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1 Introduction

Gross [5] presented a new notion “measurable norm” , which was the start of the
splendid and fantastic theory of “abstract Wiener spaces”. This gives a condition
satisfying that the Gauss cylindrical measure extends to a measure. In 1971, $\mathrm{D}\mathrm{u}\mathrm{d}\mathrm{l}\mathrm{e}\mathrm{y}arrow$

Feldman-LeCam [3] defined another notion of measurable norms. If the norm is con-
tinuous, then this is a necessary and sufficient condition for satisfying that a general
cylindrical measure extends to a measure.

Badrikian and Chevet [1] offered the following question:

“Do these notions of two measurable norms coincide with each other for every cylindrical
measure?”

In 1984 Maeda [15] solved this problem negatively. These two notions are very close,

but subtly different.

Many mathematicians noted conditions involved with these two measurable norms
and investigated them. They gave similar conditions to these measurable norms. In

Section 3, we give seven conditions approximating to measurable norms. And we show

the relation of seven conditions.

We introduce a new definition of a Gauss cylindrical measures which was introduced
by Baxendale [2]. There we compare it with the Gauss cylindrical measure defined in

the original sense. The Gauss cylindrical measures introduced by Baxendale contain

ones without variance, so that they extends the original ones. We study Baxendale’s
Gauss cylindrical measures in detail.

2 Preliminaries
Let $X$ be a locally convex Hausdorff topological vector space over the real field

$\mathbb{R}$ , $X’$ its topological dual, $($ -, $\cdot)$ the natural pairing between $X$ and $X’$ and $B(X)$ the

Borel a-algebra of $X$ . Let $\{\xi_{1}, \ldots ,\xi_{n}\}$ be a finite system of elements of $X’$ . Then by —
we denote the operator from $X$ into $\mathbb{R}^{n}$ mapping $x$ onto the vector $((x,\xi_{1})$ , $\ldots$ , $(x,\xi_{n}))$ .
A set $Z\subset X$ is said to be a cylindrical set if there are $\xi_{1}$ , $\ldots$ , $\xi_{n}\in X’$ and $B\in B(\mathbb{R}^{n})$
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such that Z $=—-1(B)$ . Let $\mathrm{C}_{X}$ denote the collection of all cylindrical sets of X.

A map 72 from $\mathrm{C}_{X}$ into $[0, 1]$ is called a cylindrical measure if it satisfies the following
conditions:

(1) $\mu(X)=1$ ;
(2) Fkstrict $\mu$ to a a-algebra of cylindrical sets which are generated by a fixed

finite system of functional. Then each such restriction is countably additive.

By putting $\mu_{\xi_{1},\ldots,\xi_{n}}(B)=\mu(_{-}^{--1}-(B))$ each cylindrical measure $\mu$ defines a family of
Borel probability measures.

Next we introduce two kinds of measurable norms defined on a Hilbert space.
Let $H$ be a real separable Hilbert space with norm $|\cdot|=\sqrt{\langle\cdot,\cdot\rangle}$ . Let $F$ be the partially
ordered set of all finite dimensional orthogonal projections of $H$ and $FD(H)$ the family
of all finite dimensional subspaces of H. $P>Q$ means $PH\supset$ $QH$ for $P$, $Q\in F$ . Also
a subset $E$ of $H$ of the following form is a cylindrical set, $E=\{x\in H;Px\in F\}$ , where
$P\in F$ and $F$ is a Borel subset of $PH$ .

First, we define the canonical Gauss cylindrical measure and two measurable norms.

Definition 2.1 The canonical Gauss cylindrical measure is a cylindrical measure $\gamma$

from $\mathrm{C}_{H}$ into $[0, 1]$ defined as follows:
If $E=\{x\in H;Px\in F\}$ , then

$\gamma(E)=(\frac{1}{\sqrt{2\pi}})^{n}\int_{F}e^{-\frac{|x|^{2}}{2}}dx$ ,

where $n=\dim PH$ and $dx$ is the Lebesgue measure on $PH$ .

Remark 2.2 If $H$ is an infinite dimensional space, then $\gamma$ is finitely additive, but

is not $\sigma$-additive. In general, we denote by $\gamma^{t}(Z)=(\frac{1}{\sqrt{2\pi t}})n\int_{F}e^{-\frac{|x|^{2}}{2\mathrm{t}}}dx$ the Gauss

cylindrical measure with parameter $t$ $(0<t<\infty)$ . $\gamma^{1}$ is the canonical Gauss cylindrical
measure. In this paper, we denote the canonical Gauss cylindrical measure by $\gamma$ .

We define two measurable norms.

Definition 2.3 A semi-norm ||.|| in H is said to be 7-$(G)m$easurable iffor every $\epsilon>0$,
there exists $P_{0}\in F$ such that $\gamma(\{x\in H_{\}}. ||Px||>\epsilon\})<\epsilon$ for $\forall P[perp] P_{0}$ and P $\in F$ .

This concept was introduced by Gross [7] in 1962. It was the starting point of the
successive research concerning the abstract Wiener space. In Definition 2.3, we can
replace $\gamma$ with $\mu$ which is any cylindrical measure defined on $H$ . In such a case we say
that $||\cdot$ $||$ is $\mu-(G)\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$. We can also redefine the above concept as follows:

We say that $||\cdot||$ is $\mu-(G)\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ if for every $\epsilon>0$ , there exists $G\in FD(H)$

such that $\mu(N_{\epsilon}\cap F+F^{[perp]})\geq 1-\epsilon$ whenever $F\in FD(H)$ and $F[perp] G$, where $N_{\epsilon}=\{x\in$

$H;||x||\leq\epsilon\}$ and $F^{[perp]}$ is the orthogonal complement of $F$ .
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Definition 2.4 A semi-norm $||$ . $||$ is said to be $\mu-(D)$ measurable if for every $\epsilon$ $>0$

there exists $G\in FD(H)$ such that $\mu(P_{F}(N_{\epsilon})+F^{[perp]})$ $\geq 1-\epsilon$ whenever $F\in FD(H)$ and
$F[perp] G$ , there $P_{F}$ is the orthogonal projection of $H$ onto $F$ .

This was introduced by Dudley-Feldman-LeCam [3] in 1971.
They showed that these two measurable norms are equivalent for the canonical Gauss
cylindrical measure [3].

Theorem 2.5 ([3]) Let $||\cdot||$ be a continuous serni-norm in a Hilbert space $H$, and
$\gamma$ the canonical Gauss cylindrical measure on H. Then the following statements are
equivalent.

(i) $||\cdot \mathrm{f}|$ is $\gamma-(D)measurable$ .

(ii) $)$ $||\cdot||$ is $\gamma-(G)$ measurable.

Let $E$ be the completion of $H$ with respect to the norm $||$ . $||$ and $\mathrm{i}$ the inclusion
map of $H$ into $E$ . If $||\cdot$ $||$ is $\gamma$-measurable, then the triple $(\mathrm{z}, H, E)$ is called an abstract
Wiener space.

Theorem 2.6 ([2]) Let $||\cdot$ $||$ be a continuous norm defined on a Hilbert space $H_{l}\mu a$

cylindrical measure on $H$ , and $B$ the completion of $H$ with respect to $||\cdot$ $||$ . Then the
following are equivalent.

(i) $||\cdot||$ is $\mu-(D)$ measurable.

(ii) $\mathrm{i}(\mu)$ , where $i(\mu)$ is the image of $\mu$ under the map $i$ , is countably additive and is
extensible to a measure.

It is easy to see that (GQmeasurability implies $(D)\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{i}\mathrm{l}i\mathrm{t}\mathrm{y}$ . But the converse is
false generally ([15], this is the 1984-Example).

We define the characteristic functions and the continuity of cylindrical measures.

Definition 2.7 The characteristic function $\phi$ of a cylindrical measure $\mu$ on H is de-

fined by
$\phi(\xi)=\int_{H}e^{\tilde{\iota}\langle\xi,x\rangle}\mu(dx)$

where $\xi\in H$ .

We define the continuity of cylindrical measures.

Definition 2.8 Let $\mu$ be a cylindrical measure on H. The $\mu$ is said to be continuous

if the characteristic function of $\mu$ is continuous
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We introduce the following proposition. It is useful to check the continuity of
cylindrical measures.

Proposition 2.9 ([12]) Let $\mu$ be a cylindrical measure on H. Then the following are
equivalent.
(i) $\mu$ is continuous.
(ii) if the generalized sequence $\{\xi_{\alpha}\}\subset H$ tends to zero, then we have

$\lim_{\alpha}\mu_{\xi_{\alpha}}([-\sigma, \sigma])=1$

for some (each) $\sigma>0$ .
$(i\dot{x}i)$ Suppose $\lim_{\alpha}\xi_{\alpha}=0$ . Then it follows that $\mu_{\xi_{\alpha}}$ weakly converges to $\delta_{0}$ .

3 Measurable norms and seven conditions

In 1980’s, Maeda compared two measurable norms (Gross’ and D.F.L.’s sense
respectively). She considered only two measurabilities but not other conditions. How-
ever there exist several conditions approximating to these measurabilities. In this sec-
tion, we treat those conditions and research the relation between them.

In the following theorem, Baxendale showed that (i), (ii), (iii) and (vi) are equiva-
lent for the canonical Gauss cylindrical measure. We have that $(i)\Rightarrow(ii)\Rightarrow(i\mathrm{i}i)\Rightarrow(\mathrm{i}v)$

for general cylindrical measures by a similar method. Condition (iv) was given by Yan
and Gong. Yan proved that $(iv)\Rightarrow(v\mathrm{i}i)$ for any reflexive Banach space $B$ . After that,
Gong showed it for an arbitrary Banach space $B$ . The equivalence of (v) and (vi) was
given in Theorem 2.7. The following theorem is a gathering of the above.

Theorem 3.1 Let $H$ be a real separable Hilbert space with nor$rm|\cdot|=\sqrt{\langle\cdot,\cdot\rangle}$, $\mu a$

cylindrical measure on $H$ , $||\cdot||$ a continuous norm defined on $H_{f}B$ the completion of
$H$ with respect to $||\cdot||$ and $i$ the inclusion map from $H$ into B. Moreover, let $Y$ be the
bidual $B’$ of $B$ with weak’-topology $\mathrm{a}$ ( $\mathrm{B}\mathrm{r}/$ , Bf) and $j$ be the inclusion map from $H$ into
Y. Then the following seven conditions satisfy the relations: $(i)\Rightarrow(ii)\Rightarrow(iii)\Rightarrow(iv)$ ,
$(i)\Rightarrow(i\mathrm{i})\Rightarrow(v)\Leftrightarrow(vi)\Rightarrow(vii)$ .
If $\mu$ is continuous (this means that the characteristic function of $\mu$ is continuous on
$H)$ , then the following conditions satisfy the relations: (iii) $\Rightarrow(vi)$ and $(\mathrm{i}v)\Rightarrow(v\mathrm{i}i)$ .
(i) For an $y\epsilon>0$ there exists $N$ A $\mathrm{N}$ , where $\mathrm{N}$ is the set of all natural numbers, such
that $n>m\geq N$ implies

$\mu(\{x\in H;||P_{n}x-P_{m}x||>\epsilon\})<\epsilon$

for every sequence $\{P_{n}\}\subseteq F$ such that $P_{n}<P_{n+1}(\forall n\in \mathrm{N})$ and $P_{n}$ converges strongly
to the identity map $I$ (we write it $P_{n}\nearrow I$).
(ii) $||\cdot||$ is a $\mu-(G)$ measurable norm.
(iii) There eists a sequence $\{P_{n}\}\subset F$ with $P_{n}\nearrow I$ which has the property that for
cvny $\epsilon$ $>0$ there exists $N\in \mathrm{N}$ such that

$\mu(\{x\in H;||P_{n}x-P_{m}x||>\epsilon\})<\epsilon$
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for every $n>m\geq N$ .
$(\iota^{r}v)$ There exists a sequence $\{P_{n}\}\subset F$ with $P_{n}\nearrow I$, which has the properry that for
any $\epsilon$ $>0$ there exist $N_{\epsilon}\in \mathrm{N}$ and $n_{\epsilon}\in \mathrm{N}$ such that

$\mu(\{x\in H,\cdot\sup_{1\leq k\leq n}||P_{k}x||>N\})<\epsilon$

for every $N\geq N_{\epsilon}$ and every $n\geq n_{\Xi}$ .
(v) $||\cdot||$ is a $\mu-(D)measumble$ no $rm$ .
(vi) $\mathrm{i}\{\mu$) $(i.e. \mu\circ i^{-1})$ is extensible to a measure.
(vii) $j(\mu)$ is extensible to a measure.

4 The definition of Gauss cylindrical measures
introduced by Baxendale

The comparison between Gauss cylindrical measures by Baxendale and the orig-
inal one was researched in [26]. Here we concretely construct a cylindrical measure on
$\ell^{2}$ using the same a as we introduced in Section 4, and we denote it by $\gamma_{\mathrm{a}}$ . We mention
the definition of $\gamma_{\mathrm{a}}$ later. It is a Gauss cyhndrical measure in the sense of Baxendale
but it is not the original Gauss cylindrical measure. In this section, we study seven
conditions in Theorem 3.1 comparing $\gamma$ and $\gamma_{\mathrm{a}}$ .

First we define Gauss cylindrical measures by Baxendale.

Definition 4.1 ([2]) Let E be a separable Banach space.
(a) A Borel probability measure $\lambda$ on $\mathbb{R}$ is Gaussian if either

(i) A $=\delta_{0}$

or
(ii) There exists $t$ $>0$ such that for $B\in B(\mathbb{R})$

$\lambda(B)=\frac{1}{\sqrt{2\pi t}}\int_{B}e^{-\frac{|x|^{2}}{2\theta}}dx$ .

(b) A cylindrical measure $\mu$ is a Gauss cylindrical measure if every one-dimensional
distribution $\mu_{\xi}$ of $\mu$ ( $i.e$. the image of $\mu$ under $\xi$ : $Earrow \mathbb{R}$) is Gaussian on $\mathbb{R}$

(c) A Gauss measure on $E$ is a Borel probability measure on $E$ which restricts to $a$

Gauss cylindncal measure.

Definition 4.2 Let $E$ be a separable Banach space and $\mu$ a Gauss cylindrical measure
on $E$ and $\phi(\mu, \xi)$ the characteristic function of $\mu$ . Let $L(E, E’)$ be the family of all
bounded linear operators from $E$ into $E’$ . We say that $\mu$ has a variance $A$ if there is $a$

self adjoint $A\in L(E,E^{J})$ , such that $\phi(\mu,\xi)=\exp\{-(\xi,A\xi)/2\}$ for all ($;\in E’$ . Here $A$

is called self adjoint if ( $\xi$ ,Aq) $=$ ( $\eta$ ,A4) for any $\xi$ , $\eta\in E’$ .

Let a be an element of $\ell^{2^{*}}$ such that
$(\mathrm{a}, e_{n})=1$ for $n=1,2$ , $\ldots$ }

$(\mathrm{a}, e_{\alpha})=0$ for $e_{\alpha}\in J\backslash \{e_{n}\}_{n=1,2},\ldots\cdot$

Let $\gamma_{\mathbb{R}}$ be the canonical Gauss measure on $\mathbb{R}$ , $\gamma_{\mathrm{a}}^{*}$ the measure induced by a function
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$f$ : $\mathbb{R}arrow(\ell^{2})^{*}(tarrow t\mathrm{a})$ . i.e. 7: is the image measure of $\gamma_{\mathbb{R}}$ under $f$ . Define a cylindrical
measure $\gamma_{\mathrm{a}}$ on $\ell^{2}$ as follows;
For

$Z=\{x\in(\ell^{2})^{*}; ((x,\xi_{1}), \ldots , (x, \xi_{n}))\in D\}$

and
$\tilde{Z}=\{x\in\ell^{2};(\langle x, \xi_{1}\rangle, \ldots, \langle x,\xi_{n}\rangle)\in D\}$

Put $\gamma_{\mathrm{a}}(\tilde{Z})=\gamma_{\mathrm{a}}^{*}(Z)$ , where $\xi_{1}$ , $\ldots$ , $\xi_{n}\in\ell^{2}$ and $D\in B(\mathbb{R}^{n})$ .
Then $\gamma_{\mathrm{a}}$ is a Gauss cylindrical measure in the sense of Baxendale, and is not the
canonical Gauss cylindrical measure. Further, it does not coincide with $\gamma^{t}$ and does
not have a variance.

We have the following results for $||\cdot||_{1}$ and $||\cdot||_{4}$ and $\gamma_{\mathrm{a}}$ . These results are shown
by using a similar method in the case of $\mu_{\mathrm{a}}$ .

It is well-know$\mathrm{n}$ that $||\cdot$ $||_{4}$ is measurable for canonical Gauss cylindrical measures.
And we do not know whether $||\cdot||_{1}$ is measurable for canonical Gauss cylindrical mea-
sures. We have that this two norms $||$ . $||_{1}$ and $||\cdot||_{4}$ are $(D)\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}\mathrm{l}\mathrm{e}$ with respect to
$\gamma_{\mathrm{a}}$ which is a Gauss cylindrical measure in the sense of Baxendale.

Theorem 4.3 ||. $||_{1}$ is $\gamma_{\mathrm{a}}-(D)$ measurable.

Theorem 4.4 ||. $||_{4}$ is $\gamma_{\mathrm{a}}-(D)$ measurable.

The notion of measurable norms by Gross and the notion of measurable norms by
D.F.L. are equivalent for canonical Gauss cylindrical measures. We show the existence
of a Gauss cylindrical measure in the the sense of Baxendale that the notions of these
two measurability do not coincide.

Theorem 4.5 ||. $||_{2}$ is $\gamma_{\mathrm{a}^{\wedge}}(D)$ measurable.

Proof. Let $E$ be the completion of $\ell^{2}$ with respect to the norm $||\cdot||_{2}$ , and $j$ the
inclusion map of $\ell^{2}$ into $E$ . Denote by $j’$ the dual operator of $j$ . Let $(\cdot$ , $\cdot)_{E}$ be the
natural pairing $E’\mathrm{x}$ $Earrow \mathbb{R}$ .

$E’arrow j’(\ell^{2})’\simeq \mathit{1}^{2}arrow Ej$

To prove that the norm $||\cdot$ $||_{2}$ is $\gamma_{\mathrm{a}}-(D)\mathrm{m}\mathrm{e}\mathrm{a}\mathrm{s}\mathrm{u}\mathrm{r}\mathrm{a}\mathrm{b}1\mathrm{e}$, it suffices to show that $j(\mu_{\mathrm{a}})$ , the
image of $\gamma_{\mathrm{a}}$ under the map $j$ , is $\mathrm{c}\mathrm{r}$-additive on $(E,\mathrm{C}_{E})$ .
Claim, a vanishes on $j’(E’)$ .
Proof of claim. Suppose $y\in E’$ is given. We have to show that $(\mathrm{a}, j’(y))=0$ . Since
$(\mathrm{a}, e_{\alpha})=0$ far all $e_{\alpha}\in J\backslash \{e_{n}\}_{n=1,2},\ldots$ , we may assume $\mathrm{J}\sim’(y)$ 1s of the form $\sum_{n=1}^{N}A_{n}e_{n}$ ,
where $A_{1}$ , A2, . . . , $A_{N}\in$ R.

Now define a sequence $\{x^{m}\}_{m=1,2},\ldots$ in $\ell^{2}$ by
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$x^{1}=e_{1}$ ,
$x^{2}=e_{1}+e_{2}+e_{\mathit{3}}$ ,...
$x^{m}=e_{1}+\ldots+e_{2m-1}$ ,

.$\cdot$.

Then $\langle e_{k}, x^{m}\rangle=1$ for $m\geq(k+1)/2$ , so $\langle j’(y), x^{m}\rangle=\sum_{n=1}^{N}A_{n}$ for all $m\geq N$ .
Moreover, since $\langle j’(y), x^{m}\rangle=(y,j(x^{m}))_{E}$ , we obtain $(y,j(x^{m}))_{E}= \sum_{n=1}^{N}A_{n}$ for all
$m\geq N$ . Therefore,

$\lim_{marrow\infty}$
$(y,j(x^{m}))_{E}= \sum_{n=1}^{N}A_{n}$ . (1}

But by constructions of $\{\beta_{m}\}$ and $U_{21}$ we know that $\beta_{2m-1}x^{m}\in U_{2}$ , so that $||x^{m}||_{2}\leq$

$1/\beta_{2m-1}$ . The assumption $\beta_{2m-1}arrow$ oo as $marrow$ oo implies $||x^{m}||_{2}arrow 0$ as $marrow\infty$ .
Therefore,

$\lim_{marrow\infty}j(x^{m})=0$ in E. (2)

Thus by (17) and (18) we deduce that $\sum_{n=1}^{N}A_{n}=0$ , and hence $(\mathrm{a},j’(y))=$

$\sum_{n=1}^{N}A_{n}=0$ . This completes the proof of our claim.

Let $i$ be the canonical map of $(l^{2})^{*}$ into $(E’)^{*}$ . Then our claim implies $\mathrm{i}(\mathrm{a})=0$ , so
that $\mathrm{i}(\gamma_{\mathrm{a}}^{*})$ is the Dirac measure $\gamma_{0}=\delta_{0}$ on $(E’)^{*}$ . Therefore, $j(\gamma_{\mathrm{a}})$ is extendable to

$\square \delta_{0}$

on $E$ , so it is $\sigma$-additive on $(E,C_{E})$ .

Theorem 4.6 ||. $||_{2}$ is not $\gamma_{\mathrm{a}}-(G)measurable$ .

Proof. It suffices to show that there exists a number $\epsilon_{0}>0$ such that for every
$G\in FD(\ell^{2})$ there exists $F\in FD(\ell^{2})$ satisfying $F[perp] G$ and $\gamma_{\mathrm{a}}(\epsilon 0U_{2}\cap F+F^{[perp]})<1-\epsilon_{0}$ .

Let $G$ be an arbitrary finite dimensional subspace of $\ell^{2}$ , and $\{\xi^{j}\}j=1,2,\ldots,n$ be a CONS

of $G$ . Then each $\xi^{j}$ is of the form $\xi^{j}=\sum_{i=1}^{\infty}\alpha_{\overline{l}}^{j}e_{i}$ where $\alpha_{i}^{\mathrm{J}}\in \mathbb{R}$ for $j=1,2$, $\ldots$ , $n$ and
$i=1,2$ , . . .. Then we have the following matrix $A$ :

$A=\{$ $\alpha_{1}^{n}\alpha_{1}^{1}..\cdot$
$\alpha_{n}^{1}\alpha_{n}^{n}..\cdot$

$.-\cdot.-\cdot..$

.

$\alpha_{n+m}^{1}\alpha_{n+m}^{n}.\cdot.)$ ,

where $m$ is chosen such that rank $A=n$. Suppose $N>n+m$ . Then the next equation

has its solution in $\mathbb{R}^{n+m}$ .
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$A\ovalbox{\tt\small REJECT}$ $x_{n+m}x_{n}x_{1}..\cdot.\cdot.)=(\begin{array}{l}-\alpha_{2N+1}^{1}\vdots-\alpha_{2N+\mathrm{l}}^{n}\end{array})$ . (3)

By the construction we know that $\alpha_{f}^{j}arrow \mathrm{o}$ as $iarrow$ oo for $j=1$ , 2, $\ldots$ , $n$ . Therefore,

for every $\delta$ $>0$ , we may choose a positive integer $N(>n+m)_{\backslash },$ $N$ sufficiently large,

such that the equation (19) has a solution $x_{1}=\eta_{1}$ , . . . , $x_{n+m}=\eta_{n+m}$ satisfying

$1\leq\iota\leq n+m\mathrm{m}\mathrm{a}\mathrm{x}|\eta_{l}|<\mathit{5}$. (4)

Now choose a number $\delta$ $>0$ in (20) such that

$\frac{\eta_{1}+\eta_{2}+...\cdot.+\eta_{n+m}+1}{(\eta_{1})^{2}+(\eta_{2})^{2}+.+(\eta_{n+m})^{2}+1}>\frac{1}{2}$ . (5)

Let $\tau=\eta_{1}e_{1}+$ . . . $+\eta_{n+m}e_{n+m}+e_{2N+1}$ and $F$ be the one dimensional subspace of
$\ell^{2}$ generated by $\tau$ . $\langle\tau,\xi^{j}\rangle=0$ for $j=1$ , 2, $\ldots$ , $n$ , so that $F[perp] G$ .

Put $\phi=\frac{\tau}{|\tau|}$ , where $|$ . $|$ is the Hilbert norm of $l^{2}$ , then

$( \mathrm{a}, \phi)=\frac{(\mathrm{a}\tau))}{|\tau|}=\frac{\eta_{1}+\eta_{2}.+\ldots+\eta_{n+m}+1}{(\eta_{1}^{2}+..+\eta_{n+m^{2}}+1)^{\frac{1}{2}}}$
.

Let $\epsilon_{1}=\int_{\{\mathrm{a},\phi]}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx$ then $0< \epsilon_{1}<\frac{1}{2}$ . Put $\epsilon_{0}=\min(\epsilon_{1}, \frac{1}{6})$ .
Now we show that $(\mathrm{a}, \phi)\phi\not\in$ $\epsilon_{0}U_{2}$ . Suppose this is not the case. Then $(\mathrm{a}, \phi)\phi\in\epsilon_{0}U_{2}$

implies that $(\mathrm{a}, \phi)\phi$ may be expressed as $(\mathrm{a}, \phi)\phi=X+Y$ , where $X\in\epsilon 0\Gamma 2$ and $Y\in$

$\epsilon_{0}B_{1}$ . Since $X$ , $Y\in\ell^{2}$ , $X$ and $Y$ are of the form $X= \sum_{i=1}^{\infty}X_{i}e_{i}$ and $Y= \sum_{i=1}^{\infty}Y_{\dot{2}}e_{i}$ ,
where $X_{i},Y_{i}\in \mathbb{R}$ for $\mathrm{i}=1$ , 2, $\ldots$ . Then $( \mathrm{a}, \phi)\phi=\sum_{i=1}^{\infty}(X_{i}+Y_{i})e_{\dot{\mathrm{t}}}$ and by (21) we have

$X_{2N}+Y_{2N}=0$

and

$X_{2N+1}+Y_{2N+1}= \frac{\eta_{1}+\eta_{2}+.\cdots+\eta_{n+m}+1}{\eta_{1^{2}}+..+\eta_{n+m}^{2}+1}>\frac{1}{2}$ .

The fact $X\in\epsilon_{0}\Gamma_{2}$ implies that $X_{2N}=X_{2N+1}$ . Therefore,

$| \frac{\eta_{1}+\eta_{2}+.\cdots+\eta_{n+m}+1}{\eta_{1}^{2}+..+\eta_{n+m}^{2}+1}-Y_{2N+1}|=|X_{2N+1}|=|\mathrm{Y}_{2N}|<\epsilon_{0}\leq\frac{1}{6}$

On the other hand by (21),

$| \frac{\eta_{1}+\eta_{2}+.\cdots+\eta_{n+m}+1}{\eta_{1}^{2}+..+\eta_{n+m^{2}}+1}-\mathrm{Y}_{2N+1}|>\frac{1}{2}-|Y_{2N+1}|\geq\frac{1}{3}$,
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and since $N$ is sufficiently large, we reach a contradiction. Therefore we have $(\mathrm{a}, \phi)\phi\not\in$

$\epsilon_{0}U_{2}$ .
By $(\mathrm{a}, \phi)\phi\not\in\epsilon_{0}U_{2}$ , we obtain $q\phi\not\in\epsilon 0U_{2}$ for any $q\geq(\mathrm{a}, \phi)$ . Since $(\gamma_{\mathrm{a}})_{\phi}=\gamma_{\mathrm{a}}\circ\phi^{-\mathrm{I}}$ ,

$\gamma_{\mathrm{a}}(\epsilon_{0}U_{2}\cap F+F^{[perp]})$ $=$ $(\gamma_{\mathrm{a}})_{\phi}(\epsilon_{0}U_{2}\cap F)$

$\leq$ 1–2 $\int_{\{\mathrm{a},\phi)}^{\infty}\frac{1}{\sqrt{2\pi}}e^{-\frac{x^{2}}{2}}dx$

$=$ $1-2\epsilon_{1}$

$<$ $1-\epsilon_{1}$

$\leq$ $1-\epsilon_{0}$ ,

and the proof is complete. $\square$

We conclude that Gauss cylindrical measures of Baxendale contain not only the
canonical Gauss cylindrical measure and $\gamma^{\mathrm{f}}$ but also another cylindrical measure. And
they do not have a particular property that conditions (i), (ii), (iii), (v) and (vi) in
Theorem 3.1 are equivalent. This property characterizes the Gauss cylindrical measures
in the original sense.
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