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I report some results obtained as a joint work in progress with Taras
Panov and some with Dong Youp Suh.

1. BOTT OVER

For a complex vector bundle $Earrow X$ , we denote its projectivization
by $P(E)$ . We consider the following sequence:

$B_{n}arrow B_{n-1}arrow\cdotarrow B_{1}\pi_{n}\pi_{n-1}..\pi_{2}arrow B_{0}=\pi_{1}$ {a point}

where $B_{k}=P(1\oplus L_{k})$ , $L_{k}$ is a holomorphic line bundle over $B_{k-1}$ and
1 denotes the product complex line bundle. If every line bundle $L_{k}$

is trivial, then $B_{n}=(\mathbb{C}P^{1})^{n}$ . Each $\pi_{k}$ : $B_{k}arrow B_{k-1}$ is a $\mathbb{C}P^{1}$ bundle
and it has two natural cross sections which correspond to the zero
sections of $L_{k}$ and 1. The above sequence together with these natural
cross sections is called a Bott tower in [5]. In this article we are only
concerned with the top space $B_{n}$ of a Bott tower and call $B_{n}$ a Bott
manifold. Our starting point is

Problem. Classify Bott manifolds $B_{n}$ ’s up to diffeomorphism.

It follows from Borel-Hirzebruch formula that
$H^{*}(B_{k})=H^{*}(B_{k-1})[y_{k}]/(y_{k}^{2}-c_{1}(L_{k})y_{k})$

where $y_{k}$ is the first Chern class of the canonical line bundle over $B_{k}$

associated with the fibration $\pi_{k}$ : $B_{k}arrow B_{k-1}$ . Therefore
$H^{*}(B_{k})\cong H^{*}((\mathbb{C}P^{1})^{k})$ as groups

but not as rings in general. Since $H^{2}(B_{k})$ is additively generated by
$y_{1}$ , $\ldots$ , $y_{k}$ over $\mathbb{Z}_{7}L_{k+1}$ is parameterized by $\mathbb{Z}^{k}$ so that there is a canon-
ical surjection

(1.1) $\mathbb{Z}\oplus \mathbb{Z}^{2}\oplus\cdots\oplus \mathbb{Z}^{n-1}=\mathbb{Z}^{n(n-1)/2}arrow\{B_{n}’ \mathrm{s}\}$.
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Example. When $n=2$ , we have a surjection $\mathbb{Z}arrow\{B_{2}’ \mathrm{s}\}$ and $L_{2}=\gamma^{m}$

for some $m\in \mathbb{Z}$ where $\gamma$ is the canonical line bundle over $B_{1}=\mathbb{C}P^{1}$ .

It is well-known that
$P(\gamma^{m}\oplus 1)\cong P(\gamma^{m’}\oplus 1)\infty$ $m\equiv m’$ (mod 2).

The proof goes as follows. We note that $P(E)\cong P(E\otimes\eta)$ for any
complex line bundle $\eta$ . Suppose $m\equiv m’(\mathrm{m}\mathrm{o}\mathrm{d} 2)$ . Then $m’-m=2l$
for some $\ell\in \mathbb{Z}$ and we have

$P(\gamma^{m}\oplus 1)\cong P((\gamma^{m}\oplus 1)\otimes\gamma^{l})=P(\gamma^{m+\ell}\oplus\gamma^{\ell})$ .
Here $\gamma^{m+\mathit{1}}\oplus\gamma^{\ell}$ and $\gamma^{m’}\oplus 1$ are over $\mathbb{C}P^{1}$ and have the same first Chern
class, so they are isomorphic. Hence the last space above is same as
$P(\gamma^{m’}\oplus 1)$ . This proves the implication $\Leftarrow$ above.

On the other hand, it is not difficult to see that if $H^{*}(P(\gamma^{m}\oplus 1))\cong$

$H^{*}(P(\gamma^{m’}\oplus 1))$ as rings, then $m\equiv m’$ (mod 2). $[]$

The example above shows that cohomology ring detects diffeomor-
phism types of Bott manifolds $B_{n}’ \mathrm{s}$ when $n$ $=2$ . One can check that
this is also the case when $n=3$ . So we are led to ask

Question. Are Bott manifolds $B_{n}$ and $B_{n}’$ diffeomorphic if and only if
$H^{*}(B_{n})\cong H^{*}(B_{n}’)$ as rings?

The following proposition gives a partial affirmative answer to the
question above.

Proposition 1.1. Bott manifolds $B_{n}$ and $(\mathbb{C}P^{1})^{n}$ are diffeomorphic if
and only if $H^{*}(B_{n})\cong H^{*}((\mathbb{C}P^{1})^{n})$ as rings.

Proof We prove the the “if part” by induction on $n$ . When $n=1$ , the
statement is trivial and we assume $n\geq 2$ . From

$H^{*}(B_{n})=H^{*}(B_{n-1})[y_{n}]/(y_{n}^{2}-c_{1}(L_{n})y_{n})$

one can conclude that $H^{*}(B_{n-1})$ $\cong H^{*}((\mathbb{C}P^{1})^{n-1})$ , so $B_{n-1}$ is diffeo-
morphic to $(\mathbb{C}P^{1})^{n-1}$ by induction assumption. Let $x_{1}$ , $\ldots$ , $x_{n-1}\in$

$H^{2}(B_{n-1})$ be generators with square zero and write $c_{1}(L_{n})= \sum_{i=1}^{n-1}a_{i}x_{i}$ .
Then

$H^{*}(B_{n})= \mathbb{Z}[x_{1}, \ldots, x_{n-1}, y_{n}]/(x_{1}^{2}, \ldots, x_{n-1}^{2}, y_{n}^{2}-(\sum a_{i}x_{i})y_{n})$ .

Since $H^{*}(B_{n})\cong H^{*}((\mathbb{C}P^{1})^{n})$ , there must be an element of the form
$y_{n}+ \sum b_{i}x_{i}$ with square zero:

$0=(y_{n}+\mathrm{I}^{b_{i}x_{i})^{2}=\sum(a_{i}+2b_{i})x_{i}y_{n}+(\sum b_{i^{X}i})^{2}}\cdot$

This holds only when at most one $a_{i}$ is non-zero and even because $x_{i}x_{i}$

$(\mathrm{i}<j)$ and $x_{i}y_{n}$ form an additive basis of $H^{4}(B_{n})$ . Therefore $L_{n}$ is the
pullback of $\gamma^{-2b_{\mathrm{a}}}$ over $\mathbb{C}P^{1}$ by a projection $B_{n-1}=(\mathbb{C}P^{1})^{n-1}arrow \mathbb{C}P^{1}$ .

Since $P(\gamma^{-2b_{i}}\oplus 1)$ is a product bundle as observed in the example
above, so is $P(L_{n}\oplus 1)$ , proving the proposition. $\square$
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2. EQUIVARIANT CLASSIFICATION OF BOTT MANIFOLDS

Each $B_{k}$ admits an effective action of $(\mathbb{C}^{*})^{k}$ constructed inductively
as follows. Suppose $B_{k-1}$ admits an action of $(\mathbb{C}^{*})^{k-1}$ . Then it lifts to
an action on $L_{k}$ . On the other hand, the product bundle 1 admits an
action of C’ by scalar multiplication. These define an action of $(\mathbb{C}^{*})^{k}$

on $1\oplus L_{k}$ and induce an action of $(\mathbb{C}^{*})^{k}$ on $B_{k}$ .
It turns out that $B_{k}$ with the action $\wedge \mathrm{o}\mathrm{f}(\mathbb{C}^{*})^{k}$ is a compact nonsirt-

gular toric variety of complex dimension $k$ . A toric variety of complex
dimension $k$ is a normal algebraic variety with an algebraic action of
$(\mathbb{C}^{*})^{k}$ having a dense orbit ([4]). The orbit space of $B_{k}$ by the maximal
compact torus $T^{k}$ of $(\mathbb{C}^{*})^{k}$ is a $k$-cube. In particular $B_{n}$ admits an
action of $T=T^{n}$ and its orbits space is an n-cube.

For a $T$ space $X$ , its equivariant cohom ology is by definition

$H_{T}^{*}(X):=H^{*}(ET \mathrm{x}_{T}X)$

where $ETarrow BT$ is a universal principal $\mathrm{T}$-bundle and ET $\mathrm{x}_{T}X$ is
the orbit space of ET $\mathrm{x}$ $X$ by the diagonal action of T. $H_{T}^{*}(X)$ is not
only a ring but also an algebra over $H^{*}(BT)$ through the projection
map ET $\mathrm{x}_{T}Xarrow ET/T=BT$ .

As is well known, $H_{T}^{*}(B_{n})$ is isomorphic as a ring to the face ring
of (the dual of) the $n$-cube. So the ring structure of $H_{T}^{*}(B_{n})$ does not
detect the $T$-equivariant diffeomorphism type of $B_{n7}$ but the algebra
structure does.

Theorem 2.1, Bott manifolds $B_{n}$ and $B_{n}’$ with the above T-actions
are equivariantly diffeomorphic if and only if $H_{T}^{*}(B_{n})\cong H_{T}^{*}(B_{n}’)$ as
algebra over $H^{*}(BT)$ .

3. QUASITORIC MANIFOLDS OVER AN $n$-CUBE

If $M$ is a compact nonsingular toric variety of complex dimension $n$ ,
then $M$ has an action of $(\mathbb{C}^{*})^{n}$ and the orbit space $M/T$ of $M$ by the
restricted action of the maximal compact torus $T$ of $(\mathbb{C}^{*})^{n}$ is a manifold
with corners such that every face (even $M/T$ itself) is contractible. In
fact, $M/T$ is often a simple convex polytope (e.g. $B_{n}/T$ is an n-cube)
and this is the case when $M$ is projective (see [4]).

Davis-Januszkiewicz [2] introduced a topological counterpart to a
compact nonsingular toric variety in algebraic geometry. They used
the terminology toric manifold for the topological counterpart, but
Buchstaber-Panov [1] started calling it a quasitoric manifold because
the terminology toric manifold was already used in algebraic geometry
for (compact) nonsingular toric variety. Roughly speaking a quasitoric
manifold is a closed smooth manifold $M$ of dimension $2n$ with smooth
$T$-action such that $M/T$ is a simple convex polytope. Not all but
many compact nonsingular toric varieties with the restricted action of
the maximal compact subtorus of $(\mathbb{C}^{*})^{n}$ provide examples of quasitoric
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manifolds, and there are quasitoric manifolds which do not arise this
way.

We think of the left side of (1.1) as a set of upper triangular matrices
with 1 as diagonal entries. Obviously all principal minors of such an
upper triangular matrix are 1, where the determinant of the matrix
itself is considered to be a principal minor. It turns out that any
quasitoric manifold over an $n$-cube is associated with an integer square
matrix $C=(c_{ij})$ of size $n$ such that

(3.1) $c_{ii}=1$ for any $\mathrm{i}$ and all principal minors of $C$ are $\pm 1$ .

The correspondence is as follows (cf. [5]). We view $S^{1}$ and $S^{3}$ as
the unit spheres of $\mathbb{C}$ and $\mathbb{C}^{2}$ respectively. Associated with the matrix
$C=(cy)$ , we define an action of $(g_{1}, \ldots,g_{n})\in(S^{1})^{n}$ on $(S^{3})^{n}$ by

$(z_{1}, w_{1}, \ldots, z_{n?}w_{n})\mapsto(g_{1}z_{1}, (\prod_{i=1}^{n}g_{i}^{c_{i1}})w_{1}$, . . . , $g_{n}z_{n}$ , $( \prod_{i=1}^{n}g_{i}^{c_{\tau n}})w_{n})$

where $(z_{j}, w_{j})\in S^{3}\subset \mathbb{C}^{2}$ denotes the coordinate of the $j\mathrm{t}\mathrm{h}$ factor of
$(S^{3})^{n}$ . The condition (3.1) ensures that the action of $(S^{1})^{n}$ on $(S^{3})^{n}$ is
free, so that its orbit space is a closed smooth manifold of dimension $2n$ ,
which we denote by $M(C)$ . Note that when $C$ is the identity matrix,
$M(C)=(\mathbb{C}P^{1})^{n}$ . $M(C)$ admits an action of $T$ induced from an action
of $(t_{1}, \ldots , t_{n})\in T$ on $(S^{3})^{n}$ defined by

$(z_{1}, w_{1}, \ldots, z_{p_{\vee}}, w_{n})\mapsto(z_{1}, t_{1}w_{1,7}\ldots z_{n}, t_{n}w_{n})$ .

The orbit space of $M(C)$ by the induced $T$ action is an $n$-cube, so that
$M(C)$ with this $T$-action is a quasitoric manifold over an n-cube.

Theorem 3.1. The following are equivalent.
(1) $M(C)$ is equivariantly diffeomorphic to a Bott manifold.
(2) All principal minors of $C$ are 1.
(3) $M(C)$ admits a $T$ -invariant almost complex structure.

Example. A simple example of an integer square matrix $C$ which
satisfies the condition (3.1) but does not satisfy (2) in the theorem

above is $(\begin{array}{ll}1 12 \mathrm{l}\end{array})$ . In this case $M(C)$ is (equivariantly) diffeomorphic

to $\mathbb{C}P^{2}\#\mathbb{C}P^{2}$ (with an appropriate action of $T^{2}$ ).

Theorem 3.2. Let $C’$ be another integer square matrix of size $n$ sat-
isfying the condition (3.1). Then the following are equivalent.

(1) $M(C)$ and $M(C’$ are equivariantly diffeomorphic.
(2) $C$ and $C’$ are conjugate by a permutation matrix and a matrix

$w\mathrm{i}th\pm 1$ as diagonal entries and 0 as off-diagonal entries.
(3) $H_{T}^{*}(M(C))\cong H_{T}^{*}(M(C’))$ as algebras over $H^{*}(BT)$ .



31

CLASSIFICATION OF QUASITORIC MANIFOLDS OVER A CUBE

We do not know the corresponding results for (non-equivariant) dif-
feomorphism classification of $M(C)’ \mathrm{s}$ although we can describe explic-
itly matrices $C$ such that $M(C)$ is diffeomorphic to $(\mathbb{C}P^{1})^{r\iota}$ .

An $n$-cube is a product of $n$ number of 1-simplices. It turns out that
most of the results mentioned so far can be extended to quasitoric man-
ifolds over a product of finitely many simplices (with possibly different
dimensions). Those quasitoric manifolds are also studied in [3].

4. TORUS MANIFOLDS

As remarked before, a compact nonsingular toric variety with re-
stricted action of the maximal compact torus is not necessarily a qu-
asitoric manifold and vice versa. A torus manifold introduced in [6]
is a closed smooth manifold of dimension $2n$ with a smooth T-action
having a fixed point. Precisely speaking, orientation data is incorpo-
rated in the definition of torus manifold, but we do not care about it.
A compact nonsingular toric variety with restricted action of the maxi-
mal compact torus and a quasitoric manifold are both a torus manifold,
but of a special type. Their odd degree cohomology groups vanish and
every fixed point set component of a subtorus is simply connected. It
follows from [7] that

Proposition 4.1. Let $M$ be a torus manifold of dimension $2n$ such
that $H^{odd}(M)=0$ and every fixed point set component of a subtorus of
$T$ (even $M$ itself) is simply connected. Then $lVI/T$ is a manifold with
corners such that every face (even $M/T$ itself) is contractible.

Because of this, a torus manifold satisfying the assumption in the
proposition above seems an appropriate topological counterpart to a
compact nonsingular toric variety. We conclude this article with the
following question.

Question. Let $M$ and $M’$ be torus manifolds satisfying the assumption
in the proposition above.

(1) Are they equivariantly diffeomorphic if and only if $H_{T}^{*}(M)\cong$

$H_{T}^{*}(M’)$ as algebras over $H^{*}(BT)$?
(2) Are they diffeomorphic if and only if $H^{*}(M)\cong H^{*}(M’)$ as rings7
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