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GENERALIZED MEASUREM ENTS,

CP-MEASURE AND CP-CHOQUET THEOREM

ICHIRO FUJIMOTO

Kanazawa Institute of Technology
7-1 Ohgigaoka, Nonoichi, Ishikawa 921-8501, Japan

ABSTRACT. In C’-physics, quantum interactions are described by contractive CP-
maps, and $CP$-convexity is essential to describe the decomposition of CP maps. We
introduce the notion of $CP$-measure as a new mathematical formulation of general-
ized measurements, and develop its integration theory. We then prove a generalized
Choquet’s theorem for completely positive maps, i.e., every contractive GP-map from
a C’-algebra to $B(H)$ can be represented by a $\mathrm{C}\mathrm{P}$-measure supported by CP-extreme
elements, which solves the decomposition problem for completely positive maps.

1. Introduction.

In operational quantum physics, it is now standard that quantum measurement

process is described by a completely positive map, i.e., assuming that observables

are represented by (self-adjoint) bounded linear operators on a Hilbert space $K$ ,

and those of apparatus on a Hilbert space $H_{7}$ then after an interaction between the

two physical systems, an observable $a\in B(K)$ is measured by the apparatus as an

operator $’\psi(a)\in B(H)$ , where $\psi$ is a normal contractive completely positive map

$\psi(a)=\sum_{i}VfaVi$ with $V_{i}\in B(H, K)$ such that $\sum_{\mathrm{i}}V_{i}^{*}V_{i}\leq I_{H}$
.

Note that $\psi$ is called an operation if $K=H$ (cf. K. Kraus [14]).

In $\mathrm{C}\mathrm{P}$-convexity theory [5-11], this can be interpreted as a $\mathrm{C}\mathrm{P}$-convex combina-

tion of $\mathrm{C}\mathrm{P}$-extreme elements, i.e., using the polar decomposition $V_{\mathrm{z}}=u_{i}|V_{i}|$
)

$\psi$ can

be rewritten as

$\psi(a)=\sum_{i}|V_{\dot{\mathrm{z}}}^{*}|\varphi_{i}(a)|V_{i}|$ with $|V_{i}|\in B(H)^{+}$ such that $\sum_{i}|V_{i}|^{2}=\sum_{i}V_{i}^{*}V_{i}\leq I_{H}$
,

where $\varphi_{i}(\cdot)=u_{i}^{*}\cdot u_{i}$ is a conditional transfo$rm$ with a partial isometry $u_{i}$ from $H$

to $K$ . We can also show that it can be decomposed as

$\psi(a)=\sum_{i}W_{i}^{*}\phi_{\mathrm{i}}(a)W_{i}$ with $W_{i}\in B(H)$ such that $\sum_{\mathrm{i}}W_{i}^{*}W_{i}\leq I_{H}$
,
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where $\phi_{i}(\cdot)=U_{i}^{*}\cdot U_{i}$ is a unitary transform with a unitary $U_{i}$ from $H$ to $K$ , but

this time $W_{\dot{\mathrm{t}}}$ is not positive in general (cf. [11]). Thus $\psi$ can be considered as the

“barycenter” of an operation-valued atomic measure $\{|V_{i}|\cdot|V_{i}|\}$ [ or $\{W_{i}^{*}\cdot W_{i}\}$ ]

supported by $\mathrm{C}\mathrm{P}$-extreme states $\psi_{i}(\cdot)=u_{i}^{*}\cdot u_{i}$ {conditional transform ) [or $\phi_{i}(\cdot)=$

$U_{l}^{*}\cdot U_{\mathrm{i}}]$ (unitary transform ) $]$ .

Since a physical system is described by a C’-algebra in general, we shall general-

ize the setting of $B(K)$ to a C’-algebra $A$ . Then, a contractive CP-map $\psi$ from $A$ to
$B(H)$ cannot be decomposed into a $\mathrm{C}\mathrm{P}$-convex combination of extreme $\mathrm{C}\mathrm{P}$-maps as
above unless $\psi$ is atomic (cf. \S 3). Therefore we are naturally led to develop the con-
cept of the measure generalization of $\mathrm{C}\mathrm{P}$-convex combination, that is CP-measure,

which is mathematically defined as an operation-valued measure, and physically it

represents a distribution of operational effects over the extreme interactions. Our

main result in [9] states that, if $A$ and $H$ are separable, then every contractive

CP-map from $A$ to $B(H)$ (generalized measurement process) can be represented by

a $\mathrm{C}\mathrm{P}$-measure supported by $\mathrm{C}\mathrm{P}$-extreme elements (extreme measurements) which

are characterized in \S 2, in the sense of our integration theory discussed in \S 4.

The formulation of generalized measurements above is different from that of

conventional quantum physics, even when the observables are described by $B(K)$ ,

where the generalized measurement $\psi$ was used to be described by a POV-measure
$\{V_{i}^{*}V_{i}\}$ on the discrete index set (e.g. [4]), In this case however the information

about the extreme interactions $\{\varphi_{i}\}$ is eliminated, so that it is impossible to recover

the original measurement process as a CP-map. On the other ha$\mathrm{n}\mathrm{d}$ , the notion of
$\mathrm{C}\mathrm{P}$-measure provides the perspective of the decomposition of the measurement into

the extreme ones with operational weights recovering the original measurement.

2. $\mathrm{C}\mathrm{P}$ -convexity and notations.

Recall that every CP-map $\psi\in CP(A, B(H))$ can be represented as $\psi=V^{*}\pi V$

where $\pi$ is a representation of $A$ , and $V$ is a bounded linear operator from $H$ to

$H_{\pi}$ (cf. [15]). A CP-map $\psi\in CP(A, B(H))$ is called a $CP$-state if it is contractive,

and we denote the set of all $\mathrm{C}\mathrm{P}$ states by $Q_{H}(A)$ and call the $CP$-state space of $A$ ;

$Q_{H}(A)=\{\psi=V^{*}\pi V\in CP(A;B(H));||V||\leq 1\}$ .

A CP-map $\psi$ $=V^{*}\pi V\in Qh(A)B(H))$ is unital iff $V^{*}V=I_{H}$ , and pure iff $\pi$ is

irreducible (cf. [2]). We denote by $S_{H}(A)$ [resp. $P_{H}(A)$ , $PS_{H}(A)$ ] the set of all

unital [resp. pure, unital pure] $\mathrm{C}\mathrm{P}$-states. We also denote by Rep(A : $H$ ) [resp.
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Rep $(A:H)$ , $Irr(A:H)]$ the set of all [resp. cyclic, irreducible] representations of

$A$ on $H$ ( $\mathrm{i}.\mathrm{e}.$ , whose representation spaces are subspaces of $H$).

A $\mathrm{C}\mathrm{P}$ state $\psi\in Q_{H}(A)$ is said to be a $CP$-convex combination of CP-states

$\psi_{i}\in Q_{H}(A)$ if it can be decomposed as

$\psi=\sum_{i}S_{i}^{*}\psi_{i}S_{i}$
with $S_{i}\in B(H)$ such that $\sum_{i}S_{i}^{*}S_{i}\leq I_{H}$

,

which will be abbreviated by $\psi=CP-\sum_{\mathrm{i}}S_{i}^{*}\psi_{i}S_{i}$ .

A $\mathrm{C}\mathrm{P}$-state is defined to be CP- extreme if $\psi=CP-\sum_{i}S_{i}^{*}\psi_{i}S_{\dot{\mathrm{z}}}$ implies that $\psi_{i}$

is unitarily equivalent to $\psi$ . We denote by $D_{H}(A)$ the set of all $\mathrm{C}\mathrm{P}$-extreme states.

It is shown in [11] that $D_{H}(A)$ $=$ Irr $(A : H)$ if $\dim H=\infty$ , $D_{H}(A)=Irr(A$ :

$H)\cup PSH\{A$ ) if $dimH<\infty$ , and in particular $D_{\mathbb{C}}(A)=P(A)$ .

The definition of $\mathrm{C}\mathrm{P}$-extreme state is not unique, which is a distinctive feature

compared with the scalar convexity. For example, a $\mathrm{C}\mathrm{P}$-state is defined to be condi-

tionally $CP$ extreme if $\psi=CP-\sum_{i}$ S\^i $iSi$ with $S_{\mathrm{z}}\geq 0$ implies that $s(S_{i})\psi_{i}s(S_{i})=$

$\psi$ , where $s(S_{i})$ is the support projection of $S_{i}$ . Then, $\psi=u^{*}\pi u\in Q_{H}(A)$ is can

ditionally $\mathrm{C}\mathrm{P}$ extreme iff $\psi$ is pure and $u$ is a partial isometry from $H$ to $H_{\pi}$ (cf.

[11] $)$ .
If $A=\mathrm{B}\{\mathrm{H}$ ), then the $\mathrm{C}\mathrm{P}$-extreme states are the unitary transforms, and the

conditionally $\mathrm{C}\mathrm{P}$-extreme states are the conditional transforms as we observed

in the introduction. For example, annihilations and creations in Fock Hilbert

space are conditionally $\mathrm{C}\mathrm{P}$-extreme so extreme interactions as expected, where
$\mathrm{C}\mathrm{P}$-coefficients include the information about the correlation and probability in

quantum information theory (cf. [12]).

3. Special decompositions.

Besides the physical motivation outlined in the introduction, we had the math-

ematical motivation to answer the so-called decomposition problem of CP-maps,

i.e., “How can a $\mathrm{C}\mathrm{P}$-state be decomposed into the extreme elements?” The answer

should generalize the Choquet theory on the state space $S(A)$ as we shall find out

later.

As illustrated in [9], the preliminary attempt to apply scalar convexity theory

would fail here, since the extreme points of the $\mathrm{C}\mathrm{P}$ state space $Q_{H}(A)$ are not pure
$\mathrm{C}\mathrm{P}$-maps in general, so not extreme $\mathrm{C}\mathrm{P}$-maps (cf.[2]). For example, note that any

representation $\pi\in$ Rep(A : $H$) is an extreme point of the $\mathrm{C}\mathrm{P}$ state space $Q_{H}(A)_{\dot{J}}$
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but it is not pure in general. Also the attempt to apply the disintegration theory

of representations confronts the difficulty caused by the unboundedness arguments

(cf. [9]). As we shall see later, this is possible only if it has a strong continuity.

After all, we realize that $\mathrm{C}\mathrm{P}$-convex combination would be essential to describe

the decomposition of $\mathrm{C}\mathrm{P}$-maps. It is straightforward to see that, if $\psi=V^{*}\pi V\in$

$Q_{H}(A)$ is atomic (i.e., $\pi$ can be embedded into a subrepresentation of a direct

sum of irreducible representations), then $\psi$ can be decomposed into a CP-convex

combination of $\mathrm{C}\mathrm{P}$-extreme states. In fact, let $\pi=(\oplus_{i}\pi_{i})|H_{\pi}$ with $\pi_{i}\in Irr(A)$ ,

then for each $a\in A_{\mathrm{t}}$

$\psi(a)=V^{*}\pi(a)V=V^{*}(\oplus_{i}p_{i})(\oplus\pi_{i}(a))(\oplus_{i}p_{i})V=\sum_{i}V^{*}p_{\dot{\mathrm{t}}}\pi_{\mathrm{n}}(a)p_{i}V$

$= \sum_{i}V^{*}p_{i}u_{i}(u_{i}^{*}\pi_{i}(a)u_{i})u_{i}^{*}p_{i}V=\sum_{:}V_{i}^{*}\varphi_{i}(a)V_{i}$

where $p_{\dot{\mathrm{t}}}$ is the projection of $H_{\oplus_{i}\pi_{i}}$ onto $H_{\pi_{\mathrm{i}}}$ , $u_{i}$ is a partial isometry from $H$ to $H_{\pi_{i}}$ ,

$V_{i}=u_{i}^{*}p_{i}V$ $\in B(H)$ and $\varphi_{i}=u_{i}^{*}\pi_{i}u_{i}\in D_{H}(A)$ . For example, as we mentioned in

the introduction, every normal CP-map from $B(K)$ to $B(H)$ is atomic, i.e., it is

represented by a $\mathrm{C}\mathrm{P}$-convex combination of $\mathrm{C}\mathrm{P}$-extreme states.

More generally, as the generalization of the Krein-Milman theorem (e.g. [1]),

every $\mathrm{C}\mathrm{P}$-state can be approximated by $\mathrm{C}\mathrm{P}$-convex combinations of CP-extreme

elements, $\mathrm{i}.\mathrm{e}.$ ,

$Q_{H}(A)$ $=$ BW-cl. $\mathrm{C}\mathrm{P}$-conv $D_{H}(A)$ ,

which is a preliminary version of the CP-Choquet theorem. As we shall show later,

to eliminate “BW-cl.” , we have to replace the $\mathrm{C}\mathrm{P}$-convex combination by “CP-

measure.
The next fundamental decomposition would be the decomposition by a scalar

measure. We call $\psi=V^{*}\pi V\in Q_{H}(A)$ to be nuclear if $V$ is a nuclear mapping from

$H$ to a nuclear space $\Omega\subset H_{\pi}$ , with $\Omega\subset H_{\pi}\subset\Omega’$ being a rigged Hilbert space.

Then we have the following result (cf. [9]).

Theorem 1. Let $A$ be a separable $C^{*}$-algebra and $H$ be a separable Hilbert space,

and assume that $\psi\in CP(A, B(H))$ is nuclear. Then there exists a standard mea-

pure space $(Z, \mu)$ and measurable families of irreducible representations $\pi(\zeta)\in$

$Irr(A)$ and trace class operators $V(\zeta)\in T(H, H_{\pi}(\zeta))$ such that

$\psi=\int_{Z}V(\zeta)^{*}\pi(\zeta)V(\zeta)d\mu(\zeta)$ .
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Actually, the above result can be applied to slightly more general CP-maps,

called pre-nuclear $\mathrm{C}\mathrm{P}$-maps, for which the readers are referred to [9]. In particular,

finite rank $\mathrm{C}\mathrm{P}$-maps are nuclear, and this fact will be used in the proof of the

CP-Choquet theorem,

4. $\mathrm{C}\mathrm{P}$ -measure and integration.

We shall develop the measure and integration theory especially for operator

algebras, and we present it in a more general setting than we actually need in \S 5.

Let $A$ be an order unit space with an order unit $e$ , and let $B$ be a dual order

unit space with a predual base norm space $B_{*}$ (cf. [1]). We denote by $P(A, B)$

the set of all positive linear maps from $A$ to $B$ . Let $(X, B)$ be a measurable space,

and A be a $P(A, B)$ -valued $\mathrm{B}\mathrm{W}$-countably additive measure, i.e., if $E= \sum_{i=1}^{\infty}B_{i}$

with $E_{\dot{\mathrm{z}}}\in \mathcal{B}$ (disjoint), then $\lambda(E)=\sum_{i=1}^{\infty}\lambda(E_{i})$ converging in the BW-topology.

We denote by $BS(X, A)$ the set of all bounded (countably valued) simple functions

from $X$ to $A$ , i.e., $f\in BS(X, A)$ is a function of the form

$f= \sum_{i=1}^{\infty}\chi_{E_{i}}a_{i}$ with $(E_{\mathrm{i}})\subset B$ (disjoint) and $(a_{i})\subset A$ (bounded),

where $\chi_{E}$ denotes the characteristic function of $E\in B$ . We then define the integral

of $f$ with respect to A by

$\int_{X}fd\lambda:=\sum_{i=1}^{\infty}\lambda(E_{i})a_{\mathrm{t}}\in B$ ,

which converges in the $\sigma$ ( $B$ , B. )-topology. We note that the integration map $\lambda$ :

$BS(X, A)arrow B$ is bounded with $||\lambda||=||\lambda(X)e||$ .

Let $\tau$ be a topology in $A$ , where, in the subsequent arguments, $\tau$ will denotes

the norm topology $(\tau=s)$ , or the weak* topology $(\tau--w)$ if $A$ is a dual order unit

space. By $BM_{\tau}(X, A)$ we denote the set of all bounded $\tau$-measurable functions

from $X$ to $A$ , and call the strongly [weakly ] measurable functions if $\tau=s[\tau=w]$ .

Lemma 2. Assume that any bounded part of A is $\tau$-metrizable. Then $BS(X,$A)

is dense in $BM_{\tau}(X,$A) in the $\tau$-uniforraly convergence topology.

Definition. By the boundedness of the integration map A: $BS(X, A)arrow B$ and the

above lemma with the norm topology $(\tau=s)$ , A has the unique norm continuous

extention A : $BS(X, A)arrow B$ , which we shall call the strong integration of the
$A$-valued strongly measurable functions on $X$ with respect to A.
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We next assume that $A$ is a dual order unit space, whose predual consists of

all monotone continuous linear functional$\mathrm{s}$ on $A$ (which is satisfied for example for

JBW-algebras and of course for $\mathrm{W}^{*}$-algebras). Let A : $B$ $arrow P(A, B)_{n}$ be a BW-

countably additive measure, where $P(A, B)_{n}$ denotes the set of all normal positive

linear maps from $A$ to $B$ . For each $a\in A$ , $\rho\in B_{*}$ and $E\in B$ , we shall define a

scalar measure $\lambda_{a,\rho}(E):=(\lambda(E)a, \rho)$ . Then, if there exists a scalar measure $lJ$ such

that $\lambda_{a,p}\ll u$ uniformly for $a\in A$ and $\rho\in$ $B_{*}$ , we say that A is $B$ W-absolutely

continuous with respect to $lJ$ . This constraint would suffice for our purpose.

Lemma 3. Assume that $\lambda$ satisfies the above conditions, and let $(f_{n})\subset BS(X, A)$

be a Cauchy sequence in the uniform $w^{*}$-convergence topology. Then, $(b_{n})=$

$( \int_{X}f_{n}d\lambda)$ is a Cauchy sequence in the $\sigma(B, B_{*})$ topology.

Definition. Let $A$ and $B$ be dual order unit spaces, and assume that any bounded

part of $A$ is $\mathrm{w}^{*}$-metrizable. Then by Lemmas 2 and 3, the integration map A:

$BS(X, A)arrow B$ has the unique $\mathrm{w}^{*}$-continuous extention A : $BM_{w}(X, A)arrow B_{7}$

which we shall call the weak integration of $A$-valued weakly measure, le functions

on $X$ with respect to A.

Remark. We note that the strong integral can be extended for unbounded measur-

able functions, and this integration has some advantages compared with the usual

method in the vector measure theory in Banach spaces (cf. [3], [5]). On the other

hand, it would seem hardly possible to establish the weak integral without any

restrictions.

5. CP-Choquet theorem.

We shall now apply our measure and integration theory to the measurable space

$(X, B)$ where $X$ is the $\mathrm{C}\mathrm{P}$ state space $Q_{H}(A)$ for a $\mathrm{C}^{*}$-algebra $A$ , and $B$ is the Borel

sets $\mathcal{B}_{BW}$ in $Q_{H}(A)$ induced from the $\mathrm{B}\mathrm{W}$ topology. Let $\lambda$ : $B_{B}warrow Q_{H}(B(H))_{n}$

be an operation valued countably additive measure, which we shall call CP-measure

in the following. By the $\mathrm{C}\mathrm{P}$-duality theorem (cf. [7]), every element $a\in A$ defines

a BW-w continuous function a : $\psi\in Q_{H}(A)arrow\psi(a)\in B(H)$ by the natural

evaluation map, so a $w$-measurable function, so that we can consider the weak

integral $\int_{Q_{H}\langle A\rangle}$ \^a $d\lambda$ as we defined in the previous section.

Lemma 4. If A and H are separable, then $D_{H}(A)\in \mathcal{B}_{BW}$ .

We can now state our main theorem.
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Theorem 5. Let $A$ be a separable $C^{*}$-algebra, and $H$ be a separable Hilbert space.

Then for any $CP$-state $\psi\in Q_{H}(A)$ , there exists a $CP$ measure $\lambda\psi$ supported by the

$CP$-extreme states $D_{H}(A)$ such that

$\psi(a)=\int_{D_{H}(A)}$ \^a $d\lambda$ .

Sketch of proof Let $\psi=V^{*}\pi V$ be the Stinespring representation of $\psi$

) and we take

an irreducible decomposition of $\pi$ , i.e.,

$\pi=\oint_{Z}^{\oplus}\pi(\zeta)d\mu(\zeta)$ and $H_{\pi}= \int_{Z}^{\oplus}H_{\pi}(\zeta)d\mu(\zeta)$ .

We first claim that there exists a partial isometry

$U$ : $H_{\pi}arrow L^{2}(Z, \mu, H)$ with $U= \oint_{Z}^{\oplus}u(\zeta)d\mu(\zeta)$

where $u(\zeta)$ : $H_{\pi}(\zeta)arrow H$ is a measurable field of isometries or $\mathrm{c}\mathrm{o}$ isometries To

prove this, if $H$ is infinite dimensional, then we can take an embedding $u(\zeta)$ :

$\mathrm{t}\mathrm{v}(()arrow H$ , and if $H$ is finite dimensional, then we can use the decomposition of

nuclear CP-map $\psi$ (Theorem 1) (see [9] for details).

We define $\tilde{\pi}(\zeta):=u(\zeta)\pi(\zeta)u(\zeta)^{*}\in D_{H}(A)$ . We also denote by $\kappa$ the natural

representation of $B(H)$ on $L^{2}(Z, \mu, H)$ , and by $P_{E}$ the projection in $L^{2}(Z, \mu, H)$

which is defined by

$P_{E}= \oint_{Z}^{\oplus}P_{E}(\zeta)d\mu(\zeta)$ where $P_{E}(\zeta)=\{$

$I_{H}$ for $\zeta\in\tilde{\pi}^{-1}(E)$ .

0for $\zeta\not\in\tilde{\pi}^{-1}(E)$ .

We define a $\mathrm{C}\mathrm{P}$ measure $\lambda_{\psi}$ by

$\lambda_{\psi}(E).--(P_{E}UV)^{\mathrm{v}}\kappa(P_{E}UV)\in Q_{H}(B(H))_{n}$ ,

then we can observe that it is supported by $D_{H}(A)$ , and $\mathrm{B}\mathrm{W}$-absolutely continuous

with respect to a scalar measure $lJ$ $:=\mu\circ\tilde{\pi}^{-1}$ .

We now apply our weak integral discussed in the previous section, and the left

of the proof is devoted to prove the equality

$( \oint_{D_{H}(A)} \text{\^{a}} d\lambda\psi, \rho)=(\psi(a), \rho)$.

for all $\rho\in B(H)_{*}=T(H)$ , which depends on the Radon-Nikodym theorem for the

weak integral and the definition of $u(\zeta)$ above (cf. [9] for details).

As an application of the CP-Choquet theorem, we mention the non-commutative

spectral theory in [10]. We expect that it will find more applications in mathematics

and quantum physics where the decomposition of $\mathrm{C}\mathrm{P}$-maps play an important role
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Remarks, 1. In particular, if $H$ is infinite dimensional and $\psi=\pi\in$ Rep(A : $H$ ),

then $D_{H}(A)=Irr(A:H)$ and the above theorem gives an analytic expression of

the algebraic decomposition of $\pi$ . Also, if $dimH=1$ , then $D_{H}(A)=P(A)$ , and

this reduces to the classical Choquet’s theorem. Thus the CP-Choquet theorem in-

terpolates between the classical Choquet’ theorem and the algebraic decomposition

theory for representations.

2. By modifying the proof, we can show that there exists a representing CP-

measure supported by the conditionally $\mathrm{C}\mathrm{P}$-extreme states, where if $A=B(K)$ for

example, then the $\mathrm{C}\mathrm{P}$-measure is the atomic measure $\{|V_{i}|\cdot|V_{i}|\}$ as we saw in the

introduction.
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