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1 Introduction

Our notation and definition are similar to those of [8] in this volume. We do
not explain all of those details here. For further details, see [2, 3, 4, 5, 6, 9].
Our aim is to give a partial solution for the following problem.

Problem 1(Baldwin [1]) Is there a generic structure that is superstable but
not w-stable ?

This problem is still open. In fact, all of known stable generic structures is
strictly stable or w-stable. In this paper, we will consider the problem under
the following assumption. '

Assumption 2 K is a subclass of K, that is closed under substructures.
M is a saturated K-generic graph. (It follows that K has the amalgamation

property.)

For the stability of K-generic graphs, the following fact is well-known.
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Fact 3 ([3], [9]) Let T = Th(M). Then
(i) T is stable;
(ii) If « is rational, then T is w-stable.

2 Triviality of K

For each n € w, I,, denotes a graph of size n with no relations.
Lemma 4 I, € K for each n € w.

Proof If m < n and I, € K, then I,, € K since K is closed under sub-
structures. So we can assume n > 3. Then we can take k € w such that
{k' (z:g)}/ ( :z ) < o. Take any A € K of size k. Then it is enough to
see that A contains a copy of I,. This can be shown as follows: If not, then

r(A4) < ( . )/( i ) SowehaveJ(A)Sk—{( , )/( 2 )}a<

0. This is a contradiction.
Lemma 5 If Abis a finite graph with A € K and r(A,b) = 0, then Ab € K.

Proof Let |A| = k. Take n € w with n > k/a. By lemma 4, we have
I, € K. So we can assume that I,A(€ K) is an amalgamation of I, and A
over §. It is enough to show that there is ¥’ € I, — A with ¥ =4 b. This
can be shown as follows: If A C I,, then we easily get ¥’ € I, — A with
b =4 b. So we can assume A ¢ I,,. If not, then (4 — I,,,I,) > n. Then
A/ L) =8A-1,)—a -r(A—1I,,1I,) <k—a-n<0. A contradiction.

Definition 6 K is said to be trivial, if there is some n € w such that f A € K
is connected then |A| < n.

Lemma 7 If K is trivial, then Th(M) is w-stable.

Proof Take any countable A < M and b € M. To show that Th(M) is w-
stable, it is enough to see that S(A) is countable. Since K is trivial, there is
finite Ag < A with d(b/A4) = d(b/Ap). Let B = cl(bAg) and A; = BN A. Note
that A; < M.

Claim: tp(b/A;) F tp(b/A).

Proof: Take any ¢ € M such that tp(¢/41) = tp(b/A;) and d(¢/41) = d(¢/A).
Let C = cl(¢A;). Then we have B 224, C. From proposition 13 it follows that
B and A are free over A; and BA < M, and that C and A are free over A; and



CA < M. In particular we have B 24 C, and so tp(B/A) = tp(C/A). Hence
tp(b/A) ='tp(é/A). (End of Proof of Claim)
Since there is a countable saturated model, Th(M) is small, and hence the
number of the types over a given finite set is countable. It follows that [S(A4)| <
No - Ng = Nog-

For a finite graph A and e € A, we denote degy(e) = max{|B| : Vb &
B, R(e,b)}.

Lemma 8 Suppose that K is non-trivial. Then for any n € w the following

condition (), holds:
(#)n There is A € K and a € A with degy(a) > n.

Proof For each m € w, let L, denote a finite graph apa;...a,, with the rela-
tions R(ao,a1), R{a1,az), ..., R(@m—1,an,). We divide into two cases.
Case 1: L,, € K for some m € w.

Since K is non-trivial, (*),, clearly holds for each n € w. (mousukosi seikaku
ni!)

Case 2: L,, € K for any m € w.

We prove by induction. By induction hypothesis, we assume that deg4(a) >
n for some A € K. g
Subcase 2.1: a < 3.

Let acd be a graph with the relations R(a, c) and R(e,d). Since Ly € K and
a< %, we have ad < acd € K. On the other hand, we can assume r(A4,d) = 0.
By lemma 5, we have ad < Ad € K. So we can assume that cdA(€ K) is an
amalgamation of acd and Ad over ad. Note that ¢ € A since r(A,¢) = 0. Hence
deg,.(a) 2 n+1.

Subcase 2.2: @ > 1.

Let m = min{k : (k — 1) — ka > 0}. Note that m > 3 since & > 3. Then we
have L,, = aga;...a,;, € K. We can assume a = ag and r(A4, a,) = 0. By lemma
5, we have aa,, < Aa,, € K. By the definition of m, we have aa,, < L,, € K.
So we can assume that AL,,(¢ K) is an amalgamation of Aa,, and L, over
aam,. Then we see a1 & A. (Proof: If not, then we have aaia,, < Ly, and so
8(Lmfaa1a.,) = (m —2) — (m —1)a > 0. This contradicts the definition of m.)

Therefore deg,,, (a) > n + 1.

For each n € w, S, denote a finite graph aa;as...a,, with the relations R(a, a;)
for every i =1,2,...,n.

Lemma 9 Suppose that K is non-trivial. Then S,, € K for each n € w.
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Proof Take sufficiently large k. By lemma, there is 4 € K with degy(a) >
L for some a € A. We can assume that R(a,b) for any b € A —a. Then
it is enough to show that there is I, € A — {a}. (If not, then (A — a) >

( z )/ z:g ), so we have §(A) = §(A—a)+8(a/A—a) =8§(A-a)+1-

kag{( k )/( k-2 )}a+1~ka<0' A contradiction.

n n-—2

Lemma 10 Let K be non-trivial. Suppose that Ab is a finite graph such that
thereisa € A witha < A € K and r(A,b) = r(a,b) = 1. Then we have Ab € K.

Proof Let |A| = k. Take n € w with n > k(1 + 1/e). By lemma 9, we have
S, € K. We assume that a < Sy, and that R(a,c) for any ¢ € S, — {a}.
By our assumption, we have a < A € K. So we can assume that AS,(€ K)
is an amalgamation of A and S, over a. To show our lemma, it is enough to
see that there is b’ € S, — A with & 24 b. This can be shown as follows:
If A C S, then we can easily pick b’ as required. If A ¢ S,, we can take
b € S, — A with 7(¢/, A) = r(b/,a) = 1. (If not, then we have 8(A/Sn) =
§(A—Sp) —r(A—Sn,Sp)-a<k—(n—k)a<0. On the other hand, we have
S, < AS,, since AS, is an amalgamation. A contradiction.)

Proposition 11 Suppose that K is non-trivial. Then any finite graph with
no cycles belongs to K.

Proof Let B be a finite graph with no cycles. We will prove by induction on
|B|. Since B has no cycles, we can take b € B such that there are no distinct
c.d € B with R(c,b) A R(d,b). Let A= B — {b}. By induction hypothesis, we
have A € K. If r(b, A) = 0, then we have B = Ab € K by lemma 10. Therefore
we assume (b, A) = 1. Since A has no cycles, we have a < A(eK). Taken € w
with n > |A|/a. By lemma 9, S,, € K. We can assume that a € S, with R(a,c)
for any ¢ € S, — {a}. Hence we have @ < S, € K.

3 Proof of Theorem

The following proposition was proved in [7] to show that there is no K-generic
pseudoplane that is stable but not w-stable.

Proposition 12 ([7]) If o is irrational, then there is an infinite graph D with
an element e and finite subgraphs By, By, - - - with the following properties:

(1) D = clp(eB1B; - --) has no cycles;

(2) dp(e/B1) > dp(e/B2) > - -

3)Bi<B;<---<D.
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In [8], we studied algebraic types of K-generic graphs, where K is closed
under subgraphs. As a corollary, we have the following proposition.

Proposition 13([8]) Assume that K is closed under subgraphs. Let A, B,C
be finite such that B, C < M and A = BNC. Then the following are equivalent.
(i) d(B/A) = d(B/C);

(ii) B and C are free over A, and BC < M;

(iil) tp(B/C) does not fork over A.

Using proposition 12 and 13, we obtain the following theorem.

Theorem Let K be a subclass of K, that is closed under subgraph and M a
saturated K-generic graph. Then Th(M) is strictly stable or w-stable.

Proof of Theorem If K is trivial or « is rational, then, by fact 3 and lemma
7, Th(M) is w-stable. Thus we can assume that K is non-trivial and « is
irrational. By fact 3 again, Th(M) is stable. So we have to show that Th(}M)
is not superstable: Since « is irrational, by proposition 12, there is an infinite
graph D with an element e and finite subgraphs By, By, - - such that (i) D =
clp(eB1B; - ) has no cycles; (ii) dp(e/B1) > dp(e/B2) > - -+ (iii) By < B2 <
... < D. Since K is non-trivial and D has no cycles, by proposition 11, any
finite subset of D belongs to K, and so we can assume D < M. It follows
that das(e/B1) > da(e/Bs) > ---. By proposition 13, we have tp(e/B1) Cf
tp(e/Bz) Cs - - -. Hence Th(M) is not superstable.
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