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I report some results obtained as a joint work in progress with Taras
Panov and some with Dong Youp Suh.

1. BOTT TOWER

For a complex vector bundle E — X, we denote its projectivization
by P(E). We consider the following sequence:

Bn =% B,y =5 ... 2 B = By = {a point}

where By, = P(1® Ly), Ly is a holomorphic line bundle over By, and
1 denotes the product complex line bundle. If every line bundle Ly
is trivial, then B, = (CPY)". Each m;: By — Bi-1 is a CP'-bundle
and it has two natural cross sections which correspond to the zero
sections of L and 1. The above sequence together with these natural
cross sections is called a Bott tower in [5]. In this article we are only
concerned with the top space B, of a Bott tower and call B, a Bott
manifold. Our starting point is

Problem. Classify Bott manifolds B,’s up to diffeomorphism.

It follows from Borel-Hirzebruch formula that
H*(Bic) = H* (Bk_l)[yk]/(yﬁ - Cl(Lk)yk)

where y; is the first Chern class of the canonical line bundle over By
associated with the fibration 7 : By — Bji_1. Therefore

H*(By) = H*((CPY)*)  as groups

but not as rings in general. Since H?(Bj) is additively generated by
Y1, ..,y over Z, Ly, is parameterized by Z* so that there is a canon-
ical surjection

(1.1) Z&I2D-- @IVt =ZM /2 [B’s}.
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Example. When n = 2, we have a surjection Z — {By’s} and Ly =™

for some m € Z where + is the canonical line bundle over By = CP:.
It is well-known that

Py"&1) = PY" ®1) < m=m' (mod 2).
The proof goes as follows. We note that P(E) = P(E® n) for any

complex line bundle 7. Suppose m = m’ (mod 2). Then m’ —m = 2£
for some ¢ € Z and we have

P(y"@1) = P(""@1)®7) = PO™" &7").
Here v @~¢ and v™ ®1 are over CP* and have the same first Chern
class, so they are isomorphic. Hence the last space above is same as
P(y™ @ 1). This proves the implication <= above.
On the other hand, it is not difficult to see that if H*(P{(y" & 1))
H*(P(y™ @ 1)) as rings, then m =m’ (mod 2}. O

The example above shows that cohomology ring detects diffeomor-
phism types of Bott manifolds By,’s when n = 2. One can check that
this is also the case when n = 3. So we are led to ask

Question. Are Bott manifolds B, and B!, diffeomorphic if and only if
H*(B,) & H*(B],) as rings?

The following proposition gives a partial affirmative answer to the
question above.

Proposition 1.1. Bott manifolds B, and (CP*)" are diffeomorphic if
and only if H*(B,) = H*((CP*)") as rings.

Proof. We prove the the “if part” by induction on n. When n = 1, the
statement is trivial and we assume n > 2. From

H*(Bn) = H*(B —1)[yn]/(y12:, ~ c1{Ln)yn)
one can conclude that H*(By,;) & H*((CPY)"1), so By is diffeo-
morphic to (CP!)"! by induction assumption. Let Zi,...,Zn-1 €

H?*(B,_1) be generators with square zero and write ¢;(Ly) = St aizs.
Then

H*(B,) = Z|zi,... ,:cn_l,yn]/(:z:%, T YR - (Z az-a;i)yn).

Since H*(B,) & H*((CP')"), there must be an element of the form
Yn + 2 byz; with square zero:

0=(yn+ Y bmi)* = (ai+2b)zsyn + O b
"This holds only when at most one a; is non-zero and even because z;z;
(i < ) and z;y, form an additive basis of H4(B,). Therefore L, is the
pullback of 4% over CP* by a projection B,_; = (CPY)"t — CP.
Since P(y~%i @ 1) is a product bundle as observed in the example
above, so is P(L, © 1), proving the proposition. O
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2. EQUIVARIANT CLASSIFICATION OF BOTT MANIFOLDS

Each By admits an effective action of (C*)* constructed inductively
as follows. Suppose By.i admits an action of (C*)*~!. Then it lifts to
an action on Lg. On the other hand, the product bundle 1 admits an
action of C* by scalar multiplication. These define an action of (C*)*
on 1 ® L; and induce an action of (C*)* on B;.

It turns out that By with the action of (C*)* is a compact nonsin-
gular toric variety of complex dimension k. A toric variety of complex
dimension k is a normal algebraic variety with an algebraic action of
(C*)* having a dense orbit ([4]). The orbit space of By by the maximal
compact torus T of (C*)* is a k-cube. In particular B, admits an
action of "= T™ and its orbits space is an n-cube.

For a T-space X, its equivariant cohomology is by definition

HA(X) == HYET x7 X)

where ET — BT is a universal principal T-bundle and ET xp X is
the orbit space of ET x X by the diagonal action of T. H3(X) is not
only a ring but also an algebra over H*(BT) through the projection
map ET xr X — ET/T = BT.

As is well known, H4(B,) is isomorphic as a ring to the face ring
of (the dual of) the n-cube. So the ring structure of Hy(B,) does not
detect the T-equivariant diffeomorphism type of B,, but the algebra
structure does.

Theorem 2.1. Bott manifolds B, and B!, with the above T-actions
are equivariantly diffeomorphic if and only if H3(By) = Hy(B}) as
algebras over H*(BT).

3. QUASITORIC MANIFOLDS OVER AN n-CUBE

If M is a compact nonsingular toric variety of complex dimension 7,
then M has an action of {C*)" and the orbit space M /T of M by the
restricted action of the maximal compact torus T of (C*)™ is a manifold
with corners such that every face (even M/T itself) is contractible. In
fact, M/T is often a simple convex polytope (e.g. B,,/T is an n-cube)
and this is the case when M is projective (see [4]).

Davis-Januszkiewicz [2] introduced a topological counterpart to a
compact nonsingular toric variety in algebraic geometry. They used
the terminology toric manifold for the topological counterpart, but
Buchstaber-Panov [1] started calling it a gquasitoric manifold because
the terminology toric manifold was already used in algebraic geometry
for (compact) nonsingular toric variety. Roughly speaking a quasitoric
manifold is a closed smooth manifold M of dimension 2n with smooth
T-action such that M/T is a simple convex polytope. Not all but
many compact nonsingular toric varieties with the restricted action of
the maximal compact subtorus of (C*)* provide examples of quasitoric
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manifolds, and there are quasitoric manifolds which do not arise this
way.

We think of the left side of (1.1) as a set of upper triangular matrices
with 1 as diagonal entries. Obviously all principal minors of such an
upper triangular matrix are 1, where the determinant of the matrix
itself is considered to be a principal minor. ‘It turns out that any
quasitoric manifold over an n-cube is associated with an integer square
matrix C = (¢;;) of size n such that

(3.1) ¢ = 1 for any ¢ and all principal minors of C' are +1.

The correspondence is as follows (cf. [5]). We view S* and S° as
the unit spheres of C and C? respectively. Associated with the matrlx
= (ci;), we define an action of (g1,...,gn) € (S)™ on (S°)" b

n
(zl: Wiy ... 1zn7wn) = (9121, (H gz‘Cil)wlﬁ <oy Gnin, (Hg?n)w%)

where (z;,w;) € S C C? denotes the coordinate of the jth factor of
(S3)". The condmon (3.1) ensures that the action of (S*)" on (S°)" i
free, so that its orbit space is a closed smooth manifold of dimension 2n,
which we denote by M(C). Note that when C is the identity matrix,
M(C) = (CPY)". M(C) admits an action of T’ induced from an action
of (t1,...,t,) € T on (S*)" defined by

(21,01, - - - 2y Wy) > (21,0101, - . -, 2, EnWn)-

The orbit space of M(C) by the induced T-action is an n-cube, so that
M(C) with this T-action is a quasitoric manifold over an n-cube.

Theorem 3.1. The following are equivalent.

(1) M(C) 1is equivariantly diffeomorphic to a Bott manifold.
(2) All principal minors of C are 1.
(3) M(C) admits a T-invariant almost complez structure.

Example. A simple example of an integer square matrix C which
satisfies the condition (3.1) but does not satisfy (2) in the theorem
above is ( ; i ) In this case M (C) is (equivariantly) diffeomorphic
to CP?#CP? (with an appropriate action of 72).

Theorem 3.2. Let C' be another integer square matriz of size n sat-
isfying the condition (3.1). Then the following are equivalent.

(1) M(C) and M(C") are equivariantly diffeomorphic.

(2) C and C" are conjugate by a permutation matriz and a matric

with +1 as diagonal entries and 0 as off-diagonal entries.
(3) H3(M(C)) =2 H:(M(C")) as algebras over H*(BT).
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We do not know the corresponding results for (non-equivariant) dif-
feomorphism classification of M(C)’s although we can describe explic-
itly matrices C such that M (C) is diffeomorphic to (CP*)™.

An n-cube is a product of n number of 1-simplices. It turns out that
most of the results mentioned so far can be extended to quasitoric man-
ifolds over a product of finitely many simplices (with possibly different
dimensions). Those quasitoric manifolds are also studied in [3].

4. TORUS MANIFOLDS

As remarked before, a compact nonsingular toric variety with re-
stricted action of the maximal compact torus is not necessarily a qu-
asitoric manifold and vice versa. A torus manifold introduced in [6]
is a closed smooth manifold of dimension 2n with a smooth T-action
having a fixed point. Precisely speaking, orientation data is incorpo-
rated in the definition of torus manifold, but we do not care about it.
A compact nonsingular toric variety with restricted action of the maxi-
mal compact torus and a quasitoric manifold are both a torus manifold,
but of a special type. Their odd degree cohomology groups vanish and
every fixed point set component of a subtorus is simply connected. It
follows from [7] that

Proposition 4.1. Let M be a torus manifold of dimension 2n such
that Ho%(M) = 0 and every fized point set component of a subtorus of
T (even M itself) is simply connected. Then M/T is a manifold with
corners such that every face (even M/T itself) is contractible.

Because of this, a torus manifold satisfying the assumption in the
proposition above seems an appropriate topological counterpart to a
compact nonsingular toric variety. We conclude this article with the
following question.

Question. Let M and M’ be torus manifolds satisfying the assumption
in the proposition above.
(1) Are they equivariantly diffeomorphic if and only if H7(M) =
H: (M) as algebras over H*(BT)?
(2) Are they diffeomorphic if and only if H*(M) = H*(M') as rings?
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