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1 Introduction
Let $\lambda I$ be a linearly ordered structure and $A$ a subset Al. The set $A$ is
said to be convex if for all $a$ , $b\in A$ and $c\in\Lambda I$ with $a<c<b$ we have
$c\in A$ . A linearly ordered structure $II$ is said to be $0$ -minimal if every
definable subset of $II$ is a finite union of intervals (possibly with infinite
endpoints). A linearly ordered structure $\mathrm{A}I$ is said to be weakly $0$ -minimal if
every definable subset of Al is a finite union of convex sets. A theory $T$ is said
to be uteakly $0$ -minimal if every model of $T$ is weakly $0$-minimal. Henceforth,
a linearly ordered structure is abbreviated as an ordered structure.

It is well-known the following fact.

Fact 1 Let AI be an ordered st ucture. Then the following is equivalent:

1. Th $(\Lambda I)$ is weakly o-minimal;

2. for each formula $\varphi(x,\overline{y})$ there exists some $n\in\omega$ such that for each
tuple $\overline{a}$ from AI the set $\varphi(\mathrm{A}I, \overline{a})$ can be written as a union of at most $n$

many convex sets.

Fact 2 Let II be a weakly $0$ -minimal structure. If AI $is_{\backslash }’ v$ -saturated, then
Th(AI) is weakly o-minimal.

Fact 3 [BP] Let $\Lambda I$ be an expansion of an $0$ -minimal structure by convex
subsets. Then Th(M) is weakly o-minimal.
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2 Monoids and groups
In this section, we study weakly $0$-minimal monoids and groups. It is well-
known the following fact.

Fact 4 [MMS] Let G be a weakly $0$ -minimal group. Suppose that H is $a$

definable subgroup of G. Then, the following holds:

1. G is abelian and divisible;

2. H is convex.

Let $G$ be a weakly $0$-minimal group. Suppose that $H$ is a definable
subgroup of $G$ . $\mathrm{T}\mathrm{h}\mathrm{e}\mathrm{n},\mathrm{b}\mathrm{y}$ Fact 4, $H$ is divisible.

We call an ordered group $(G, 0, +, <, \ldots)$ Archimedian if for all elements
$a$ , $b$ with $b>0$ there exists some $n\in\omega$ such that $a<nb$ .

Lemma 5 Let $\mathcal{G}=$ $(G, 0, +, <, \ldots)$ be a weakly $0$ -minimal Archimea $\mathrm{i}an$

group. Suppose that $H$ is a definable subgroup of $\mathcal{G}$ . Then $H$ is either {0} or
$\mathcal{G}$ .

Proof. Let $a\in G$ . Without loss of generality, we may assume $a>0$ . Let
$H\neq\{0\}$ . Then, there exists some $b\in H$ such that $b>0$ . Since the group $\mathcal{G}$

is Archimedian, there exists some $n\in\omega$ such that $a<nb$ . Hence, by Fact 4,
we have $a\in$ H. $\square$

From now on, we study monoids.

Proposition 6 Let N $=$ (N,$0_{7}+, <,$\ldots ) be a weakly $0$ -minimal monoid.
Then N is commutative.

Proof. For all $a\in N$ , let $C_{N}(a):=\{x\in N|x+a=a+x\}$ .

Claim $C_{N}(a)$ is convex.
Clearly, $0\in C_{N}(a)$ and, if $x$ , $y\in C_{N}(a)$ then $x+y\in C_{N}(a)$ . By weak 0-

minimality, $C_{N}(a)$ is the union of finitely many maximal convex subsets. Let
$X$ be the greatest of these convex components with respect to the ordering
induced by $<$ . Let $x\in X$ with $x>0$ . Suppose that $y\in N$ with $0<y<x$ .
We may show that $y\in C_{N}(a)$ . By $x<y+x<2x$ and $2x\in X$ , we have
$y+x\in X$ . Hence $(y+x)+a=a+(y+x)$ . By $x\in$ $C_{N}(a)$ , we have
$(y+a)+x=(a+y)+x$ . Hence, we have $y+a=a+y$ . Thus, $y\in C_{N}(a)$ ,
as desired.

Let $b$ , $c\in N$ with $b<c$ . Then the following is equivalent
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$\bullet$ $b$ and $c$ are commutative;

$\bullet$ $b$ and $b+c$ are commutative;

$\bullet$ $b+c$ and $c$ are commutative.

Now $b$ , $b+c\leq 0$ or $bH$ $c$ , $c\geq 0$ . Hence we may assume $0<b<c$ . Then,
as $C_{N}(c)$ is convex, we have $b\in C_{N}(c)$ . Therefore $N$ is commutative. $[]$

Let $N$ $=$ $(N, 0, +, <, \ldots)$ be an ordered monoid. Suppose that Jy $:=\{x\in$

$N|N$ $\models 3\mathrm{y}(\mathrm{x}+y=0)\}$ . Clearly, $\mathrm{I}_{N}$ contains 0. We call an ordered monoid
$(N, 0, +, <, \ldots)$ Archimedian if for all elements $a$ , $b$ with $b>0$ there exists
some $n\in\omega$ such that a<n&, and for all elements $a$ , $b$ with $b<0$ there exists
some $n\in\omega$ such that $nb<a$ .

Example 7 Let $\mathcal{M}$ $=(\{0\}\cup \mathbb{Q}^{\geq 1},0, +, <, P)$ , there $\mathbb{Q}^{\geq 1}=\{a\in \mathbb{Q} |a\geq 1\}$

and the unary predicate symbol $P$ is interpreted by the convex set $P^{\mathrm{A}4}=$

$(\sqrt{2},3)$ $\cap$ Q. Then, $\mathcal{M}$ is a weakly $0$ -minimal Archimedian monoid and not
divisible. Moreover $I_{\mathrm{A}4}=\{0\}$ .

Hence, in generally a weakly $0$-minimal Archimedian monoid is not a
group. However the following holds.

Proposition 8 Let N $=$ (N, 0,$+_{)}<,$\ldots ) be a weakly $0$ -minimal Archime-
dian monoid. Suppose that $\mathrm{I}_{N}\neq$ {0}. Then N is a group.

Proof. Clearly 06 $\mathrm{I}_{N}$ . Let $x$ , $y\in \mathrm{I}_{N}$ . Then, there exist $x_{1}$ , $y_{1}$ such that
$x+x_{1}=0$ and $y+y_{1}=0$ . Then $(x+y)+(y_{1}+x_{1})=0$ . Thus, $x+y\in \mathrm{I}_{N}$ .
Claim $\mathrm{I}_{N}$ is convex.

By weak $0$-minimality, $\mathrm{I}_{N}$ is the union of finitely many maximal convex
subsets. Let $C$ be the greatest of these convex components with respect to
the ordering induced by $<$ . Let $x\in C$ with $x>0$ . Suppose that $y\in N$ with
$0<y<x$ . We may show that $y\in \mathrm{I}_{N}$ . By $x<y+x<2x$ and $2x\in C$ , we
have $y+x\in C$ . Hence, there exists some $z\in N$ such that $(y+x)$ $+z=0$.
So $y+(x+z)=0$. Thus, $y\in \mathrm{I}_{N}$ , as desired.

Let $g\in N$ . By iy $\neq\{0\}$ , there exists some $a\in$ Jy such that $a\neq 0$ .
Without loss of generality, we may assume that $g>0$ and $a>0$ . As $N$ is
Archimedian, there exists some $n\in \mathrm{t}\prime p$ such that $0<g<na$ . Since $I_{N}$ is
convex, we have $g\in I_{N}$ . Therefore $I_{N}=N$ . $\square$
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Let $N$ be an ordered monoid and $A$ a subset $N$ . The ordered monoid $N$

is said to be rich, if for all $a$ , $b\in N$ if $0\leq a\leq b$ or $b\leq a\leq 0$, then there
exists some $c\in N$ such that $b=a+c$. The set $A$ admits right elimination,
if for all $a\in A$ and all $b\in N$ if $b+a\in A$ , then $b\in A$ .

Example 9 Let $\mathcal{M}=(\mathbb{Q}^{\geq 0},0, +, <, P)$ , where $\mathbb{Q}^{\geq 0}=\{a\in \mathbb{Q}|a\geq 0\}$

and the unary predicate symbol $P$ is interpreted by the convex set $P^{\mathcal{M}}=$

$(\sqrt{2},3)\cap$ Q. Then, $\mathcal{M}$ is a weakly $0$ -minimal rich monoid and divisible.

Proposition 10 Let M $=$ (N, 0,$+, <,$\ldots ) be a weakly $0$ -minimal monoid.
Then the following is equivalent

1. N is divisible;

2. for all n $\in\omega_{f}nN$ admits right elimination;

3. for all n $\in\omega$ , nN is convex.

Proof $(1\Rightarrow 2)$ It is clear.
$(2\Rightarrow 3)$ Let $n\in\omega$ . Let $x_{j}y\in nN$ . Then there exist $x_{1}$ , $y_{1}\in N$ such that
$x=nx_{1}$ and $y=\mathrm{n}\mathrm{y}\mathrm{i}$ . By Proposition 6, we have $x+y=nx_{1}+ny_{1}=$
$n(x_{1}+y_{1})$ Hence, $x+y\in nN$ . Now, by weak o-m inimality, $nN$ is the union
of finitely many maximal convex subsets. Let $C$ be the greatest of these
convex components with respect to the ordering induced by $<$ . Let $x\in C$

with $x>0$ . Suppose that $y\in N$ with $0<y<x$ . We may show that $y\in nN$ .
By $x<y+x<2x$ and $2x\in C$ , we have $y+x\in C$ . As $nN$ admits right
elimination, we have y\in n\^A, as desired.
$(3\Rightarrow 1)$ Let $n$ be a nonzero natural nunber. For all positive $a\in N$ , we have
$0<a<na$ . As $nN$ is convex, we have $a\in nN$ . Hence A is divisible. $\square$

Proposition 11 Let N $=$ (N, 0,$+, <,$\ldots ) be a weakly $0$ -minimal monoid.
IfM is rich, then N is divisible.

Proof Let $n$ be a nonzero natural nunber. Now, by weak $0$-minimality, $nN$

is the union of finitely many maximal convex subsets. Let $C$ be the greatest
of these convex components with respect to the ordering induced by $<$ . Let
$x\in C$ with $x>0$ . Suppose that $y\in N$ with $0<y<x$ . We show that
$y\in nN$ . By $x<y+x<2x$ and $2x\in C$ , we have $y+x\in C$ . So there
exist $z_{1}$ , $z_{2}\in N$ with $0<z_{1}<z_{2}$ such that $x=$ nzx and $y+x=nz_{2}$ .
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As $M$ is rich, there exists some $a\in N$ such that $a+z_{1}=z_{2}$ . Hence, we
have $y+nz_{1}=na+nz_{1}$ . Therefore we have $y=na\in nN$ . It follows that
$nN=N$. $\square$

Proposition 12 [T] Let $N$ he an ordered monoid. Suppose that Th(iV) is

weakly $0$ -minimal. Then there exists an extending ordered group $G$ of $N$ such
that Th(G)is weakly o-minimal.

Proof. Let $N_{1}$ be an $\omega$-saturated elementary extension of $N$ . Define the
following relation on $N_{1}\mathrm{x}$ $N_{1}$ :

$(a, b)\sim(a’, b’)\Leftrightarrow a+b’=a’+b$.

Then $\sim$ is an equivalence relation on $N_{1}\mathrm{x}$ $N_{1}$ . For each $(a, b)\in N_{1}\}\langle N_{1}$ ,
let $[(a, b\}]$ denote the $\sim$-class of $(a, b)$ . Let $G:=N_{1}\mathrm{x}$ $N_{1}/\sim$ . Then $G$ can
be naturally expanded to an $”$’-saturated ordered group. We may treat $N_{1}$

as a substructure of $G$ by identifying $a\in N_{1}$ and $[(a, \mathrm{O})]\in G$ . We may show
that $G$ is weakly $0$-minimal. By way of a contradiction, assume that $G$ is
not weakly $0$-minimal. Then there exists a definable subset $A\subseteq G$ and a
monotone sequence $\{a_{i}\in(;|\mathrm{i}\in\omega\}$ such that for a1H $\mathrm{i}\in\omega$ , $a_{i}\in A$ if and
only if $\mathrm{i}$ is even. As $G$ is an $\mathrm{e}\mathrm{q}$-object of $N_{1}$ , there exists a formula $\varphi(x, y)$

(parameters from $N_{1}$ ) such that $[(b, c)]\in A$ if and only if $N_{1}|=|\varphi(b, c)$ . For
all $\mathrm{i}\in\omega$ , let $a_{\iota}:=[(b_{l}, c_{i})]$ . Then we have

$N_{1}\models\varphi(b_{i}, c_{i})\Leftrightarrow \mathrm{i}$ is even.

For all $n\in\omega$ , let $d_{\iota}:=\Sigma_{j=0,j\neq i}^{2n}\mathrm{c}_{i}$ and $e:=\Sigma_{J=0}^{2n}c_{i}$ . Then we have

$N_{1}\vdash-\varphi(b_{\dot{8}}+d_{\iota}, e)\Leftrightarrow \mathrm{i}$ is even.

Hence, the set $\varphi$ ( $N_{1}$ , e) can not be written as the union of $n$ convex sets,
contradicting that Th(N) is weakly o-minimal. $\square$

3 Rings and fields

In this section, we study weakly $0$-minimal rings and fields.
A comm utative ordered domain $R$ is said to be real closed if $R$ has inter-

mediate value property, that is, for any polynomial $p(x)$ with coefficients in
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$R$ and any $a$ , $b\in R$ such that $a<b$ and $p(a)\cdot p(b)<0$ , there exists some
$c\in R$ so that $a<c<b$ and $p(c)=0$ .

It is well-known the following fact.

Fact 13 [MMS]

1. if a commutative ordered ring $R$ is weakly $0$-minimal, then $R$ is a real
closed ring;

2. If an ordered field F is weakly $0$ -minimal, then F is a real closed field.

In [PS1], it is shown that an $0$-minimal ring is a real closed field. However,
in generally a weakly $0$-minimal ordered ring is not a field. We shall show
that if a weakly $0$-minimal ordered ring $R$ which may not be associative is
Archimed $\mathrm{i}\mathrm{a}\mathrm{n}$ , then $R$ is a real closed field.

Lemma 14 if $\mathcal{R}=$ (R, 0,1,$+,$.,$<,$\ldots ) is a weakly $0$ -minimal ring, then $\mathcal{R}$

is commutative.

Proof. For all $a\in R$ , let $C_{R}(a):=\{x\in R |xa=ax\}$ . Then, $C_{R}(a)$

is a definable additive subgroup. Hence, by Fact 4, $C_{R}(a)$ is convex. Let
$g$ , $h\in R$ . Without loss of generality, we may assume that $0<g<h$ . As
$C_{R}(h)$ is convex, we have $g\in C_{R}(h)$ . It follows that 7% is commutative. $\square$

We call an ordered ring $(R, 0,1, +, \cdot, <, \ldots)$ standard if for all nonzero
$a\in R$ there exists $b\in R$ such that $1<ab$ . Clearly, an Archimedian ordered
ring is standard.

Proposition 15 Let $72=$ (R, 0,1,$+_{\rangle}$ .,$<,$\ldots ) be a weakly $0$ -minimal ring.

Then, the following is equivalent:

1. 72 is standard

2. 7% is a field.

Proof. $(2\Rightarrow 1)$ Let $a\in R$ with $a\neq 0$ . Then, as $\mathcal{R}$ is field, there exists $a^{-1}$ .
Hence, $1<a\cdot 2a^{-1}=2$ , as desired.
$(1=\neq 2)$ Let $a\in R$ . Then, as 72 is standard, there exists some $b\in R$ such
that $1<ab$ . Now $aR$ is a definable additive subgroup. Hence, as $aR$ is
convex, we have $1\in aR$ . It follows that 72 is a field. $\square$
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Corollary 16 Let $\mathcal{R}=$ (R, 0,1,$+,$.,$<,$\ldots ) be a weakly $0$ -minimal Archime-
lian ring, where 72 may not be associative. Then, 72 is a real closed field.

Proof. By Fact 13, Lemma 14 and Proposition 15, we may show that 72 is
associative. Let $a\in R$ with $a\neq 0$ . Suppose that $D_{R}(a):=\{x\in R|(xa)a=$

$x(aa)\}$ . Then, as 72 is commutative, $D_{R}(a)$ contains $a$ and is a definable
additive subgroup. Hence, by Lemma 5, $D_{R}(a)=R$ . Also, suppose that
$E_{R}(a):=$ {$x\in R|(za)x=z(ax)$ for each $z$}. Then, by $D_{R}(a)=R$ ,
$E_{R}(a)$ contains $a$ and is a definable additive subgroup. Thus, by Lemma 5,
$E_{R}(a)=R$ . It follows that $\mathcal{R}$ is associative. $\square$

Proposition 17 Let $R$ be an ordered ring. Suppose that Th(R) is weakly
$0$ -minimal. Then there exists an extending ordered field $F$ of $R$ such that
Th(F) is weakly o-minimal.

Proof. Let $R_{1}$ be an $\omega$-saturated elementary extension of $R$ . Let $R_{1}^{>0}:=$

{a $\in R_{1}|a>0$}. Define the following relation on $R_{1}\mathrm{x}$ $R_{1}^{>0}$ :

$(a, b)$ – $(a’, b’)\Leftrightarrow ab’=a’b$ .

Then $\sim$ is an equivalence relation on $R_{1}\mathrm{x}$ $R_{1}^{>0}$ . For each $(a, b)\in R_{1}\mathrm{x}$ $R_{1}^{>0}$ ,
let $[(a, b)]$ denote the $\sim$-class of $(a, b)$ . Let $F:=R_{1}\mathrm{x}$ $R_{1}^{>0}/\sim$ . Then $F$ can
be naturally expanded to an $\omega$-saturated ordered field. We may treat $R_{1}$ as
a substructure of $F$ by identifying $a\in R_{1}$ and $[(a, 1)]\in F$ . We may show
that $F$ is weakly $0$-minimal. By way of a contradiction, assume that $F$ is
not weakly $0$-minimal. Then there exists a definable subset $A\underline{\subseteq}F$ and a
monotone sequence $\{a_{i}\in F|\mathrm{i}\in\omega\}$ such that for all $i\in\omega$ , $a_{i}\in A$ if and
only if $\mathrm{i}$ is even. As $F$ is an $\mathrm{e}\mathrm{q}$-object of $R_{1}$ , there exists a formula $\varphi’(x, y)$

(parameters from $R_{1}$ ) such that $[(b, c)]\in A$ if and only if $R_{1}\models\varphi(b, c)$ . For
all $\mathrm{i}\in\omega$ , Let $a_{i}:=[(b_{i}, c_{i})]$ . Then we have

$R_{1}\models\varphi(b_{i}, c_{i})\Leftrightarrow \mathrm{i}$ is even.

For all $n\in\omega$ , let $d_{i}:=\Pi_{j=0,j\neq i}^{2n}c_{i}$ and $e:=\Pi_{j=0}^{2n}c_{i}$ . Then we have

$R_{1}\models\acute{\backslash }\rho(b_{i}d_{i}, e)\Leftrightarrow \mathrm{i}$ is even.

Hence, the set $\varphi(R_{1}, e)$ can not be written as the union of $n$ convex sets,
contradicting that Th(F) is weakly o-minimal. $\square$
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