A survey of real transverse sections of holomorphic foliations

Toshikazu Ito and Bruno Scárdua

Introduction

Let M be a closed, connected, smooth submanifold of real dimension $2n-1$ in the complex space \mathbb{C}^n of dimension $n \geq 2$. Given a holomorphic one form ω in \mathbb{C}^n, for each $p \in \mathbb{C}^n$ with $\omega(p) \neq 0$ we define a $(n-1)$-dimensional linear subspace $P_\omega(p) = \{v \in T_p \mathbb{C}^n \mid \omega(p) \cdot v = 0\}$. If $\omega(p) = 0$, we set $P_\omega(p) = \{0\}$ and we shall say that the distribution P_ω defined by ω is singular at p. We denote by $\text{Sing}(\omega) = \{p \in \mathbb{C}^n \mid \omega(p) = 0\}$ the singular set of ω. We have the following definition of transversality.

Definition We shall say that M is transverse to P_ω if for every $p \in M$ we have $T_p M + P_\omega(p) = T_p \mathbb{R}^{2n}$ as real linear spaces.

In particular, since $P_\omega(p) = \{0\}$ for any singular point p, we conclude that $\text{Sing}(\omega) \cap M = \emptyset$.

In this note, we survey an existence or a non-existence of M such that M is transverse to P_ω.

1 Facts and Known results

In this section, we review the case of holomorphic vector field Z in \mathbb{C}^n, $n \geq 2$.

Given complex numbers $\lambda_1, \ldots, \lambda_n \in \mathbb{C}$, we denote by $\mathcal{H}(\lambda_1, \ldots, \lambda_n)$ the convex hull of the subset $\{\lambda_1, \ldots, \lambda_n\}$ in \mathbb{C}. Let $Z = \sum_{j=1}^{n} \lambda_j z_j \partial / \partial z_j$ be a linear vector field on \mathbb{C}^n, $n \geq 2$. We denote by $S^{2n-1}(1) = \{z \in \mathbb{C}^n \mid \|z\|^2 = 1\}$ the $(2n-1)$-dimensional sphere. We have a well-known fact.

Fact (1) If the origin $0 \in \mathbb{C}$ does not belong to $\mathcal{H}(\lambda_1, \ldots, \lambda_n)$, then $S^{2n-1}(1)$ is transverse to Z.

(2) If the origin 0 belongs to $\mathcal{H}(\lambda_1, \ldots, \lambda_n)$, then $S^{2n-1}(1)$ is not transverse to Z.

This Fact suggests to us the following properties.

Theorem ([4]) If the origin 0 belongs to $\mathcal{H}(\lambda_1, \ldots, \lambda_n)$, then there is no smooth embedding φ of a closed connected smooth manifold M of dimension $2n-1$ to \mathbb{C}^n such that $\varphi(M)$ is transverse to $Z = \sum_{j=1}^{n} \lambda_j z_j \partial / \partial z_j$.

We have a Poincaré-Bendixson type theorem for holomorphic vector fields.
Theorem (A. Douady and T. Ito [3]) Let N denote a subset of \mathbb{C}^n holomorphic and diffeomorphic to the 2n-dimensional closed disc $\overline{D^{2n}(1)}$ consisting of all z in \mathbb{C}^n with $\|z\| \leq 1$.

Let Z be a holomorphic vector field in some neighborhood of N. If the boundary $M = \partial N$ of N is transverse to Z, then

(1) Z has only one singular point, say p, in N.
(2) the index of Z at p is equal to one.
(3) each solution L of Z which crosses M tends to p, that is, p is in the closure of L. Further, the restriction $F(Z) \big|_{N - \{p\}}$ of the foliation $F(Z)$ defined by the solutions of Z to $N - \{p\}$ is

C^ω- diffeomorphic to the foliation $F(Z) \big|_{M \times (0, 1]}$ of $N - \{p\}$, where $F(Z) \big|_{M}$ denotes the restriction of $F(Z)$ to M.

Theorem (M. Brunella[1]) Soit $\Omega \subset \mathbb{C}^n$, $n \geq 2$, un ouvert borné avec frontière lisse et fortement convexe, et soit v un champ de vecteurs holomorphe défini au voisinage de $\partial \Omega$ et transverse à $\partial \Omega$. Il existe un difféomorphisme $\Phi : \Omega \rightarrow \overline{D^{2n}(1)}$ qui envoie le feuilletage holomorphe singulier engendré par v dans un feuilletage \mathcal{G} singulier à l'origine et transverse aux sphères $S^{2n-1}(\lambda)$, $\lambda \in (0, 1]$.

Theorem (M. Brunella and P. Sad[2]) Let $\Omega \subset \mathbb{C}^2$ be a generalized bidisc and let \mathcal{F} be a holomorphic foliation defined in a neighborhood of $\partial \Omega$ and transverse to $\partial \Omega$. Then there exists a locally injective holomorphic map ϕ which sends a neighborhood of $\partial \Omega$ to a neighborhood of 0 in \mathbb{C}^n such that $\mathcal{F} = \phi^*(L_\lambda)$ for some $\lambda \in \mathbb{C} \setminus \mathbb{R}$, where L_λ is a linear hyperbolic foliation in \mathbb{C}^2 defined by $zdy + \lambda ydx = 0$.

2 Existence or non-existence of real transverse sections

Let $\omega = \sum_{j=1}^{n} f_j(z)dz_j$ be a holomorphic one form on \mathbb{C}^n, $n \geq 2$. We denote by P_ω the distribution defined by ω in \mathbb{C}^n.

Theorem 1 ([5]) Let M be a real 2-dimensional closed, connected, smooth manifold.

If a smooth embedding φ of M to \mathbb{C}^n is transverse to P_ω, then M is a torus.

We can construct a torus T^2 which is transverse to a holomorphic vector field Z. Let $Z = z_1 \partial/\partial z_1 + \lambda z_2 \partial/\partial z_2$ be a linear vector field on \mathbb{C}^2 and $T^2(r_1, r_2) = S^1(r_1) \times S^1(r_2) = \{ |z_1|=r_1 \} \times \{ |z_2|=r_2 \}$ a torus in \mathbb{C}^2.

Proposition 1([6]) The 2-dimensional torus $T^2(r_1, r_2)$ is transverse to Z if and only if the imaginary part of λ is different from zero.

We have the following non-existence theorems of transverse sections.

Theorem 2 ([6]) Let $Z = z_1 \partial/\partial z_1 + \lambda z_2 \partial/\partial z_2$, $\lambda \in \mathbb{R}$ be a linear vector field or $Z = z_1 \partial/\partial z_1 + (nz_2 + x_1^n) \partial/\partial z_2$, $n \in \mathbb{N}$ a holomorphic vector field of Dulac's normal form and M a closed, connected 2-dimensional smooth manifold. Then there is no smooth embedding φ of M to \mathbb{C}^2 such that $\varphi(M)$ is transverse to Z.

Theorem 3 ([5]) There exists no holomorphic foliation \mathcal{F} of codimension one in a neighborhood
of the polydisc Δ^4 in \mathbb{C}^4 with the property that \mathcal{F} is transverse to the product of spheres $S^2_1(1) \times S^2_2(1) = \{(x_1, x_2, x_3, x_4) \in \mathbb{C}^4 | |x_1|^2 + |x_2|^2 = 1, |x_3|^2 + |x_4|^2 = 1\} \subset S^2 \times C^2$.

Theorem 4 ([5]) Let $\omega = \sum_{j=1}^{n} h_j(z)dz_j$ be a homogeneous integrable one form on \mathbb{C}^n, $n \geq 3$.

The sphere $S^{2n-1}(1)$ of dimension $2n-1$ is not transverse to the foliation $\mathcal{F}(\omega)$ defined by $\omega = 0$.

We are very interested in the following properties.

Proposition 2 ([5]) Take $\omega = z_1z_2z_3(\sum_{j=1}^{3} \lambda_j \frac{dz_j}{z_j})$ on \mathbb{C}^3, where the non-zero complex numbers $\lambda_1, \lambda_2, \lambda_3$ are satisfied with the following properties: $\lambda_i/\lambda_j \notin \mathbb{R}$, $(i \neq j)$ and $\lambda_1 + \lambda_2 + \lambda_3 \neq 0$.

We get the following statements (i) \~ (iii).

(i) $\text{Sing}(\omega) = \bigcup_{j \neq k} (z_j = 0, z_k = 0)$.

(ii) $S^6(1) \setminus (\text{Sing}(\omega) \cap S^6(1))$ is transverse to $\mathcal{F}(\omega)$.

(iii) Let $P = (\alpha z_1 + \beta z_2 + \gamma z_3 = 0)$, $\alpha, \beta, \gamma \in \mathbb{C}^*$ be a hyperplane through the origin. The restriction \mathcal{F}_1 of $\mathcal{F}(\omega)$ to P has only the origin as singularity. P is transverse to $\mathcal{F}(\omega)$ outside $\text{Sing}(\omega)$. \mathcal{F}_1 is not transverse to $P \cap S^6(1)$ though $\text{Sing}(\mathcal{F}_1) \cap (P \cap S^6(1)) = \phi$.

Example 1 (T. Ito and M. Yoshino) Take complex numbers $\lambda_1, \cdots, \lambda_n, \mu_1, \cdots, \mu_n \in \mathbb{C}^*$ and assume that the origin 0 belongs to $\mathcal{H}(\lambda_1, \cdots, \lambda_n)$ and $\mathcal{H}(\mu_1, \cdots, \mu_n)$. We make the following assumption: There exist real numbers c_1 and c_2 such that $\mathcal{H}(c_1\lambda_1 + c_2\mu_1, \cdots, c_1\lambda_n + c_2\mu_n) \neq 0$.

Consider linear vector fields $X = \sum_{j=1}^{n} \lambda_j z_j \partial/\partial z_j$ and $Y = \sum_{j=1}^{n} \mu_j z_j \partial/\partial z_j$. Then it is clear that $[X, Y] = 0$ so that X and Y span a foliation \mathcal{F} of complex dimension two on \mathbb{C}^n. Also \mathcal{F} has as singular set $\text{Sing}(\mathcal{F})$ the union of the coordinate axis. Denote by $\sum(X)$ the set of tangency points of X with the sphere $S^{2n-1}(r) \subset \mathbb{C}^n$, $r \geq 0$, then we have $\sum(X)$ given by the equation $\sum_{j=1}^{n} \lambda_j |z_j|^2 = 0$. This is a real cone. Analogously we define $\sum(Y)$ and describe it by the equation $\sum_{j=1}^{n} \mu_j |z_j|^2 = 0$. Under the assumption, we have $\sum(X) \cap \sum(Y) = \{0\}$. \mathcal{F} is transverse to $S^{2n-1}(r) \setminus (\text{Sing}(\mathcal{F}) \cap S^{2n-1}(r))$, $r > 0$. Moreover each leaf of \mathcal{F} accumulates the origin.

Theorem 5 ([5]) Let $\omega = \sum_{j=1}^{2n+1} f_j(x)dz_j$ be a holomorphic one form on \mathbb{C}^{2n+1}. Then the sphere $S^{4n+1}(r)$, $r > 0$ is not transverse to P_ω.

By this theorem 5 or Proposition 2, the sphere $S^5(1)$ of dimension 5 is not transverse to $\mathcal{F}(\omega_\lambda)$ where $\omega_\lambda = z_1 z_2 z_3(\sum_{j=1}^{3} \lambda_j \frac{dz_j}{z_j})$, $\lambda_j \neq 0$ is a linear logarithmic one form on \mathbb{C}^3.

Example 2 ([5]) (1) If λ_i/λ_j, $i \neq j$, are not positive real, then we can construct a smooth embedding $\phi : S^1 \times S^3 \times S^1 \rightarrow \mathbb{C}^3$ such that $\phi(S^1 \times S^3 \times S^1)$ is transverse to $\mathcal{F}(\omega_\lambda)$.

(2) If λ_i/λ_j, $i \neq j$, are not real, then there exists a smooth embedding $\Phi : T^5 = S^1 \times T^3 \times S^1 \rightarrow \mathbb{C}^3$ such that $\Phi(T^5)$ is transverse to $\mathcal{F}(\omega_\lambda)$.

References

[4] T. Ito; The number of compact leaves of a one-dimensional foliation on the $2n-1$ dimensional sphere S^{2n-1} associated with a holomorphic vector field, RIMS Kôkyûroku 955(August, 1996), 75-79.

[6] B. Scárdua and T. Ito; On the geometry of holomorphic flows and foliations having transverse sections, pre-print.

Toshikazu Ito
Department of Natural Science, Ryukoku University
Fushimi, Kyoto, 612-8577 Japan

B. Azevedo Scárdua
Instituto de Matemática
Universidade Federal do Rio de Janeiro
Caixa Postal 68530
21945-970 Rio de Janeiro-RJ
Brazil
scardus@im.ufrj.br