent on $k$ ). Then the derivative of the function $u_{k}^{m_{k}}(a, b)$ at $(A, B)$ alon$\mathrm{g}$
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Figure 1:

appropriate direction (independent on $k$ ) will be large: it will grow linearly in $k$ , thus, it $\mathrm{w}\mathrm{i}$]$1$

tend to infinity. The simplest one-dimensional version (Proposition 1.11) of this statement is

formulated and proved below.
In what follows we construct $n$ sequences (the elements of each sequence are numerated

by $k=1$ , 2, $\ldots$ ) of appropriate iterated commutators $wik(a, b)$ of some words $g_{i}(a, b)$ (see

1.11)), $i=1$ , $\ldots$ , $n$ , so that $w_{ik}(A, B)arrow 1$ exponentially, as $karrow\infty$ and the following

additional statement holds. For any $k\in \mathrm{N}$ let us choose a colection

$M_{k}=$ $(m_{1k}$ , . . . , $m_{nk})$ , $m_{ik}\in \mathrm{N}$ ,

so that the powers $w_{ik}^{m}$
” $(A, B)$ be distant from unity (uniformly in $k$ ). Put

$\overline{w}_{M_{k}}=w_{1k}^{m_{1k}}\ldots w_{nk}^{m_{nk}}$ .

Then the derivative of $\overline{W}_{M_{h}}(S)=\tilde{w}_{M_{k}}(a(S), b(S))$ at $S^{0}$ in any direction tends to infinity, as
$karrow\infty$ (uniformly in the direction).

Afterwards we fix an appropriate word $w$ such that the value $w(A, B)$ satisfies some
genericity condition (in particular, $w$ ( $A$ , $B)\neq 1$ ). For each $k$ we choose the powers $m_{ik}$ in the

previous product $\tilde{w}_{M_{k}}$ in such a way that $\tilde{w}_{M_{k}}(A, B)$ provides a best possible approximation
for $w(A, B)$ . We show then that the equation

$w(a(S), b(S))=\overline{w}_{M_{k}}(a(S), b(S))$

has a solution $S=S^{k}$ , $S^{k}arrow S^{0}$ , so, the words $w_{k}=w^{-1}\tilde{w}_{M_{k}}$ are those we are looking for:
$w_{k}(a(S^{k}), b(S^{k}))=1$ . This will prove Theorem 1.1.

In the next Example we consider a simple family of (abelian) additive subgroups in R. We
prove the well-known statement saying that each parameter value is a hmit point of relations
(Proposition 1,10). The proof of Theorem 1.1 given below uses analogous arguments.

1.8 Example Consider the group Aq (R) of affine automorphisms of $\mathbb{R}$ preserving orientation.
Th is group is generated by multiplications by positive constants and by translations. The
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subgroup of translations in $\mathrm{A}_{0}(\mathbb{R})$ is canonically identified with $\mathbb{R}$ and will be denoted by the

same symbol R. Define the following family of subgroups $\Gamma(s)\subseteq \mathbb{R}$ $\subseteq \mathrm{A}_{0}(\mathbb{R})$ :

$g(s)$ : $x\mapsto sx$ , $s>0$ , $t_{1}$ : $x\mapsto x+1$ , $g(s)$ , $t_{1}\in \mathrm{A}_{0}(\mathbb{R})$ , $\Gamma(s)=<g(s),t_{1}>\cap \mathbb{R}$ . (1.2)

More generally, for any $u\in \mathbb{R}$ denote

$t_{u}$ : $x\mapsto x+u$ , $(t_{u}\in \mathbb{R}\subseteq \mathrm{A}_{0}(\mathbb{R}))$ .

1.9 Remark For any s $>0$ the group $\Gamma(s)$ contains the elements $t_{ms^{k}}$ , m $\in \mathbb{Z}$ , k $\in \mathrm{N}$ $\cup 0$ ,

since it contains $t_{s^{k}}=g(s)^{k}\mathrm{o}t_{1}\circ g(s)^{-k}$ . In fact, $\Gamma(s)=<t_{ms^{k}}|m$ , k $\in \mathrm{N}$ U $0>$ . The

following statement is well-known.

1.10 Proposition Let $\Gamma(s)\subseteq \mathbb{R}$ be the subgroup family from (1.2). Each parameter value

s $\in \mathbb{R}_{+}$ is a limit point of relations in the group family $\Gamma(s)$ . The same statement holds for
nonzero complex parameter values s and the corresponding family $\Gamma(s)\subseteq \mathbb{C}$ of subgroups in

the complex affine group,

In the proof of Proposition 1.10 and Theorem 1.1 we use the following

1.11 Proposition Let $0<s_{0}<1_{l}0<\delta<u$ . For any k $\in \mathrm{N}$ let $m_{k}\in \mathrm{N}$ be the number

chosen so that $mks_{0}^{k}$ provides a best possible approximation for u:

$|m_{k}s_{0}^{k}-u|<s_{0}^{k}$ . Put $\psi_{k}(s)=m_{k}s^{k}$ . (1.3)

There exists a sequence $\epsilon_{k}>0$ , $\epsilon_{k}=\mathit{0}(\frac{1}{k})arrow 0_{J}$ such that the $\psi_{k^{arrow}}$ image of the $\epsilon_{k}-$ neighbor-
$l\gamma,ood$ of $s_{0}$ contains the closed 6- neighborhood of $u$ . The same statement holds true for any

$s_{0}$ , $u\in \mathbb{C}^{*}=\mathbb{C}\backslash 0_{j}\delta>0$ such that $|s_{0}|<1$ , $|u|>\delta$ and $m_{k}\in \mathrm{N}$ are chosen so that $m_{k}|s_{0}|^{k}$

be a best possible approximation $of|u|:||m_{k}|s_{0}|^{k}-|u||<|s_{0}|^{k}$ .

Proof To avoid the details, we give the proof in the real case only: the proof in the compiex

case is analogous. By definition,

$\psi_{k}’(s)=ks^{-1}\psi_{k}(s)$ , hence, $\psi_{k}’(s)$ $arrow\infty$ , as $karrow\infty$ , if $s^{-1}$ , $\psi_{k}(s)$ are distant from 0.

The closed $\delta$-neighborhood of $u$ is disjoint from 0. By definition, the function $s(\psi_{k})$ inverse

to $\psi_{k}$ is uniformly bounded on this neighborhood, thus, $s^{-1}$ is uniformly bounded from below.

This together with the previous formula implies that the derivative ( $\psi_{k}’(s)_{J}^{\backslash -1}$ of the
$\mathrm{i}\mathrm{n}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{e}\square$

function is $\mathit{0}(\frac{1}{k})$ on the same neighborhood. This implies the Proposition.

Proof of Proposition 1.10. Fix a $s_{0}>0$ aad let us prove that it is a limit point of

relations irr $\Gamma(s)$ . Without loss of generality we suppose that $s\mathrm{o}\neq 1$ (one can achieve this by

perturbation of $s_{0}$ ) and $0<s_{0}<1$ (one can achieve this by changing $g(s_{0})$ to its inverse).

Proposition 1.11 applied to $u=1$ implies that there exists a sequence $m_{k}\in \mathrm{N}$ , $m_{k}arrow\infty$ , as
$karrow$ $00$ , such that the equation

$m_{k}s^{k}=1$

has a solution$\mathrm{n}skarrow s_{0}$ , as $karrow\infty$ . By definition, the paramete1 values $s=sk$ correspond to

th $\mathrm{e}$ (nonidentical) relations $t_{s^{k}}^{m_{k}}=t_{1}$ in $\Gamma(s)$ . This proves Proposition 1.10. $\square$
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1.12 Remark The previous values $s_{k}$ corresponding to the latter relations have asymptotics

$s_{k}-s_{0}=O( \frac{1}{k})$ . In the real case sk $arrow s_{0}$ exponentially: $s_{k}-s_{0}=O(_{k}^{\underline{s}_{\mathrm{L}}^{k}})$ .

For the proof of Theorem 1.1 vxe construct a deformation $(a(S), b(S))$ depending on a n-

dimensional parameter S $=(s_{1},$
\ldots ,

$s_{n})$ , $s_{i}\in \mathbb{C}$ , and auxiliary words $w_{ik}(a,$b), i $=1$ , \ldots , n,

k $\in \mathrm{N}$, satisfying the following statements.

1.13 Lemma Let G be a complex simple Lie group of dimension n. Then a generic pair of
elements A, B $\in G$ generating a dense subgroup admits a deformation $(a(S), b(S))$ depending

on a complex parameter S $=$ $(s_{1},$
\ldots ,

$s_{n})$ , $0<|s_{i}|<1$ , that satisfies the following statement

Let $S^{0}$ be the parameter value corresponding to the initial pair.. (A,$B)=(a(S^{0}), b(S^{0}))$ .

There exist words $w:k(a, b)_{f}\mathrm{i}=1$ , \ldots ,
$n_{f}$ k $\in \mathrm{N}$ , and a basis $v_{1}$ , . . ., $v_{n}$ of the Lie algebra $T_{1}G$

such that

$w_{ik}(a(S), b(S))=\exp(s_{i}^{k}v_{ik}(S))$ , $v_{ik}(S)=v_{i}+o(1)$ , as k $arrow\infty$ , S $arrow S^{0}$ , (1.4)

where the vector function $v_{ik}(S)$ in the previous exponent has unifo rmly bounded (in k) deriva-

tives in S in some neighborhood of $S^{0}$ (independent on h) and converges unifo rmly on the

some neighborhood to an analytic vector function.
The Lemma is proved 1n the next two Subsections.

Proof of Theorem 1.1. Consider the family $(a(S), b(S))$ and the vectors $v_{i}$ from the

Lemma. The latters form a base, hence, the mapping $(t_{1}, \ldots, t_{n})\mapsto\exp(t_{1}v_{1})$ , $\ldots,\exp(t_{n}v_{n})$

is a l-to-l mapping of a neighborhood of 0 in the complex t- space onto a neighborhood
$V\subseteq G$ of unity. This defines a coordinate system on $V$ . The group generated by $A$ and $B$ is

dense, hence, there exists an abstract word $w(a, b)$ such that $w(A, B)\in V$ , hence,

$w(A, B)=\exp(\tau_{1}v_{1})$ . . . $\exp(\tau_{n}v_{n}).,$ $\tau_{i}\in$ C. (1.5)

We choose (and fix) the word $w$ so that 1n addition $\tau_{i}\neq 0$ for each $\mathrm{i}=1$ , . ., ’
$n$ (this is

possible by density). Then

$w(a(S), b(S))=\exp(t_{1}(S)v_{1})\ldots\exp(t_{n}(S)v_{n})$ , $t_{i}(S^{0})=\tau_{i}$ , $t_{i}(S)$ are analytic in $S$ . Let

$S^{0}=$ $(s\mathit{0}1, \ldots , s_{0n})$ .

For any $\mathrm{i}=1$ , $\ldots$ , $n$ and arry $k$ (large enough) let $m_{ik}\in \mathrm{N}$ be the minimal number such that
$|\tau_{i}|<m_{ik}|s_{0i}|^{k}$ (in other terms, such that $m_{ik}|s_{0i}|^{k}$ $\mathrm{b}\mathrm{e}$ a best approximation for $|\tau i|$ ). Put

$M_{k}=$ $(m_{1k}, , . ., m_{nk}),\tilde{w}_{M_{k}}=w_{1k}^{m_{1k}}\ldots$ $w_{nk}^{m_{nk}}$ . Then by (1.4),

$\overline{W}_{M_{k}}(S)=\overline{w}_{M_{h}}(a(S), b(S))=\exp(m_{1k}s_{1}^{k}v_{1k}(S))\ldots\exp(m_{nk}s_{n}^{k}v_{nk}(S))$ . (1.6)

There exist a $\delta$ $>0$ and a sequence $\epsilon_{k}>0$ , $\epsilon_{k}=O(\frac{1}{k})arrow 0$ , such that

$\overline{W}_{M_{k}}(I_{\epsilon_{k}}(S^{0}))\supset\supset I_{\mathit{5}}(w(A, B))$ . (1.7)

Indeed, this would be true if the function $\overline{W}_{M_{k}}(S)$ be given by (1.6) where $v_{ik}(\underline{S)}=v_{i}\equiv$ const

be constant vectors independent on $k$ (then the coordinate $t_{x}$ of the value $W_{M_{k}}(S)$
$\mathrm{w}\mathrm{i}\mathrm{l}$ be
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equal to $miks_{\mathrm{t}}^{k}$ ). This follows from Proposition 1.11 and linear independence of the $v_{i}$

’
$\mathrm{s}$ .

Taking variable vectors $v_{ik}(S)$ corresponds to taking a variable coordinate system, where the

coordinates of the corresponding values $\overline{W}_{M_{k}}(S)$ are given by the same formula $m_{ik}s_{i}^{k}$ . The
variable coordinate systems are wel defined and have uniformly bounded derivatives in $S$ in
some neighborhood of $S^{0}$ (independent on $k$ ), as do $v\mathrm{i}k(S)$ (Lemma 1.13). Inclusion (1.7)

persists under a variation of the coordinate system with uniformly bounded derivative (for

appropriate $\delta>0$ independent on &). This proves (1.7).
By (1.7), the equation

$\overline{w}_{M_{k}}(a(S), b(S))=w(a(S), b(S))$

has a solution $S^{k}arrow S^{0}$ , as 1n the proof of Proposition 1.10. Thus, we have found the sequence
of words

$w_{k}(a, b)=w^{-1}\tilde{w}_{M_{k}}$ , $w_{k}(a(S^{k}), b(S^{k}))=1$ .

The words $w_{k}$ are nontrivial, since their values at $(a(S), b(S))$ are not equal to 1 identically

in $S$ : their derivatives in $S$ at $S^{0}$ are large and tend to infinity, as $karrow\infty$ (as those of
$\overline{w}_{M_{k}}$ ( a( $S$ ) , $b(S$ )); the derivative of $w^{-1}(A(S), B(S))$ at $S^{0}$ is independent on $k$ ). Theorem

$1.1\square$

is proved modulo Lemma 1.13.

1.4 The iterated commutators $w_{ik}$ . The sketch of the proof of Lemma 1.13

To define the deformation and the parameter $S$ from Lemma 1.13, let us introduce the
following notation. Recall that the group $G$ acts on itself by conjugations: $g$ : $h$ }$arrow ghg^{-1}$ .
The unity is fixed. The derivative at unity of the action of $g$ is a linear operator denoted

$Ad_{g}$ : $T_{1}Garrow T_{1}G$ and called the adjoint action of $g$ .

(If $G$ is a matrix group, then the adjoint action is also defined by matrix conjugation: for

any $h\in TrG$ one has $Ad_{g}(h)=ghg^{-1}.)$ For a generic element $g\in G$ put

$s(g)=$ the eigenvalue of $Adg-Id$ with the maximal module; denote $v_{g}$ the eigenvector.
(1.8)

1.14 Proposition Let G be a complex simple Lie group. For a generic element g $\in G$ the

previous value $s(g)$ is uniquely defined.
For the proof of the Lemma we show that if A, B are generic elemennts, then there exist

n words $g_{i}(a,$b), i $=1$ , \ldots , n, such that the values si $=s(g_{i}(a, b))$ (as functions in variab le

elements a, b $\in G$) are independent: their rank at a $=A$ , b $=B$ is equal to n (see Lemma

1.15 below). This is the main technical part of the proof of Lemma 1.13. We show that one

can achieve that $0<|s_{0i}|=|s_{i}(A, B)|<1$ and the vectors

$v_{i}=v_{\mathit{9}i(A,B)}$ be linearly independent.

Take arbitrary n- parametric deformation of $A$ , $B$ such that thhe previous functions $Sj$ (consid-

ered now as functions in the parameter of deformation) are independent. Then one can put
$S=$ $(s_{1}, \ldots , s_{n})$ to be the parameter of deformation. As it is shown below, the deformation
$(A(S), B(S))$ thus constructed is a one we are looking for
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1.15 Lemma (Main Technical Lemma). Let $G$ be a complex simple Lie $group_{j}$ $dimG=$

$n$ . Then there exist $n$ abstract words $\#(a, b)$ , $\mathrm{i}=1$ , $\ldots$ , $n_{J}$ satisfying the following statements.

1) The values Sj $(a, b)$ $=s(gi(a, b))$ are well-defined for a generic pair $(a, b)$ .
2) The functions $s_{i}(a, b)$ have rank $n$ on an open and dense set of pairs $(a, b)\in G\cross G$ .

Addendum to Lemma 1.15. Let $G$ be a complex simple Lie group, $dimG=n_{J}\epsilon>0$ ,

$A_{1}$ , $\ldots$ , $A_{n}\in G$ . Let $A$ , $B\in G$ be a pair of elements generating a dense subgroup. Then the

words $g:(a, b)$ from Lemma 1.15 can be chosen so that $d\mathrm{i}st(g_{i}(AB)\}’ A_{i})<\epsilon$ .

Lemma 1.15 is proved in the next Subsection. The proof of the Addendum is omitted here:

it will be presented in the complete version of the paper. Roughly speaking, the Addendum

follows from thhe results of the next Subsection.

1.16 Proposition Let G be a complex simple Lie group, n $=d\mathrm{i}mG$ . For a generic collection

of n elements $A_{1}$ , \ldots ,
$A_{n}\in G$ the corresponding adjoint action eigenvectors $v\mathrm{A}_{i}$ (see (1.8))

are well-defined and linearly independent.

1.17 Corollary Let G be a complex simple Lie group, Let (A,$B)\in G$ x G be a given pair

generating a dense subgroup in G. If the pair (A, B) is generic, then there exist words $gi(a,$b),

i $=1$ , \ldots ,
$n_{J}$ such that the functions $s_{i}(a, b)=s(g_{i}(a, b))$ have rank n in some neighborhood

of (A, B) and in addition
3) the vectors $v_{i}=v_{gi(A,B)}$ are linearly independent;
4) $0<|s_{i}(A, B)|<1$ .
The Corollary follows from the Addendum applied to a generic collection $A_{1}$ , $\ldots$ , $A_{n}\in G$

of elements chose to unity.
Using the words $gi$ from the Corollary (we suppose that ( $A$ , $B$ ) is generic), we construct

the words $w_{ik}$ that satisfy the statement of Lemma 1.13. To do this, let us introduce the

following notation.
For any $g\in G$ define the commutator mapping $\phi_{g}$ : $Garrow G$ :

$\phi_{g}(h)=ghg^{-1}h^{-1}$ . (1.9)

We use the following properties of the commutator mapping.

1.18 Proposition Let G be a Lie group, g $\in G$ . The derivative ai unity of the mapping $\phi_{g}$

is equal to Adg-Id. In pcvrticular, its eigenvalue with maximal rnodule is equal to $s(g)$ ; the

corresponding eigenvector is $v_{g}$ .

1.19 Corollary Let G be a Lie group, g $\in G$ be an element (close to unity) such that $s(g)$

be uniquely defined and $|s(g)|<1$ . Then the mapping $\phi_{g}$ is contracting to unity. It has the

unique weakest contracting direction $v_{g}$ and a unique strong contracting invariant hypersurface
$\Sigma_{g}$ (passing through the unity) transversal to $v_{g}$ , see Fig.2. For any x $\in G\backslash \Sigma_{g}$ close to unity

$\phi_{g}^{k}(x)=\exp(s^{k}(g)(cv_{g}+o(1)))$ , as k $arrow\infty$ , c $=c(x,g)$ is independent on k. (1.10)

The derivative of the latter $o(1)=o(1)(x,$g) in the parameters of (x, g) is unifomly bounded
(in k) on some neighborhood of (x, g) (independent on k) and tends to zero on the latter
neighborhood, as k $arrow\infty$ .
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The dynamics of $\phi_{\mathrm{g}}$

Figure 2:

Proof of Lemma 1.13 modulo Lemma 1.15 and its Addendum. Let yi be the words

from Corollary 1.17. Consider the strong contracting hypersurfaces of $\phi_{g:(A,B)}$ . Let $h(a, b)$

be a word such that its value $h(A, B)$ lies outside the previous hypersurfaces and is attracted
to unity under each mapping $\phi_{\mathit{9}i(A,B)}$ , $i=1$ , $\ldots$ , $n$ . Put

$w_{i0}=h$ , $w_{ik}=g_{i}w_{i(k-1)}g_{i}^{-1}w_{i(k-1)}^{-1}$ . (1.11)

The words $w_{ik}$ defined by recurrent formula (1.11) satisfy the statements of Lemma 1.13.
Indeed, the asymptotics (1.4) holds with $v_{i}=v_{g_{i}\langle A,B)}$ by definition an$\mathrm{n}\mathrm{d}(1.10)$ (one has to

normalize the previous vectors in appropriate way so that thhe correspon ding constants $c$ from

(1.10) be equal to 1). Lemma 1.13 is proved. $\square$

1.5 Independent eigenvalues. Proof of Lemma 1.15

Denote $\Omega_{0}$ the space of all the nontrivial abstract words $w(a, b)$ in symbols $a$ , $b$ , $a^{-1}$ , $b^{-1}$ .
Consider each abstract word $w(a, b)$ as a function $G\mathrm{x}$ $Garrow G$ . Let us choose an eigenvalue

$\lambda_{w}=\lambda_{w}(a, b)$ of $Ad_{w(a,b)}$ and consider it as a (multivalued) function in $(a, b)$ . Let us choose

a $\lambda_{w}$ for each $w$ .

1.20 Definition Any collection
$\{\lambda_{w}\}_{w\in\Omega_{0}}$

is called a complete system of eiger values (associated to words from $\Omega_{0}$ ).

1.21 Remark For any finite collection of words $w_{1}$ , . . . , $w_{k}$ and any system of eigenvalue

functions $\lambda_{w}.$ (a, b) associated to them the rank of the functions $\lambda_{w_{i}}$ (a, b) is constant on a

connected open dense subset in GXG. This implies that the rank of a complete system of

eigenvalues is constant on an intersection of open dense subsets in GxG. The corresponding

ranks will be simply called the ranks of systems of eigenvalues. (The rank of an infinite
colection of functions is defined to be the maximal rank of a finite subcollection.
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Lemma 1.15 is implied by the following more general

1.22 Lemma The rank of any complete system of eigenvalues is equal to n.

We will consider also generalized $\mathbb{C}-$ ($\mathbb{R}-$ or Q-) words

$w(a, b)=a^{t_{1}}b^{t_{2}}\ldots$
$a^{t_{k}}$ , $t_{i}\in \mathbb{C}$ , $\mathbb{R}$ , $\mathbb{Q}$ respectively,

whose symbols are powers of $a$ and $b$ ; the number of the symbols is finite. Denote $\Omega(\mathbb{C})$ , $\Omega(\mathbb{R})$ ,

$\mathbb{R},\mathbb{Q}\Omega(\mathbb{Q})$

.
the corresponding spaces of aT the generalized words with exponents respectively in $\mathbb{C}$ ,

Let $(a, b)\in G\mathrm{x}$ $G$ be a given pair, $w(a, b)$ be a given generalized word (we consider it as a

multivalued analytic function in $(a, b)$ with values in $G$). Let $\lambda_{w}(a, b)$ be some eigenvalue of

$Ad_{w(a,b\}}$ . The value $\lambda_{w}(a, b)$ depends analytically on ( $a$ , by arrd the exponents of $w$ . This yields

a(multivalued) analytic family $\lambda_{w}$ of (multivalued) analytic functions in $(a, b)$ depending on

the parameters $tj$ , which are the exponents of $w$ . (The branching points vary with $t_{i}.$ ) The

family $\lambda_{w}$ thus obtained is called an analytic eigenvalue family (the length of the word is not

fixed).

1.23 Proposition The rank of any complete system of eigenvalues associated to words in

$\Omega_{0}$ is no less than the rank of appropriate analytic eigenvalue family associated to the words

from $\Omega(\mathbb{C})$ .

Proof Replacing symbols $a$ , $b\mathrm{t}>\mathrm{y}$ their degree $2^{N}$ roots trartsforms the words from $\Omega\circ$ to

those from $\Omega(\mathbb{Q})$ with ratiortal exponents $t_{i}\in 2^{-N}\mathbb{Z}$ (denote $\Omega_{N}$ the space of the latter

words). Passing to the roots is a localy l-to-l transformation at a neighborhood of a generic

pair $(a, b)\in G\mathrm{X}G$ . This implies that for arry $N\in \mathrm{N}$ the rank of a complete eigenvalue

system corresponding to words from $\Omega_{0}$ is equal to the rank of another eigenvalue system

correspondirtg to the words from $\Omega_{N}$ . Passing to the limit, as $Narrow\infty$ , yields an analytic

eigenvalue family associated to words from $\Omega(\mathbb{R})$ whose rank is rto greater than that of the

initial system of eigenvalues. This follows from a Baire category argument (irt the space of

exponents). The new eigenvalue family extends to the complex parameter space of complex

exponents without increasing the rank (the latter statement follows from analyticity).
$\mathrm{T}\mathrm{h}\mathrm{i}\mathrm{s}\square$

proves the Proposition.

1.24 Lemma The rank of any analytic eigenvalue family associated to the words from $\Omega \mathbb{C}$

is equal to n.

Lemma 1,24 is proved below. Together with Proposition 1.23, it implies Lemma 1.22.

For any $(a, b)\in G\mathrm{x}G$ denote Conj(\^all $b$) the conjugacy class of the pair $(a, b)$ (with

respect to the action of $G$ on $G\mathrm{x}$ $G$ by conjugations).

1.25 Proposition Let G be a connected complex simple Lie group, n $=dimG$ . The dirnen-

sion of conjugacy class of a gener .c pair (a,$b)\in G$ xG is equal to n. (Hence, its codimension

is also equal to n.)

1.26 Remark Each eigenvalue of any (may be generalized) word $w(a,$b) is constant on each

conjugacy class. Thus, the rank of any system of eigenvalues of words is no greater than n.
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Lemma 1.24 is implied by the following

1.27 Lemma A generic pair (A,$B)\in G$ x G satisfies the following statement. Let v $\in$

$T_{(A,B)}(G\cross$ (;) be a vector such that there exists an analytic eigenvalue fasreily $\lambda_{w}(a,$b) de-

pending on w $\in\Omega(\mathbb{C})$ such that $\frac{d\lambda_{w}}{dv}(A, B)=0$ for all w. Then the vector v is tangent to
Conj(a, b).

Proof By analyticity, it suffices to prove the statement of the Lemma for a generic pair

(a, b) generating a dense subgroup.

1.28 Proposition Let G be a connected complex simple Lie group, a, b $\in G$ be elements

generating a dense subgroup. Then each element g $\in G$ can be represented as a value $w(a,$b)

of appropriate generalized word w $\in\Omega(\mathbb{C})$ .

When we move (a, b) in the direction v, the values $w(a,$b) are moved in the direction of

the derivatives of $w(a,$b) along v. In what follows we prove that this motion is given by

an infinitesimal local automorphism of G. A classical theorem (see [VO]) says that each

local automorphism close to identity of a simple Lie group is given by a conjugation with

some element g $\in G$ . This together with the previous statement implies that v is tangent to

the conjugacy class of (a, b). To show that the previous motion is given by an infinitesimal
automorphism, let us introduce the following notations.

Given a, b $\in G$ , v $\in T_{(a,b)}(G\mathrm{x}G)$ , denote

$\Omega(a, b)=\{w\in\Omega(\mathbb{C})|w(a, b)=1\}$ , $U(a, b)= \{\frac{dw(a,b)}{dv}|w\in\Omega(a_{\dot{I}}b)\}\subset T_{1}G$. (1.12)

1,29 Proposition The space $U(a,$b) is an ideal in the Lie algebra $T_{1}G$ .

The Proposition folows from definition.
Recall that the Lie algebra $T_{1}G$ is simple, hence, it contains no nontrivial ideal. There-

fore, by the previous Proposition, either $U(a, b)=0$ , or $U(a, b)=T_{1}G$ . The latter case 1s

impossible: it would contradict vanishing of the derivatives along $v$ of the eigenvalues $\lambda_{w}$ .
Thus,

$U(a,$ $\ )$ $=0$ .

This implies that if two words $w_{1}$ , $w_{2}\in\Omega(\mathbb{C})$ take th $\mathrm{e}$ same value at $(A, B)$ , then they have

the same derivative along $v$ . Hence, the derivatives of $w(a, b)$ form a wel-defined vector field

on $G$ . The field is analytic, since it depends analytically on the exponents of the words.

Therefore, it defines an in finitesimal local analytic difleomorphism of $G$ . The latter is an

infinitesimal automorphism, since the previous motion of words respects multiplication (by

defin ition). This together with the previous discnssion proves the Lemma. The proof
$\mathrm{o}\mathrm{f}\square$

Lemmas 1.27, 1.24 artd 1.15 is completed.

2 A short proof of Theorem 1.1 for G $=PSL_{2}(\mathbb{C})$

Let $A$ , $B\in PSL_{2}(\mathbb{C})$ generate a dense free group. We prove Theorem 1.1 by contradiction.

Suppose there is a neighborhood $V\subseteq PSL_{2}(\mathbb{C})\mathrm{x}$ PS$L_{2}(\mathbb{C})$ of the pair $(A, B)$ such that each

pair $(a, b)\in V$ generates a free subgroup. Thus, each word $w(a, b)$ is a holonorphic function
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in $(a, b)\in PSL_{2}(\mathbb{C})\mathrm{x}$ $PSL_{2}(\mathbb{C})$ with values in $PSL_{2}(\mathbb{C})$ ; distinct words define holomorphic

functions with disjoint graphs over $V$ . Using holomorphic motion of fixed points of the ele-

ments $w(a, b)\in PSL_{2}(\mathbb{C})$ , we construct a nonstandard measurable almost complex structure

on $\overline{\mathbb{C}}$ invariant under the action of $<A$ , $B>$ (and hence, under the action of the whole group
$PSL_{2}(\mathbb{C})$ by density). But the only measurable almost complex structure preserved under

the action of $PSL_{2}(\mathbb{C})$ on $\overline{\mathbb{C}}$ is the standard complex structure - a contradiction.

2.1 Remark The author,s initial proof of Theorem 1.1 in the case, when G $=PSL_{2}(\mathbb{C})$ ,

followed a similar scheme (using holomorphic motion of fixed points) but was longer than

the on e presented below. The final quasiconformal mapping argument, which simplified the

proof essentially, is due to Etienne Ghys.

Recall that an element b $\in PSL_{2}(\mathbb{C})$ is called elliptic, if its action on $\overline{\mathbb{C}}$ is conjugated to

a rotation. It is called hyperbolic, if it has two fixed points: one attracting and the other one

repelling. Otherwise it is parabolic, i.e., has a unique fixed point and is conjugated to the

translation.
The liberty assumption implies that the elements $w(a, b)\in PSL_{2}(\mathbb{C})$ are hyperbolic

whenever (a,$b)\in V$ : in other terms, the multipliers of their fixed points have modules

different from 1. Indeed, their fixed points are holomorphic functions in (a,$b)\in V$ (may be

multivalued with possible double branchings corresponding to the parabolic elements $w(a,$ $\ )$ ),

an d so are the multipliers of the fixed points. Suppose the multiplier $\mu(a,$ $\ )$ of a fixed point

of $w(a,$b) has a unit module. Then one can find points $(a’, b’)$ arbitrarily close to (a, b) where
$\mu(a’, b’)$ is equal to nontrivial roots of unity (the holomorphic mappings are open). This

means that $w(a^{/}, b’)\in PSL_{2}(\mathbb{C})$ is a nontrivial element of finite order - a contradiction to the

liberty assumption.
Thus, each element $w(a,$b) $\in$ $PSL_{2}(\mathbb{C})$ , (a, b) $\in V$ , is hyperbolic, hence, its fixed points

are analytic functions in (a, b). The graphs of the fixed point functions are disjoint. Indeed,

otherwise, if two distinct hyperbolic elements of $PSL_{2}(\mathbb{C})$ have one common fixed point,

then their commutator is parabolic: the latter fixed point is its unique fixed point. This

contradicts the hyperbolicity of thhe commutator.
In other words, the previous fixed point families form a holomorphic motion over V of the

fixed points of the elements $w(A,$B). The latter elements are dense by assumption, hence,

so are their fixed points. The previous holomorphic motion extends up to a holomorphic

motion of the Riemann sphere: this means that one can extend the colection of graphs of

fixed points of $w(a,$b) up to filling-in the product Vx $\overline{\mathbb{C}}$ by disjoint graphs of holomorphic

functions on V with values in C. This follow s immediately from den sitv and an elementary

normality argument (e.g., a version of Montei’s theorem, see [L]).

2.2 Remark The well-known Slodkowski theorem [S] says that any holomorphic motion in

D $\mathrm{x}\overline{\mathbb{C}}$ of any subset of the Riemann sphere over unit disc D extends up to a holomorphic

motion of the whole Riemann sphere. Here we do not use this theorem in full generality.

It is $\mathrm{w}\mathrm{e}11$-known (see, e.g., [ST]) that any holomorphic motion has a quasiconformal holon-
$\mathrm{o}\mathrm{m}\mathrm{y}$. More precisely, in our case this means the following. For any $(a, b)\in V$ consider the

mapping $h_{a,b}$ : $\overline{\mathbb{C}}arrow\overline{\mathbb{C}}$ defined to send the fixed points of $w(a, \mathit{0}’ )$ to those of $w(A, B)$ . The

mapping $h_{\alpha,b}$ extends up to a quasiconformal homeomorphism of $\overline{\mathbb{C}}$ (depending holomor-
phicaUy on the parameters $(a, b))$ . The quasiconformal homeomorphism $h_{a,b}$ transforms the
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standard complex structure on $\overline{\mathbb{C}}$ to a measurable almost complex (denoted by $\sigma$ ( $a$ , $b$ )). It

follows from construction that $\sigma(a, b)$ is Invariant under the group $<A$ , $B>$ , and hence,

under $PSL_{2}(\mathbb{C})$ by density. Now to prove the Theorem, it suffices to show that for a generic
pair $(a, b)$ the atmost complex structure $\sigma(a, b)$ is not standard.

For any $(a, b)\in V$ the elements $a$ and $b$ are hyperbolic with distinct fixed points; the

latters form a quadruple denoted $Q(a, b)$ of points in $\overline{\mathbb{C}}$. If the cross-ratios of two quadruples
$Q(a, b)$ and $Q(A, B)$ are distinct, then the quasiconformal homeomorphism $h_{a,b}$ , which sends
$Q(a, b)$ to $Q(A, B)$ , is not conformal; hence, $\sigma(a, b)$ is not standard. This together with the

discussion at the beginning of the Section proves Theorem 1.1.

I am grateful to \’E.Ghys who had attracted my attention to the problem. I am grateful

to him for helpful conversations. The proof of the Main Technical Lemma 1.15 in its present
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for hospitality and support.
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