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1 Introduction

Let A be a linearly ordered structure and A a subset A/. The set A is
said to be convez if for all a,b € A and ¢ € A with a < ¢ < b we have
¢ € A. A linearly ordered structure Af is said to be o-minimal if every
definable subset of M is a finite union of intervals (possibly with infinite
endpoints). A linearly ordered structure Al is said to be weakly o-minimal if
every definable subset of M is a finite union of convex sets. A theory T is said
to be weakly o-minimal if every model of T is weakly o-minimal. Henceforth,
a linearly ordered structure is abbreviated as an ordered structure.
It is well-known the following fact.

Fact 1 Let M be an ordered structure. Then the following is equivalent:
1. Th(Al) is weakly o-mintmal;

2. for each formula p(z,7) there erists some n € w such that for each
tuple @ from Al the set (M, @) can be written as a union of at most n
many Conver sets.

Fact 2 Let A be a weakly o-minimal structure. If M is w-saturated, then
Th(AI) is weakly o-minimal.

Fact 3 [BP] Let M be an expansion of an o-minimal structure by conves
subsets. Then Th(Al) is weakly o-minimal.
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2 Monoids and groups

In this section, we study weakly o-minimal monoids and groups. It is well-
known the following fact.

Fact 4 [MMS] Let G be a weakly o-minimal group. Suppose that H is a
definable subgroup of G. Then, the following holds:

1. G is abelian and divisible;
2. H is conver.

Let G be a weakly o-minimal group. Suppose that H is a definable
subgroup of G. Then,by Fact 4, H is divisible.

We call an ordered group (G,0,+, <, ...) Archimedian if for all elements
a,b with b > 0 there exists some n € w such that @ < nb.

Lemma 5 Let G = (G,0,+,<,...) be a weakly o-minimal Archimedian
group. Suppose that H is a definable subgroup of G. Then H is either {0} or
g.

Proof. Let a € G. Without loss of generality, we may assume a > 0. Let
H # {0}. Then, there exists some b € H such that b > 0. Since the group ¢
is Archimedian, there exists some n € w such that a < nb. Hence, by Fact 4,
we have a € H. O

From now on, we study monoids.

Proposition 6 Let N' = (N,0,+,<,...) be a weakly o-minimal monoid.
Then N is commutative.

Proof. For alla € N, let Cy(a) :={z € N|z+a=a+z}.
Claim Cy(a) is convex.

Clearly, 0 € Cn(a) and, if 2,y € Cy(a) then z +y € Cy(a). By weak o-
minimality, Ciy(a) is the union of finitely many maximal convex subsets. Let
X be the greatest of these convex components with respect to the ordering
induced by <. Let z € X with z > 0. Suppose that y € N with 0 <y < =.
We may show that y € Cy(a). By z < y + ¢ < 2z and 2z € X, we have
y+z € X. Hence (y+ z) +a = a+ (y-+z). By z € Cy{a), we have
(y+a)+z = (a+y)+ . Hence, we have y +a = a+y. Thus, y € Cn(a),
as desired.

Let b,c € N with b < ¢. Then the following is equivalent:



e b and c are commutative;
e b and b+ c are commutative;
e b+ c and ¢ are commutative.

Now b,b+c < 0orb+c,c> 0. Hence we may assume 0 < b < c. Then,
as Cn(c) is convex, we have b € Cy(c). Therefore N is commutative. [

Let N = (N,0,+, <, ...) be an ordered monoid. Suppose that Iy := {z €
N | N E 3y(z +y =0)}. Clearly, Iy contains 0. We call an ordered monoid
(N,0,+,<,...) Archimedian if for all elements a,b with b > 0 there exists
some n € w such that a < nb, and for all elements a, b with b < 0 there exists
some n € w such that nb < a.

Example 7 Let M = ({0}UQ2%,0,+,<, P), where Q' ={a € Q |a > 1}
and the unary predicate symbol P is interpreted by the conver set PM =
\/— 2,3)N Q. Then, M is a weakly o- mzmmal Archimedian monoid and not
dwzszble Moreover I = {0}.

Hence, in generally a weakly o-minimal Archimedian monoid is not a
group. However the following holds.

Proposition 8 Let N = (N,0,+,<,...) be a weakly o-minimal Archime-
dian monoid. Suppose that Iy # {0}. Then N is a group.

Proof. Clearly 0 € Iy. Let z,y € In. Then, there exist z1,y; such that
z+z =0andy+y =0. Then (z+y) + (31 +21) = 0. Thus, z +y € In.
Claim Iy is convex.

By wesk o-minimality, Iy is the union of finitely many maximal convex
subsets. Let C be the greatest of these convex components with respect to
the ordering induced by <. Let z € C with z > 0. Suppose that y € N with
0 < y < z. We may show that y € Iy. By z <y +z < 27 and 2z € C, we
have y + 2 € C. Hence, there exists some z € N such that (y + z)+ 2z =0.
So y + (z + z) = 0. Thus, y € Iy, as desired.

Let ¢ € N. By Iy # {0}, there exists some a € Iy such that a # 0.
Without loss of generality, we may assume that g > 0O anda > 0. As N is
Archimedian, there exists some n € w such that 0 < g < na. Since Iy is
convex, we have g € Iy. Therefore Iy = N. O
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Let N be an ordered moneid and A a subset N. The ordered monoid N
is said to be rich, if for all a,b € Nif 0 < a <borb < a <0, then there
exists some ¢ € N such that b = a + ¢. The set A admits right elimination,
ifforalac Aandallbe Nifb+a€ A, thenb € A,

Example 9 Let M = (Q2°,0,+, <, P), where Q2°® = {a € Q | a > 0}
and the unary predicate symbol P is interpreted by the convez set PM —
(\/ﬁ, 3)NQ. Then, M is a weakly o-minimal rich monoid and divisible.

Proposition 10 Let N = (N,0,+,<,...) be a weakly o-minimal monoid.
Then the following is equivalent:

1. N is divisible;
2. for allm € w, nN admits right elimination,

3. for alln € w, nN is convez.

Proof. (1 = 2) It is clear.

(2 = 3) Let n € w. Let z,y € nN. Then there exist z1,, € N such that
z = nz, and ¥y = ny;. By Proposition 6, we have z + y = na; + ny; =
n{x; +y1) Hence, z +y € nN. Now, by weak o-minimality, n/V is the union
of finitely many maximal convex subsets. Let C be the greatest of these
convex components with respect to the ordering induced by <. Let z € C
with z > 0. Suppose that y € N with 0 < y < . We may show that y € nNV.
Byz <y+z<2zand 2z € C, we have y+z € C. As nN admits right
elimination, we have y € nV, as desired. '

(3 => 1) Let n be a nonzero natural nunber. For all positive a € N, we have
0 < a < na. As nN is convex, we have a € nN. Hence N is divisible. [

Proposition 11 Let N = (N,0,+,<,...) be a weakly o-minimal monoid.
If N is rich, then N is divisible.

Proof. Let n be a nonzero natural nunber. Now, by weak o-minimality, nN
is the union of finitely many maximal convex subsets. Let C be the greatest
of these convex components with respect to the ordering induced by <. Let
z € C with z > 0. Suppose that y € N with 0 <y < z. We show that
yenN. Byz <y+z < 2z and 2z € C, we have y+ 2 € C. So there

Lexist 21,29 € N with 0 < 21 < 2 such that z = nz; and y + z = nz.



As N is rich, there exists some a € N such that a + 2; = 2z2. Hence, we
have y + nz; = na + nz;. Therefore we have y = na € nN. It follows that
nN = N. O

Proposition 12 [T] Let N be an ordered monoid. Suppose that Th(N) is
weakly o-minimal. Then there ezists an extending ordered group G of N such
that Th(G) is weakly o-minimal.

Proof. Let N; be an w-saturated elementary extension of N. Define the
following relation on N; x Ny:

(a,b) ~ (d',b) <= a+¥ =d +b.

Then ~ is an equivalence relation on N; x Nj. For each (a,b) € Ny x Ny,
let [(a,b)] denote the ~-class of (a,b). Let G := N1 x Ni/ ~. Then G can
be naturally expanded to an w-saturated ordered group. We may treat N
as a substructure of G by identifying a € N; and [(a,0)] € G. We may show
that G is weakly o-minimal. By way of a contradiction, assume that G is
not weakly o-minimal. Then there exists a definable subset A C (G and a
monotone sequence {a; € G | i € w} such that for all i € w, a; € A if and
only if i is even. As (3 is an eq-object of Ni, there exists a formula e(z,y)
(parameters from N;) such that [(b,c)] € A if and only if Ny [ ¢(b,¢). For
all i € w, let a; := [(b;,¢;)]. Then we have

Ny = (b, ;) < 1iiseven.

2

For all n € w, let d; := X .¢c; and e := X3 qc;. Then we have

Ny | (b + d;s,e) <= iis even.

Hence, the set @(Ny,e) can not be written as the union of n convex sets,
contradicting that Th(N) is weakly o-minimal. O

3 Rings and fields

In this section, we study weakly o-minimal rings and fields.
A commutative ordered domain R is said to be real closed if R has inter-
mediate value property, that is, for any polynomial p(z) with coefficients in
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R and any a,b € R such that a < b and p(a) - p(b) < 0, there exists some
¢ € R so that a < ¢ < b and p(c) = 0.
It is well-known the following fact.

Fact 13 [MMS]

1. If a commutative ordered ring R is weakly o-minimal, then R is a real
closed ring;

2. If an ordered field F is weakly o-minimal, then F' is a real closed field.

In [PS1], it is shown that an o-minimal ring is a real closed field. However,
in generally a weakly o-minimal ordered ring is not a field. We shall show
that if a weakly o-minimal ordered ring R which may not be associative is
Archimedian, then R is a real closed field.

Lemma 14 If R = (R,0,1,+,,<,...) is a weakly o-minimal ring, then R
18 commutative.

Proof. For all @ € R, let Cg(a) := {z € R | za = az}. Then, Cgr(a)
is a definable additive subgroup. Hence, by Fact 4, Cgr(a) is convex. Let
g,h € R. Without loss of generality, we may assume that 0 < g < h. As
Cr(h) is convex, we have g € Cr(h). It follows that R is commutative. [

We call an ordered ring (R,0,1,+,-,<,...) standard if for all nonzero
a € R there exists b € R such that 1 < ab. Clearly, an Archimedian ordered
ring is standard.

Proposition 15 Let R = (R,0,1,+,-,<,...) be a weakly o-minimal ring.
Then, the following is equivalent:

1. R is standard,

2. R is a field.

Proof. (2= 1) Let a € R with a # 0. Then, as R is field, there exists a™".
Hence, 1 < a-2a~! = 2, as desired.

(1 = 2) Let a € R. Then, as R is standard, there exists some b € R such
that 1 < ab. Now aR is a definable additive subgroup. Hence, as aR is
convex, we have 1 € aR. It follows that R is a field. t



Corollary 16 Let R = (R,0,1,+,-, <,...) be a weakly o-minimal Archime-
dian ring, where R may not be associative. Then, R is a real closed field.

Proof. By Fact 13, Lemma 14 and Proposition 15, we may show that R is
associative. Let a € R with a # 0. Suppose that Dg(a) := {z € R | (za)a =
z(aa)}. Then, as R is commutative, Dr(a) contains a and is a definable
additive subgroup. Hence, by Lemma 5, Dg(a) = R. Also, suppose that
Egr(a) := {z € R | (2a)z = z(az) for each z}. Then, by Dr(a) = R,
Er(a) contains a and is a definable additive subgroup. Thus, by Lemma 3,
Er(a) = R. It follows that R is associative. O

Proposition 17 Let R be an ordered ring. Suppose that Th(R) is weakly
o-minimal. Then there exists an extending ordered field F of R such that
Th(F) is weakly o-minimal.

Proof. Let R; be an w-saturated elementary extension of R. Let R =
{a € Ry | a > 0}. Define the following relation on Ry x R7:

(a,b) ~ (a', V) <= abt/ =d'b.

Then ~ is an equivalence relation on R; x R3®. For each (a,b) € Ry x R7°,
let [(a,b)] denote the ~-class of (a,b). Let F := Ry x Ry°/ ~. Then F can
be naturally expanded to an w-saturated ordered field. We may treat R; as
a substructure of F by identifying a € R; and [(a,1)] € F. We may show
that F is weakly o-minimal. By way of a contradiction, assume that F is
not weakly o-minimal. Then there exists a definable subset A C F and a
monotone sequence {a; € F' | i € w} such that for all ¢ € w, a; € A if and
only if i is even. As F is an eq-object of R;, there exists a formula o(z,y)
(parameters from R;) such that [(b,c)] € A if and only if R = (b, ). For
all i € w, let a; := [(b;, ¢;)]. Then we have

R; = (b, ¢;) <= iiseven.
For all n € w, let d; := 112" ; ,;¢; and e := I132c;. Then we have
R |= p(bid;, ) <= iiseven.

Hence, the set @(Ry,e) can not be written as the union of n convex sets,
contradicting that Th(R) is weakly o-minimal. O
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