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Abstract
A numerical study is presented for the isothermal and non-isothermal flows in

a curved square duct for the curvature, $\delta$ , in the range $0<\delta\leq 0.5$ over a wide
range of the Dean number, A temperature difference is applied between the vertical
sidewalls for the Grashof number in the range $0\leq Gr\leq 500$ , where the outer wall
is heated and the inner one is cooled. First, steady solutions are obtained by the
Newton-Raphson iteration method. Linear stability of the steady solutions is then
investigated. When there is no stable steady solution, time evolution calculations
as well as their spectral analyses show that the steady flow turns into chaos through
periodic or multi-periodic flows, if the Dean number is increased no matter what
the curvature is, and the transition to periodic or the chaotic state is retarded
consistently with the increase of curvature whether the flow is isothermal or non-
isothermal. Convective heat transfer is found to be significantly enhanced by the
secondary flow particularly when the Dean vortices emerge at the outer sidewall.

1. Introduction

Curved ducts are extensively used in many industrial applications, such as air con-
ditioning systems, heat exchangers, cooling systems, and the blade to blade passage
in modern gas turbines. Curved diffusing passages are also found in human arterial
system. The flow through a curved duct, driven by a pressure gradient, has been
studied considerably bacause of its practical importance in chemical, mechanical
and biological engineering. Such a flow is called a Dean flow after the comprehen-
sive study by Dean [1]. This flow has also attracted much attention because of its
physicaly interesting features under the action of the centrifugal force caused by
the curvature of the duct. A secondary flow is induced by unbalance between the
centrifugal force and the pressure gradient in a cross section of the duct. There have
been made lots of theoretical and experimental works concerning the Dean flow for
various shapes of the cross section, here the review articles by Berger et al. [2],
Nandakumar and Masliyah [3], Itoh [4] and Berger [5] may be referred

数理解析研究所講究録 1454巻 2005年 36-51



37

One of the interesting features of the curved duct flow may be the existence of
multiple solutions. This means that there are many steady solutions for the same
flow condition. Dennis and Ng [6], Nandakumar and Masliyah [7] and later Yanase,

Gotoh and Yamamoto [8] studied dual solutions of the flow through a curved duct.

Yang and Keller [9] studied the bifurcation of the flow for small curvature and

found multiple branches of solutions. Detailed bifurcation structure and the linear

stability of solutions for fully developed flows in a curved square duct was determined
by Winters [10], He found that there are many symmetric and asymmetric steady

solutions among which linearly stable ones are few, Daskopoulos and Lenhoff [11]

extended the work by Winters [10] to a higher Dean number, where no new solution

branches were detected but four limit points on the isolated two-cell branch were
found as the Dean number increased. Some of these points lead to solutions with six

to eight vortices. Finlay and Nandakumar [12] investigated a flow with large aspect

ratio by use of the perturbation method. The existence of the multiple solutions

of the flow through a curved duct of the large aspect ratio was first studied by

Yanase and Nishiyama [13], and they obtained two kinds of solutions: the two-

vortex solution and the four-vortex solution for the same aspect ratio. Later, flows

through a curved duct of rectangular cross section were studied numerically to put

emphasis on bifurcation of the solution by Yanase et al. [14].

Other important aspect of the curved duct flow is the enhancement of thermal

exchange between two differentially heated vertical sidewalls. Because it is possible

that the secondary flow conveys heat and then increases heat flux between two side-
walls, Most of the published researches in curved channels performed experimental

investigations of flows under the isothermal conditions for the aspect ratio of 1 to

12 and curvature ratio of 0.2 to (1025, while experimental studies on non-isothermal

flows are limited because of the difficulties associated with the measurement of fluid

temperature profile. Cheng and Akiyama [15] and Mori et al. [16] numerically

predicted steady, fully developed laminar forced convection in channels with the

uniform heat flux boundary conditions. Cheng and Akiyama [15] studied the flows

through a duct with the aspect ratio ranging from 0.2 to 5, whereas Mori et al.

[16] employed a square channel. In both investigations, temperature and velocity

results showed clear evidence of secondary flows, Ru and Chang [17] considered

combined free and forced convections for fully developed flows in uniformly heated

curved tubes. Ligrani et al. [18] studied channels of aspect ratio 40 and showed that

the formation of secondary vortices is more affected by external heating at the outer

wall than on the inner wall of the passage, Chandratilleke and Nursubyakto [19]

presented numerical calculations to describe the secondary flow characteristics and

convective heat transfer in the flow through curved rectangular ducts of aspect ratio

ranging from 1 to 8 that were heated on the outer wall, where they studied for small

Dean numbers and compared the numerical results with their experimental data.

Wang and Yang [20] numerically studied the fully developed bifurcation structure

and stability of the forced convection in a curved square duct flow. Recently, Yanase
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et al. $[21, 22]$ studied numerical predictions of isothermal and non-isothermal flow $\mathrm{s}$

through a curved rectangular duct at a constant curvature $\delta=0.1$ over a wide range

of the Dean number. They also studied the effect of secondary flows on convective

heat transfer for differentially heated vertical sidewalls. Very recently Mondal et

al. [23] performed numerical investigations to show the relationship between the

unsteady solutions and the bifurcation diagram with the effects of curvature for the

isothermal flow through a curved square duct.
In the present paper, a comprehensive numerical study is presented for both the

isothermal and non-isothermal flows through a curved duct of square cross section

over the wide range of the curvature and the Dean number. Studying the effects of

curvature on the flow characteristics as well as the effects of secondary flow on the

convective heat transfer are the important objectives of the present paper.

2. Fundamental equations

Consider an incompressible viscous fluid streaming through a curved duct of

square cross section whose width and height are $2d$ and $2h$ respectively. Thhe flow

is driven by a constant pressure gradient $G$ along the center-line of the duct, i.e.,

the main flow in the $z$-direction as shown in Pig. 1. It is assumed that the flow is

uniform in the $z$-direction and that the outer sidewall is heated while the inner one
is cooled. The temperature of the outer wall is $T_{0}+\Delta T$ and that of the inner wall

is $T0$ -
$\Delta T$ where $\Delta T>0$ , $\delta$ being the curvature of the duct. Velocity components

in the x-, y- and $z$-directions are $u$ , $v$ and $w$ respectively. All the variables are made

non-dimensionalized.

Figure 1: Coordinate system.

Since the flow field is uniform in the $z$-direction, the sectional stream functio $\psi$
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is introduced as
$u= \frac{1}{1+\delta x}\frac{\partial\psi}{\partial y}$ , $v=- \frac{1}{1+\delta x}\frac{\partial\psi}{\partial x}$ . (1)

The basic equations for $w$ , $\psi$ and $T$ are derived from the Navier-Stokes equations

and the energy equation under the Boussinesq approximation as,

$(1+ \delta x)\frac{\partial w}{\partial t}+\frac{\partial(w,\psi)}{\partial(x,y)}-Dn+\frac{\delta^{2}w}{1+\delta x}=(1+\delta x)\Delta_{2}w-\frac{\delta}{(1+\delta x)}\frac{\partial\psi}{\partial y}w+\delta\frac{\partial w}{\partial x}$ , (2)

$( \Delta_{2}-\frac{\delta}{1+\delta x}\frac{\partial}{\partial x})\frac{\partial\psi}{\partial t}=$

$- \frac{1}{(1+\delta x)}\frac{\partial(\Delta_{2}\psi,\psi)}{\partial(x,y)}+\frac{\delta}{(1+\delta x)^{2}}[\frac{\partial\psi}{\partial y}(2\Delta_{2}\psi-\frac{3\delta}{1+\delta x}\frac{\partial\psi}{\partial x}+\frac{\partial^{2}\psi}{\partial x^{2}})-\frac{\partial\psi}{\partial x}\frac{\partial^{2}\psi}{\partial x\partial y}]$

$+ \frac{\delta}{(1+\delta x)^{2}}[3\delta\frac{\partial^{2}\psi}{\partial x^{2}}-\frac{3\delta^{2}}{1+\delta x}\frac{\partial\psi}{\partial x}]-\frac{2\delta}{1+\delta x}\frac{\partial}{\partial x}\Delta_{2}\psi$

$+w \frac{\partial w}{\partial y}+\Delta_{2}^{2}\psi-Gr(1+\delta x)\frac{\partial T}{\partial x}$, (3)

$\frac{\partial T}{\partial t}+\frac{1}{(1+\delta x)}\frac{\partial(T,\psi)}{\partial(x,y)}=\frac{1}{Pr}(\Delta_{2}T+\frac{\delta}{1+\delta x}\frac{\partial T}{\partial x})$ (4)

where
$\Delta_{2}\equiv\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}$, $\frac{\partial(f,g)}{\partial(x,y)}\equiv\frac{\partial f}{\partial x}\frac{\partial g}{\partial y}-\frac{\partial f}{\partial y}\frac{\partial g}{\partial x}$ . (5)

In the above formulations, $Dn$ is the Dean number, $Gr$ the Grashof number and $Pr$

the Prandtl number which are defined as $Dn= \frac{Gd^{3}}{\mu\nu}\sqrt{\frac{2d}{L}}7Gr=\frac{\gamma g\Delta Td^{3}}{\nu^{2}}$ and $Pr= \frac{\nu}{\kappa}$

respectively.
The rigid boundary conditions for $w$ and $\psi$ are used as

$w(,y)=w(x,1)=\psi\langle\pm 1,y$ )
$= \frac{\partial\psi\pm 1}{\partial x}(\pm 1_{7}y)=\frac{\partial\psi\pm}{\partial y}(x,\pm 1)=0,=\psi(x, \pm 1)\}$ (6)

and the temperature $T$ is assumed to be constant on the walls as

$T(1, y)=1$ , $T(-1, y)=-1$ , $T(x, \pm 1)=x$ . (7)

3. Numerical Calculations

In order to solve Eqs. (2) to (4) numerically, the spectral method is used in

which variables are expanded in the series of functions consisting of the Chebyshev

polynomials. That is, $\Phi_{n}(x)$ and $\Psi_{n}(x)$ are expressed as

$\Phi_{n}(x)=(1-x^{2})C_{n}(x)$ , $\Psi_{n}(x)=(1-x^{2}\rangle^{2}C_{n}(x)$ (8)

where $C_{n}(x)=\cos(n\cos^{-1}(x))$ is the $n$-th order Chebyshev polynomial. $w(x, y, t)$ ,
$\mathrm{T}(\mathrm{x}, y, t)$ and $T(x, y, t)$ are expanded in terms of the expansion functions $\Phi_{n}(x)$ and
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$\Psi_{n}(x)$ as

$w(x,y,t)= \sum_{m=0}^{M}\sum_{n=0}^{N}w_{mn}(t)\Phi_{m}(x)\Phi_{n}(y)$ ,

-

$\Psi(x, y, t)=\sum_{m=0}^{M}\sum_{n=0}^{N}\psi_{mn}(t)\Psi_{m}(x)\Psi_{n}(y)$ ,

$T(x,y,t)$ $= \sum_{m=0}^{M}\sum_{n=0}^{N}T_{mn}(t)\Phi_{m}(x)\Phi_{n}(y)+x$ ,
,

(9)

where $M$ and $N$ are the truncation numbers in the x- and $y$-directions respectively.

It is assumed that the equations hold at the $(M+1)(N+1)$ collocation points $(xi, yj)$

which are

$x_{i}= \cos[\pi(1-\frac{\mathrm{i}}{M+2})]$ , $y_{j}=\cos[$$\pi(\underline{1}-\frac{j}{N+2})]$ (10)

where $\mathrm{i}=1$ , $\cdots$ , $M+1$ and $j=1$ , $\cdots$ , $N+1$ . In the present numerical calculations,
$M=20$ and $N=40$ have been used for sufficient accuracy of the solutions.

First, steady solutions are obtained by the Newton-Raphson iteration method
and then linear stability of the steady solutions is investigated against only two-
dimensional ( $z$-independent) perturbations. Finally, in order to calculate unsteady
solutions, the Crank-Nicolson and Adams-Bashforth methods together with the
function expansion (9) and the collocation methods are applied to Eqs. (2) to
(4).

In this paper, numerical calculations are carried out for the curvature in the range
$0<\delta\leq 0.5$ over a wide range of the Dean number $0\leq Dn\leq 8000$ for the isothermal
flow $(Gr=0)$ and in $0\leq Dn\leq 6000$ for the non-isothermal flow $(0<Gr\leq 500)$ .

4. Resistance coefficient and the Nusselt number

In this study, the resistance coefficient A is used as the representative quantity of
the flow state. It is also called the hydraulic resistance coefficient, and is generally
used in fluids engineering, defined as

$\frac{P_{1}^{*}-P_{2}^{*}}{\Delta z^{*}}=\frac{\mathrm{A}}{4d}\rho\langle w^{*}\}^{2}$ (11)

where quantities with an asterisk denote dimensional ones, $\langle\rangle$ stands for the mean
over the cross section of the duct and $\rho$ is the density. The mean axial velocity $\langle w^{*}\rangle$

is calculated by

$\langle w^{*}\rangle=\frac{\iota/}{4\sqrt{2\delta}d}\int_{-1}^{1}dx\int_{-1}^{1}w(x, y, t)dy$. (12)

Since $(P_{1}^{*}-P_{2}^{*})/\Delta z^{*}=G$, A is related to the mean nondimensional axial velocity
$\langle w\rangle$ as

$\mathrm{A}=\frac{4\sqrt{2\delta}Dn}{\langle w\rangle^{2}}$ , (13)
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where (r) $=\sqrt{2\delta}d\langle w^{*}\rangle/\nu$ . In the present paper, A is used to denote the steady

solution branches and to pursue the time evolution of the unsteady solutions.
The Nusselt number, $Nu$ , which is used as an index of the heat transfer from the

walls to the fluid, is defined as

$Nu_{c}= \frac{1}{2}I_{-1}^{1}[\frac{\partial T}{\partial x}]_{x=-1}dy$ , $Nu_{h}= \frac{1}{2}I_{-1}^{1}[\frac{\partial T}{\partial x}]_{x=1}dy$ (14)

for steady solutions. For unsteady solutions, on the other hand, it is defined as

$Nu_{\tau_{\mathrm{c}}}= \frac{1}{2}I_{-1}^{1}\langle\langle\frac{\partial T}{\partial x}|_{x=-1}\rangle\rangle dy)$
$Nu_{\tau_{h}}= \frac{1}{2}l_{-1}^{1}\langle$ (15)$\langle\frac{\partial T}{\partial x}|_{x=1}\rangle\rangle dy$,

where $\langle\langle$ $\rangle\rangle$ denotes an average over a time interval $\tau$ . When the field is periodic, $\tau$ is

taken as one period, and if it is chaotic $\tau$ is chosen as an appropriate time interval.

5. Results and Discussion

5.1 Isothermal flow (Gr $=0)$

5.1.1 Steady solutions and linear stability analysis

With the present nummerical calculations, three branches of steady solutions are
obtained for the smaller curvature $(\delta\leq 0.27)$ , for larger curvature $(\delta\geq 0.28)$ , on
the other hand, we obtain two branches of steady solutions over a wide range of

the Dean number $0<Dn\leq$ 8000. A bifurcation diagram, for example, is shown

in Fig. 2 for $\delta=0.1$ and $100\leq Dn\leq 2000$ using $\mathrm{A}$ , the representative quantity

for the bifurcation analysis of the solutions. The three steady solution branches for
$\delta\leq 0,27$ are named as the first steady solution branch (first branch, thick solid line),

the second steady solution branch (second branch, dashed line) and the third steady

solution branch (third branch, thin solid line) respectively. The solution branches

are obtained by the path continuation technique with various initial guess and are
distinguished by the nature and number of secondary flow vortices appearing in the

cross section of the duct (for details, see Yanase et $\mathrm{a}/.$ , [21]). It should be noted here

that the bifurcation diagram for other values of $\delta$ is very similar to that for $\delta=0.1$

if $\delta\leq 0.27$ .
The first steady solution branch, obtained for $\delta$ $\leq 0.27$ , is a two- and four-vortex

solutions. This is the only branch which exists throughout the whole range of the

Dean number in the present study. The second steady solution branch is separated

from the first branch by a subcritical pitchfork bifurcation at point $P$ and extends uP

to point $q$ on the third branch where it terminates and thus it makes a closed loop.

An enlargement about point $p$ and $q$ are shown in Figs, $3(\mathrm{a})$ and $3(\mathrm{b})$ respectively

where the ordinate $ff$Qdxdy denotes the degree of asymmetry with respect to $y=$

$0$ . The secondary flow patterns on the second branch show that it contains only

asymmetric two-vortex solutions which are mirror symmetric with each other with

respect to the plane $y=0$ . The third steady solution branch, which is very entangle$\mathrm{d}$
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$\lambda$

Dn

Figure 2: Steady solution branches for $Gr=0$ and $1\mathrm{O}\mathrm{O}\leq Dn\leq 2000$ at $\delta$ $=0.1$ .

at larger Dean numbers, is composed of symmetric two- and multi-vortex solutions.

The second branch, which is bifurcated ffom the first branch, terminates at point $q$

on this branch. In this regard, it should be remarked that Winters [10] obtained the

second branch to be nonterminating at any bifurcation point on any other branch.

In the present study, however, it is found that the bifurcated branch terminates at

the bifurcation point $q$ on the third branch. Thus it is found that there exists a

bifurcating relationship among the three branches of steady solutions obtained for
$\delta\leq 0.27$ .
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Figure 3: Second steady solution branch with enlargements at $p$ and $q$ , (a) subcritical
pitchfork bifurcation, (b) super critical pitchfork bifurcation.

Linear stability of the steady solutions is then investigated. It is found that the
first and third branches are linearly stable in two distinct ranges of the Dean number
while the second branch is linearly unstable. Note that in the paper by Winters [10],

the solution branch $S_{5}$ , which corresponds to the lower branch of the present third
branch, consists of only two-vortex solution and that it is always stable. In the
present study, however, it is found that the solution branch $S_{5}$ contains two- and
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Figure 4: Steady solution branches for $Gr=500$. (a) For $\delta$ $=0.27$ and $200\leq Dn\leq$

4000. (b) For $\delta=0.2\mathrm{S}$ and $200\leq Dn\leq 500$ .

multi-vortex solutions, if the Dean number is increased, which is not always stable.

The reason may be that Winters’s calculation covered a comparatively small region

of the Dean number.
In this study, it is found that if $\delta$ $\geq 0.28$ , the bifurcation diagram topologically

changes from that obtained for $\delta\leq 0.27$ . For $0.28\leq\delta\leq 0.5$ , we obtain two branches

of steady solutions, where the branch consisting of the asymmetric solutions for

$\delta\leq 0.27$ disappears. It can be inferred that the first and third branches, obtained

for smaller curvature $(\delta\leq 0.27)$ , are reconnected to make the first and second

branches for larger curvature $(\delta\geq 0.28)$ . The bifurcation diagrams for $\delta=0.27$ and

a $=0.28$ , for example, are shown in Figs. $4(\mathrm{a})$ and $4(\mathrm{b})$ respectively. The two steady

solution branches for $\delta=0.28$ are named as the first steady solution branch (first

branch, thick solid line) and the second steady solution branch (second branch, thin

solid line) respectively. It is found that the two solution branches are independent

and there exists no bifurcating relationship betw een them in the parameter range

investigated in this paper. The first steady solution branch for $\mathrm{O}.28$ $\leq\delta\leq 0.5$ is $\mathrm{a}$

symmetric two-vortex solution while the second branch is of symmetric four-vortex

solution. Linear stability analysis shows that only a limited portion of the first

branch is linearly stable while the second branch is linearly unstable everywhere on

it.

5.1.2 Time evolution and spectral analysis

In order to study the nonlinear behavior of the unsteady solutions, time evolution

calculations as well as their spectral analysis are performed. Some of the results for

$\delta=0.1$ are discussed here, in brief, and the total unsteady solutions are presented

in Fig. 7.
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Figure 5: Results for $Dn=1\mathrm{O}\mathrm{O}\mathrm{O}$ and $Gr=0$ at $\delta=0.1$ . (a) Time evolution of A
and the values of A for the steady solutions for $0\leq t\leq 15$ , (b) contours of secondary

flow for one period of oscillation at $11.95\leq t\leq$ 12.90.

$\lambda$

(a) time (t)

Figure 6: Results for $Dn=7500$ and $Gr=0$ at $\delta=0.1$ . (a) Time evolution of A
and the values of A for the steady solutions for $0\leq t$ $\leq 10$ , (b) contours of secondary
flow for $6.0\leq t\leq 8.5$
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3

$Dn$

Figure 7: Time-dependent solutions in the Dean number $\mathrm{v}\mathrm{s}$ . curvature $(Dn-\delta)$

plane for $0\leq Dn\leq 8000$ and $0<\delta\leq 0.5$ for $Gr=0(\mathrm{O}$ : steady stable solution, $\mathrm{x}$

periodic solution and A: chaotic solution).

Time evolutions of A for $Dn\leq 782$ at $\delta=0.1$ show that the flow is stable while

those for $783\leq Dn\leq$ 1459 show that the unsteady flow oscillates periodically.

Time evolution of A for $Dn=$ 1000, for example, is shown in Fig. $5(\mathrm{a})$ and the

corresponding secondary flow in Fig. $5(\mathrm{b})$ where it is seen that the flow oscillates

between the asymmetric two- and nearly symmetric four-vortex solutions, while the

value of A repeats the same oscillation twice in one period. Then time evolutions

of A for $1460\leq Dn\leq 2770$ at $\delta=0.1$ show that the flow becomes stable once
again but those for $2771\leq Dn\leq 3600$ show that the fow is periodic first and then

multi-periodic, if the Dean number is increased. The chaotic solution is observed

for $3700\leq Dn\leq$ 8000. It is found that the transition from periodic to chaotic state

occurs between $Dn=3600$ and $Dn=$ 3700. A chaotic oscillation, for example,

is shown in Fig. $6(\mathrm{a})$ and the secondary flow patterns in Fig. $6(\mathrm{b})$ . The chaotic

solutions for $Dn<7500$ are considered to be the weak chaos, while those for $Dn$ $\geq$

7500 the strong chaos, since the chaotic solutions for $Dn<7500$ are still trapped

among the steady solution branches but those for $Dn\geq 7500$ tend to get away from

them. The power spectra of the time change of A are performed to investigate the

transition from a periodic solution to chaotic one and also to differ the strong chaos

from that of the weak one. In this study, the time evolution calculations for other

values of $\delta$ show that the time-dependent behavior is similar to that for $\delta=0.1$ .
The distribution of the steady, periodic and chaotic solutions, obtained by the time

evolution calculations, is presented in Fig. 7 in the Dean number versus curvature

(Dn - (5) plane, where the circle indicates stable steady solutions, the cross periodic

solutions and the triangle chaotic solutions. As seen in Fig. 7, the steady flows

turn to chaotic flows through periodic flows if the Dean number is increased no

matter what the curvature is, though for smaller curvature $(\delta\leq 0.27)$ a periodic
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Figure 8: (a) Steady solution branches for $Gr=500$ and $100\leq Dn\leq 4000$ at
$\delta=0.1$ . (b) Stability criterion in the Dean number $\mathrm{v}\mathrm{s}$ . curvature $(Dn-\delta)$ plane

for $Gr=500$ .

solution returns to a steady solution once before turning to chaos. If the curvature
is increased, the region of stable steady solution increases and consequently the

occurence of the periodic state and hence the chaotic state is delayed.

5.2 Non-isothermal flow $(0<Gr\leq 500)$

5.2.1 Steady solutions and linear stability analysis

For the non-isothermal flow in the range of the Grashof number, $Gr$ , $0<Gr\leq$

$500$ , we obtain two branches of steady solutions for the curvature, 6, in the range
$0<\delta$ $\leq 0.5$ over a wide range of the Dean number $1\mathrm{O}\mathrm{O}\leq Dn\leq$ 6000. A bifurcation
diagram, for example, is shown in Fig. $8(\mathrm{a})$ for $Gr=500$ and $1\mathrm{O}\mathrm{O}\leq Dn\leq 4000$

at $\delta=0.1$ using $\mathrm{A}$ , the representative quantity of the solutions. The two steady

solution branches are named as the first steady solution branch (first branch, solid
line) and the second steady solution branch (second branch, dashed line) respectively.
The first branch varies monotonically as $Dn$ increases, while the second branch
consists of the upper and lower branches that are connected at a turning point.
The first branch is an asymmetric two-vortex solution while the second branch is
composed of asymmetric two- and four-vortex solutions. Heating the outer wall
causes deformation of the secondary flow and yields asymmetry of the solution.
Note that for other values of the curvature, the bifurcation diagram is topologically
unchanged from Fig. $8(\mathrm{a})$ . In this respect, it is interesting to note that for the
isothermal flow, we observe a topological change of the bifurcation diagram when the
curvature is increased from $\delta=0.27$ to $\delta=0.28$ . For smaller curvature $(\delta\leq 0.27)$ ,
the bifurcation diagram remains topologically unchanged having three branches of
steady solutions, for larger curvature $(\delta\geq 0.28)$ , on the other hand, we obtain other
type of bifurcation diagram with two branches of solutions. For the case of non
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Figure 9:
$\mathrm{R}\mathrm{e}\mathrm{s}\mathrm{u}\mathrm{l}\mathrm{t}\mathrm{s}\mathrm{f}\mathrm{o}\mathrm{r}(\mathrm{a})$

$Dn=1200$ and $Gr=500$ at $\delta=0.1$ .
$(\mathrm{b})(\mathrm{a})$

Time evolution

of A and the values of A for the steady solutions for $15\leq t\leq 25$ , (b) contours of

secondary flow (toP) and temperature profile (bottom) for one period of oscillation

at $21.94\leq t\leq$ 22.42.

isothermal flow, the bifurcation diagram at any $\delta$ , whether it is small or large, is

similar to that for $\delta\geq 0.28$ of isothermal flow.
Linear stability of the steady solutions is then studied for various $\delta$ . It is found that

only the first branch is linearly stable while the other branch is linearly unstable.

The first branch is linearly stable in two different intervals of the Dean number

for small curvature, for large curvature, on the other hand, the steady solution is

stable in a single but wide interval of the Dean number. An example of the stability

characteristics is illustrated in Fig. $8(\mathrm{b})$ for $0<\delta\leq 0.5$ and $0\leq Dn\leq 4500$ for

$Gr=500$ . In this figure, the regions of stable and unstable solutions are separated

by broken lines where the circles denote the stable solutions on the boundary line

calculated in this study. As seen in Fig. $8(\mathrm{b})$ , there exist two unstable regions. One

unstable region, say region $\mathrm{I}$ , exists for smaller Dean numbers and suddenly vanishes

as the Dean number increases. This region becomes narrower as $\delta$ increases and

terminates at 6 ; 015. The other unstable region, say region $\mathrm{I}\mathrm{I}$ , on the other hand,

exists for larger Dean numbers and is not stabilized any more as the Dean number or

the curvature increases. It is observed that the stability region in terms of the Dean

number increases with the increase of curvature as seen in Fig. 8(b). Almost similar

characteristics of the stability phenomena is observed for other Grashof numbers as

well.

5.2.2 Time evolution and spectral analysis

Time evolution calculations as well as their spectral analysis are then performed

for the non-isothermal flow at various $Dn$, $\delta$ and $Gr$ . The time evolution results are

not discussed here due to brevity, only two of them are discussed in short. Figure

$9(\mathrm{a})$ shows a periodic solution for $Dn=1200$ and $Gr=500$ at $\delta=0.1$ where the

straight lines indicate the positions of the steady solutions. Contours of secondary

flow for $Dn=1200$ are shown in Fig 9(b) which shows that the periodic flow is a $\mathrm{t}\mathrm{w}\mathrm{o}arrow$
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$t$ 6.5 7.0 7.5 8.0 8.5

(a) (b)
Figure 10: Results for $Dn=6000$ and $Gr=500$ at $\delta=0.1$ , (a) Time evolution
of A and the values of A for the steady solutions for $0\leq t\leq 10$ , (b) contours of

secondary flow (top) and temperature profile (bottom) for $6.5\leq t\leq 8.5$ .

$Dn$

Figure 11: Time-dependent solutions in the Dean number $\mathrm{v}\mathrm{s}$ , Grashof number
($Dn-$ Gr) plane for $0\leq Dn\leq 6000$ and $0\leq Gr\leq 500$ for $\delta=0.1$ .

and four-vortex solutions. Figure 10(a) shows the chaotic oscillation for $Dn=6000$

and $Gr=500$ at $\delta=0.1$ . Corresponding secondary flow patterns are shown in
Fig 10(b) which shows that the flow is a four-vortex solution. The total unsteady
solutions, obtained by the time evolution calculations, are shown in Fig. 11 in the
Dean number versus Grashof number plane for $0\leq Dn\leq 6000$ and $0\leq Gr\leq 500$

at $\delta=0.1$ . In this picture, the circles indicate stable steady solutions, the cross
periodic solutions and the triangles chaotic solutions. For a specefic Grashof number
$Gr=500$ , the time-dependent solutions are also obtained varying curvature and we
observe no qualitative change of the unsteady solutions as were observed in Fig. 7
for isothermal flow. The time evolution calculations for other values of $Gr$ show
that the time-dependent behavior is nearly similar to that for $Gr=500$ .
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5.2.3 Nusselt number

The Nusselt number, $Nu$ , defined in Eq. (14), can be used as an index of the

horizontal heat transfer from the walls to the fluid. If the flow field is not steady,

time-average of the Nusselt number, Nur, is used which is defined in Eq. (15).

To study the convective heat transfer for differentially heated vertical sidewalls,

variation of the Nusselt number with the Dean number for the ffist steady solution
branch at $\delta=0,1$ is shown in Fig. 12, where a thick solid line denotes $Nu_{c}$ on the

inner (cooled) sidewall and a thin solid line $Nuh$ on the outer (heated) sidewall. In

order to study the phenomena for the convective heat transfer from the walls to the

fluid, temperature gradients on the inner and outer sidewals are calculated which

are shown in Figs. 13(a) and 13(b) respectively.

$Dn$

Figure 12: Variation of the Nusselt number with the Dean number for the first

steady solution branch for $Gr=500$ at $\delta=0.1$ .
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Figure 13 Temperature gradient for $Gr=500$ at $\delta=0.1$ . (a) At the cooled sidewall,

(b) at the heated sidewall.
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Time-average of the Nusselt number, obtained by the time evolution computation

of the Nusselt number for the inner and outer sidewals, is calculated at several values

of the Dean number for both the periodic and chaotic solutions and plotted with the

steady values of the Nusselt number in Fig. 12. As seen in Fig. 12, time-averaged

values of the Nusselt number are larger than the steady values of the Nusselt number

for both the inner and outer sidewalls, which suggest that occurence of the periodic

or chaotic flow enhances heat transfer in the flow. It should be remarked that the

tendency of increasing the Nusselt number is larger on the outer sidewall than that

on the inner sidewall for larger Dean numbers, which can be explained by the fact

that many subsidiary secondary vortices are generated near the outer sidewall [19].

To compare the convective heat transfer of a curved duct with that of a straight

channel, an additional calculation of the Nusselt number for a straight channel is

conducted and it is found that convective heat transfer is significantly enhanced by

the curved duct than that in a straight channel, and that heat is transferred in a

great deal as the secondary flow becomes stronger.
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