Weakly o-minimal algebraic structures

岡山大学大学院・自然科学研究科 田中 広志 (Hiroshi Tanaka) Graduate School of Natural Science and Technology, Okayama University htanaka@math.okayama-u.ac.jp

1 Introduction

Let M be a linearly ordered structure and A a subset M. The set A is said to be *convex* if for all $a, b \in A$ and $c \in M$ with a < c < b we have $c \in A$. A linearly ordered structure M is said to be *o-minimal* if every definable subset of M is a finite union of intervals (possibly with infinite endpoints). A linearly ordered structure M is said to be *weakly o-minimal* if every definable subset of M is a finite union of convex sets. A theory T is said to be *weakly o-minimal* if every model of T is weakly o-minimal. Henceforth, a linearly ordered structure is abbreviated as an ordered structure.

It is well-known the following fact.

Fact 1 Let M be an ordered structure. Then the following is equivalent:

- 1. Th(M) is weakly o-minimal;
- 2. for each formula $\varphi(x, \overline{y})$ there exists some $n \in \omega$ such that for each tuple \overline{a} from M the set $\varphi(M, \overline{a})$ can be written as a union of at most n many convex sets.

Fact 2 Let M be a weakly o-minimal structure. If M is ω -saturated, then Th(M) is weakly o-minimal.

Fact 3 [BP] Let M be an expansion of an o-minimal structure by convex subsets. Then Th(M) is weakly o-minimal.

2 Monoids and groups

In this section, we study weakly o-minimal monoids and groups. It is well-known the following fact.

Fact 4 [MMS] Let G be a weakly o-minimal group. Suppose that H is a definable subgroup of G. Then, the following holds:

- 1. G is abelian and divisible;
- 2. H is convex.

Let G be a weakly o-minimal group. Suppose that H is a definable subgroup of G. Then, by Fact 4, H is divisible.

We call an ordered group (G, 0, +, <, ...) Archimedian if for all elements a, b with b > 0 there exists some $n \in \omega$ such that a < nb.

Lemma 5 Let $\mathcal{G} = (G, 0, +, <, ...)$ be a weakly o-minimal Archimedian group. Suppose that H is a definable subgroup of \mathcal{G} . Then H is either $\{0\}$ or \mathcal{G} .

Proof. Let $a \in G$. Without loss of generality, we may assume a > 0. Let $H \neq \{0\}$. Then, there exists some $b \in H$ such that b > 0. Since the group \mathcal{G} is Archimedian, there exists some $n \in \omega$ such that a < nb. Hence, by Fact 4, we have $a \in H$.

From now on, we study monoids.

Proposition 6 Let $\mathcal{N} = (N, 0, +, <, ...)$ be a weakly o-minimal monoid. Then \mathcal{N} is commutative.

Proof. For all $a \in N$, let $C_N(a) := \{x \in N \mid x + a = a + x\}$. Claim $C_N(a)$ is convex.

Clearly, $0 \in C_N(a)$ and, if $x, y \in C_N(a)$ then $x + y \in C_N(a)$. By weak ominimality, $C_N(a)$ is the union of finitely many maximal convex subsets. Let X be the greatest of these convex components with respect to the ordering induced by <. Let $x \in X$ with x > 0. Suppose that $y \in N$ with 0 < y < x. We may show that $y \in C_N(a)$. By x < y + x < 2x and $2x \in X$, we have $y + x \in X$. Hence (y + x) + a = a + (y + x). By $x \in C_N(a)$, we have (y + a) + x = (a + y) + x. Hence, we have y + a = a + y. Thus, $y \in C_N(a)$, as desired.

Let $b, c \in N$ with b < c. Then the following is equivalent:

- b and c are commutative;
- b and b + c are commutative;
- b + c and c are commutative.

Now $b, b + c \leq 0$ or $b + c, c \geq 0$. Hence we may assume 0 < b < c. Then, as $C_N(c)$ is convex, we have $b \in C_N(c)$. Therefore \mathcal{N} is commutative. \Box

Let $\mathcal{N} = (N, 0, +, <, ...)$ be an ordered monoid. Suppose that $I_N := \{x \in N \mid \mathcal{N} \models \exists y(x + y = 0)\}$. Clearly, I_N contains 0. We call an ordered monoid (N, 0, +, <, ...) Archimedian if for all elements a, b with b > 0 there exists some $n \in \omega$ such that a < nb, and for all elements a, b with b < 0 there exists some $n \in \omega$ such that nb < a.

Example 7 Let $\mathcal{M} = (\{0\} \cup \mathbb{Q}^{\geq 1}, 0, +, <, P)$, where $\mathbb{Q}^{\geq 1} = \{a \in \mathbb{Q} \mid a \geq 1\}$ and the unary predicate symbol P is interpreted by the convex set $P^{\mathcal{M}} = (\sqrt{2}, 3) \cap \mathbb{Q}$. Then, \mathcal{M} is a weakly o-minimal Archimedian monoid and not divisible. Moreover $I_{\mathcal{M}} = \{0\}$.

Hence, in generally a weakly o-minimal Archimedian monoid is not a group. However the following holds.

Proposition 8 Let $\mathcal{N} = (N, 0, +, <, ...)$ be a weakly o-minimal Archimedian monoid. Suppose that $I_N \neq \{0\}$. Then \mathcal{N} is a group.

Proof. Clearly $0 \in I_N$. Let $x, y \in I_N$. Then, there exist x_1, y_1 such that $x + x_1 = 0$ and $y + y_1 = 0$. Then $(x + y) + (y_1 + x_1) = 0$. Thus, $x + y \in I_N$. Claim I_N is convex.

By weak o-minimality, I_N is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by <. Let $x \in C$ with x > 0. Suppose that $y \in N$ with 0 < y < x. We may show that $y \in I_N$. By x < y + x < 2x and $2x \in C$, we have $y + x \in C$. Hence, there exists some $z \in N$ such that (y + x) + z = 0. So y + (x + z) = 0. Thus, $y \in I_N$, as desired.

Let $g \in N$. By $I_N \neq \{0\}$, there exists some $a \in I_N$ such that $a \neq 0$. Without loss of generality, we may assume that g > 0 and a > 0. As N is Archimedian, there exists some $n \in \omega$ such that 0 < g < na. Since I_N is convex, we have $g \in I_N$. Therefore $I_N = N$. Let N be an ordered monoid and A a subset N. The ordered monoid N is said to be rich, if for all $a, b \in N$ if $0 \le a \le b$ or $b \le a \le 0$, then there exists some $c \in N$ such that b = a + c. The set A admits right elimination, if for all $a \in A$ and all $b \in N$ if $b + a \in A$, then $b \in A$.

Example 9 Let $\mathcal{M} = (\mathbb{Q}^{\geq 0}, 0, +, <, P)$, where $\mathbb{Q}^{\geq 0} = \{a \in \mathbb{Q} \mid a \geq 0\}$ and the unary predicate symbol P is interpreted by the convex set $P^{\mathcal{M}} = (\sqrt{2}, 3) \cap \mathbb{Q}$. Then, \mathcal{M} is a weakly o-minimal rich monoid and divisible.

Proposition 10 Let $\mathcal{N} = (N, 0, +, <, ...)$ be a weakly o-minimal monoid. Then the following is equivalent:

- 1. \mathcal{N} is divisible;
- 2. for all $n \in \omega$, nN admits right elimination;
- 3. for all $n \in \omega$, nN is convex.

Proof. $(1 \Rightarrow 2)$ It is clear.

 $(2 \Rightarrow 3)$ Let $n \in \omega$. Let $x, y \in nN$. Then there exist $x_1, y_1 \in N$ such that $x = nx_1$ and $y = ny_1$. By Proposition 6, we have $x + y = nx_1 + ny_1 = n(x_1 + y_1)$ Hence, $x + y \in nN$. Now, by weak o-minimality, nN is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by <. Let $x \in C$ with x > 0. Suppose that $y \in N$ with 0 < y < x. We may show that $y \in nN$. By x < y + x < 2x and $2x \in C$, we have $y + x \in C$. As nN admits right elimination, we have $y \in nN$, as desired.

 $(3 \Rightarrow 1)$ Let *n* be a nonzero natural number. For all positive $a \in N$, we have 0 < a < na. As nN is convex, we have $a \in nN$. Hence \mathcal{N} is divisible. \Box

Proposition 11 Let $\mathcal{N} = (N, 0, +, <, ...)$ be a weakly o-minimal monoid. If \mathcal{N} is rich, then \mathcal{N} is divisible.

Proof. Let n be a nonzero natural number. Now, by weak o-minimality, nN is the union of finitely many maximal convex subsets. Let C be the greatest of these convex components with respect to the ordering induced by <. Let $x \in C$ with x > 0. Suppose that $y \in N$ with 0 < y < x. We show that $y \in nN$. By x < y + x < 2x and $2x \in C$, we have $y + x \in C$. So there versist $z_1, z_2 \in N$ with $0 < z_1 < z_2$ such that $x = nz_1$ and $y + x = nz_2$.

As \mathcal{N} is rich, there exists some $a \in N$ such that $a + z_1 = z_2$. Hence, we have $y + nz_1 = na + nz_1$. Therefore we have $y = na \in nN$. It follows that nN = N.

Proposition 12 [T] Let N be an ordered monoid. Suppose that Th(N) is weakly o-minimal. Then there exists an extending ordered group G of N such that Th(G) is weakly o-minimal.

Proof. Let N_1 be an ω -saturated elementary extension of N. Define the following relation on $N_1 \times N_1$:

$$(a,b) \sim (a',b') \iff a+b'=a'+b.$$

Then \sim is an equivalence relation on $N_1 \times N_1$. For each $(a, b) \in N_1 \times N_1$, let [(a, b)] denote the \sim -class of (a, b). Let $G := N_1 \times N_1 / \sim$. Then G can be naturally expanded to an ω -saturated ordered group. We may treat N_1 as a substructure of G by identifying $a \in N_1$ and $[(a, 0)] \in G$. We may show that G is weakly o-minimal. By way of a contradiction, assume that G is not weakly o-minimal. Then there exists a definable subset $A \subseteq G$ and a monotone sequence $\{a_i \in G \mid i \in \omega\}$ such that for all $i \in \omega$, $a_i \in A$ if and only if i is even. As G is an eq-object of N_1 , there exists a formula $\varphi(x, y)$ (parameters from N_1) such that $[(b, c)] \in A$ if and only if $N_1 \models \varphi(b, c)$. For all $i \in \omega$, let $a_i := [(b_i, c_i)]$. Then we have

$$N_1 \models \varphi(b_i, c_i) \iff i \text{ is even.}$$

For all $n \in \omega$, let $d_i := \sum_{j=0, j \neq i}^{2n} c_i$ and $e := \sum_{j=0}^{2n} c_j$. Then we have

$$N_1 \models \varphi(b_i + d_i, e) \iff i \text{ is even.}$$

Hence, the set $\varphi(N_1, e)$ can not be written as the union of *n* convex sets, contradicting that $\operatorname{Th}(N)$ is weakly o-minimal.

3 Rings and fields

In this section, we study weakly o-minimal rings and fields.

A commutative ordered domain R is said to be *real closed* if R has intermediate value property, that is, for any polynomial p(x) with coefficients in R and any $a, b \in R$ such that a < b and $p(a) \cdot p(b) < 0$, there exists some $c \in R$ so that a < c < b and p(c) = 0.

It is well-known the following fact.

Fact 13 [MMS]

- 1. If a commutative ordered ring R is weakly o-minimal, then R is a real closed ring;
- 2. If an ordered field F is weakly o-minimal, then F is a real closed field.

In [PS1], it is shown that an o-minimal ring is a real closed field. However, in generally a weakly o-minimal ordered ring is not a field. We shall show that if a weakly o-minimal ordered ring R which may not be associative is Archimedian, then R is a real closed field.

Lemma 14 If $\mathcal{R} = (R, 0, 1, +, \cdot, <, ...)$ is a weakly o-minimal ring, then \mathcal{R} is commutative.

Proof. For all $a \in R$, let $C_R(a) := \{x \in R \mid xa = ax\}$. Then, $C_R(a)$ is a definable additive subgroup. Hence, by Fact 4, $C_R(a)$ is convex. Let $g, h \in R$. Without loss of generality, we may assume that 0 < g < h. As $C_R(h)$ is convex, we have $g \in C_R(h)$. It follows that \mathcal{R} is commutative. \Box

We call an ordered ring $(R, 0, 1, +, \cdot, <, ...)$ standard if for all nonzero $a \in R$ there exists $b \in R$ such that 1 < ab. Clearly, an Archimedian ordered ring is standard.

Proposition 15 Let $\mathcal{R} = (R, 0, 1, +, \cdot, <, ...)$ be a weakly o-minimal ring. Then, the following is equivalent:

- 1. \mathcal{R} is standard;
- 2. \mathcal{R} is a field.

Proof. $(2 \Rightarrow 1)$ Let $a \in R$ with $a \neq 0$. Then, as \mathcal{R} is field, there exists a^{-1} . Hence, $1 < a \cdot 2a^{-1} = 2$, as desired.

 $(1 \Rightarrow 2)$ Let $a \in R$. Then, as \mathcal{R} is standard, there exists some $b \in R$ such that 1 < ab. Now aR is a definable additive subgroup. Hence, as aR is convex, we have $1 \in aR$. It follows that \mathcal{R} is a field. \Box

Corollary 16 Let $\mathcal{R} = (R, 0, 1, +, \cdot, <, ...)$ be a weakly o-minimal Archimedian ring, where \mathcal{R} may not be associative. Then, \mathcal{R} is a real closed field.

Proof. By Fact 13, Lemma 14 and Proposition 15, we may show that \mathcal{R} is associative. Let $a \in R$ with $a \neq 0$. Suppose that $D_R(a) := \{x \in R \mid (xa)a = x(aa)\}$. Then, as \mathcal{R} is commutative, $D_R(a)$ contains a and is a definable additive subgroup. Hence, by Lemma 5, $D_R(a) = R$. Also, suppose that $E_R(a) := \{x \in R \mid (za)x = z(ax) \text{ for each } z\}$. Then, by $D_R(a) = R$, $E_R(a)$ contains a and is a definable additive subgroup. Thus, by Lemma 5, $E_R(a) = R$. It follows that \mathcal{R} is associative.

Proposition 17 Let R be an ordered ring. Suppose that Th(R) is weakly o-minimal. Then there exists an extending ordered field F of R such that Th(F) is weakly o-minimal.

Proof. Let R_1 be an ω -saturated elementary extension of R. Let $R_1^{>0} := \{a \in R_1 \mid a > 0\}$. Define the following relation on $R_1 \times R_1^{>0}$:

$$(a,b) \sim (a',b') \iff ab' = a'b.$$

Then \sim is an equivalence relation on $R_1 \times R_1^{>0}$. For each $(a, b) \in R_1 \times R_1^{>0}$, let [(a, b)] denote the \sim -class of (a, b). Let $F := R_1 \times R_1^{>0} / \sim$. Then F can be naturally expanded to an ω -saturated ordered field. We may treat R_1 as a substructure of F by identifying $a \in R_1$ and $[(a, 1)] \in F$. We may show that F is weakly o-minimal. By way of a contradiction, assume that F is not weakly o-minimal. Then there exists a definable subset $A \subseteq F$ and a monotone sequence $\{a_i \in F \mid i \in \omega\}$ such that for all $i \in \omega$, $a_i \in A$ if and only if i is even. As F is an eq-object of R_1 , there exists a formula $\varphi(x, y)$ (parameters from R_1) such that $[(b, c)] \in A$ if and only if $R_1 \models \varphi(b, c)$. For all $i \in \omega$, let $a_i := [(b_i, c_i)]$. Then we have

$$R_1 \models \varphi(b_i, c_i) \iff i \text{ is even.}$$

For all $n \in \omega$, let $d_i := \prod_{j=0, j \neq i}^{2n} c_i$ and $e := \prod_{j=0}^{2n} c_j$. Then we have

$$R_1 \models \varphi(b_i d_i, e) \iff i \text{ is even.}$$

Hence, the set $\varphi(R_1, e)$ can not be written as the union of *n* convex sets, contradicting that $\operatorname{Th}(R)$ is weakly o-minimal.

References

- [BP] Y. Baisalov and B. Poizat, Paires de structures o-minimales, J. Symbolic Logic 63 (1998), 570-578.
- [BPW] O. Belegradek, Y. Peterzil and F. Wagner, Quasi-o-minimal structures, J. Symbolic Logic 65 (2000), 1115-1132.
- [K] B. Sh. Kulpeshov, Weakly o-minimal structures and some of their properties, J. Symbolic Logic 63 (1998), 1511-1528.
- [MMS] D. Macpherson, D. Marker and C. Steinhorn, Weakly o-minimal structures and real closed fields, Trans. Amer. Math. Soc. **352** (2000), 5435-5483.
- [MT] A. Marcja and C. Toffalori, A Guide to Classical and Modern Model Theory, Kluwer Academic Publishers, 2003.
- [M] D. Marker, Model Theory: An Introduction, Graduate Texts in Mathematics 217, Springer, 2002.
- [PS1] A. Pillay and C. Steinhorn, Definable sets in ordered structures. I, Trans. Amer. Math. Soc. 295 (1986), 565-592.
- [PS2] A. Pillay and C. Steinhorn, Definable sets in ordered structures. III, Trans. Amer. Math. Soc. 309 (1988), 469-476.
- [T] A. Tsuboi, Weakly o-minimal monoid, preprint.