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On Frame Wavelet Sets and Some Related Topics

Xingde Dai and Yuanan Diao

ABSTRACT. A special type of frame wavelets in L2(R) or L?(R?) consists of those whose
Fourier transforms are defined by set theoretic functions. The corresponding sets involved
are called frame wavelet scts. The secmingly simple structure of the frame wavelots
induced by frame wavelet sets turns to be quite rich and complicated. The study of such
frame wavelcts can serve as a platform for the study of morc gencral frame wavelets. In
this paper, we review many rccent results on frame wavelet sets and results obtained
through the usc of frame wavelct sets. We also pose some open questions in these related
topics,

1. Introduction

The concept of frames first appeared in the late 40’s and carly 50’s {19, 29, 30]. The
concept of frame wavelets is a simple combination of the concepts of wavelets and frames.
Naturally, frame wavelets share a close relation with wavelets and the development and
study of wavelet theory during the last two decades also brought much attention and
Interest to the study of framc wavelets. For recent development and work on frames and
some related topics, sec [1, 16, 17, 18, 23, 24, 28].

In general, we can define a frame on any given scparable Hilbert space. Let H be such
a space, then a family of elements {z, : 7 € J} in H is called a frame for H if there exist
constants A and B, 0 < A < B < o0, such that for cach f € H we have

(1.1) AlFIP < DI =) P < BIFI
jeJ

A is called a lower frame bound and B is called an upper frame bound of the frame in
this case. The supremum of all lower frame bounds and the infimum of all upper frame
bounds are called the optimal frame bounds of the frame and will be denoted by Ay and
By respectively throughout this paper. A frame is said to be a tight frame when Aq = By
and a normalized tight frame when Ay = By = 1. By definition, any orthonormal basis in
a Hilbert space is a normalized tight frame, but in general a normalized tight frame may
not be an orthonormal basis.

Following [14], we may define a frame wavelet under a general setting. First, a unitary
system is a sct of unitary operators U acting on a Hilbert space H which contains the
identity operator I of B(H). An element of H is called a frame wavelet (with respect to
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the system U) if the family {Uz : U € U} is a frame for . One can similarly definc tight
frame wavelets and normalized tight frame wavelets. However, for our purposes in this
paper, we usually limit us to H = L*(R) or H = L*(R?). Dcpending on how the unitary
system U is chosen, we may then obtain differcnt frame wavelets.

In this paper, we are mainly interested in a special type of frame wavelets, namely
those whose Fourier transforms are set theorctic functions. More precisely, let E be a
Lebesgue measurable set of finite measure. Define ¢ € L*(R) by = \/%XE, where {5 is
the Fourier transform of 1. If 9 so defined is a frame wavelet for L*(R) (with respect to
the specified unitary system ), then the set [ is called a frame wavelet set (for LA(R)).
Similarly, E is called a (normalized) tight frame wavelet set if ¢ is a (normalized) tight
frame wavelet. The case of L?(R?) can be similarly treated.

2. Frame Wavelets with Respect to Dilation and Translation Operators

We define the dilation and translation operators, D and T on L*(R) as follows.

(Df)(z) = V2f(22)
(Tf)=z) = flz—1),
for any f € L2(R). D, T are both unitary operators, ie., [[Df|| = ITfll = | f|} for any

f e L}R). Thus {D"T*: n,£ € Z} = U(D,T) defincs a unitary system. A frame
wavelet for H = L2(R) with respoct to U(d, t) is simply a function ¥ € L?(R) such that

(2.1) (DT i n, L e Z} = {282z — €) - n, L € L}
is a frame of L2(R). In other word, there exist 0 < A < B < oo such that
(22) AP < 0 I, DT )" < BIIP

nbeL

for all f € L3(R). In the literature, the term frame wavclet for L*(R) usually refers to a
frame wavelet under this sctting when the unitary system U is not specified.

2.1. The Characterization Problem. Similar to the study of wavelets, an essential
question in the study of frame wavelets is how to characterize them under the given unitary
operating system. Under the setting of this section, the question is how to characterize a
function ¢ € LA(R) that is a frame wavelet with respect to U = {D"T*: n,f € Z}. This
problem remains open. However, a characterization of a normalized tight frame wavelet
has been obtained [23] and we state the result below.

THEOREM 2.1. Let ¥ be a fized wavelet and let Cy(U(D, T)) be the local commulant at
W, that is, Cy(U(D,T)) is the set of all bounded linear operators T acting on L*(R) such
that UT — TU = 0 for any U € U(D,T). Then | € L?(R) is a normalized tight frame
wavelet if and only if there is a co-isometry A € C,U(D,T)) (i.e, A" is an isometry)
such that f = Ay.

Furthermore, the following theorem provides a sufficient condition for a frame wavelet.
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THEOREM 2.2. [24] For ¢ € L?(R), define
Sy = ess mfz iz/)(23 W2, Sy = esssupz |'qb 282

JEL 367
and
Bw(m)—c‘issuleZw(ka $(2(2%¢ + 2mm))|.
§R ez j=o0
If
Ay=8,- Y [Bul@)By(~a)]* >0,
qE2Z+1
and

_ 1
By=S8y+ > [By(@)Bu(~0)]* < o0,
qE€27+1
then ¥ s a frame wavelet with Ay as o lower frame bound and By as an upper frame
bound.

Note that Ay and By in the above theorem are not necessarily the optimal bounds in
general.

2.2. Frame Wavelet Sets with Respect to Dilation and Translation Opera-
tors. In an attempt to better understand the frame wavelets, we then turn our attention
to study a much simpler subclass of frame wavelets whose Fourier transforms are simply
set theoretic functions. More spemﬁcally, let E be a Lebesgue measurable set of finite
measure. Define ¢ € L*(R) by ¢ = \/—-XE, where 1 is the Fourier transform of t. If

¥ so defined is a frame wavelet for L2(R) (with respect to the dilation and translation
operators), then the set E is called a frame wavelet set (for L2(R)). Similarly, E is called
a (normalized) #ight frame wavelet set if ¢ is a (normalized) tight frame wavelet. We
wish to characterize (tight, normalized tight) frame wavelet sets. Toward this direction, a
characterization of the tight frame wavelet sets has been successfully obtained (this would
include the normalized tight frame wavelet sets as a special case), and some fairly useful
necessary conditions and sufficient conditions for frame wavelct sets arc also obtained.
However, the characterization of frame wavelet sets in general remains an open question.
Before we state these results, we will need to introduce some terms and definitions.

Let F be the Fourier-Plancherel transform on H = L*(R): if f,g € L'(R) N L*(R),

then
F1s) = == ] “istp(0)dt = fls),

(Fg) \/__ / e*tg(s)ds.

For a bounded linear operator S on L*(R), we will denote FSF ! by S. Wehave D = D!
and Tf = ¢% - f. Notice that F is a unitary operator and that (2.2} is equivalent to

(2.3) AIFIP < 7 1A DT < Bl VF € LA(R).

nLEL
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Let F be a measurable set. We say that z,y € E are K equivalent if z = 2™y for some

integer n. The §-index of a point z in E is the number of clements in its 2 cquivalent
class and is denoted by 6g(z). Let E(8,k) = {z € E: ég(z) = k}. Then F is the disjoint
union of the sets E(4, k). Let

By = J2 (E N ((—2™1r, —2"r) U [2°r, 2““@)).
neZ
The above is a disjoint union if and only if £ = E(4,1). Similarly, we say that z,y € E
arc ~ equivalent if z = y + 2n7 for some integer n. The T-indez of a point z in ¥ is the

number of elements in its ~ equivalent class and is denoted by 75(z). Let E(1,k) = {z €
E: t5(z) = k}. Then E is the disjoint union of the sets E(r, k). Define

(E) = (E N [2nm, 2(n + 1)) — 2m)
nel
Again, this is a disjoint union if and only if E = E(7, 1). If E is of finitc measure, then
E(7,00) is of zero measure. Each E(§,k) (resp. E(7,k)) can be further decomposed
into k disjoint copies EW(5,k) (resp. EW(7,k)). But these decompositions are not
unique in general. However, under any given such decomposition, we will define A(E) =
UkezE(l) (5, k’)

We arc now ready to state the characterization theorem for the tight frame wavelet
sets.

THEOREM 2.3. [10] Let E be a Lebesgue measurable set with finite measure. Then
E is a tight frame wavelet set if and only if E = E(r,1) = E(6,k) for some k 2 1 and
Unez2"E = R. In particular, E is o normalized tight frame wavelet set if and only if
E = E(r,1) = E(5,1) and Unez2"E = R.

EXAMPLE 2.4. Lot E = [—m, =Z)U[Z,Z). Then E = E(r,1) and E = E(}, 2), hence
E is a tight framec wavelct sct of optimal frame bound 2.

In the case of frame wavelet sets, we have the following sufficient condition.

THEOREM 2.5. [10] Let E be a Lebesque measurable set with finite measure. Then E
is a frame wavelet set if (i) Unez2"E(r,1) = R and (i) There exists M > 0 such that
W(E(6,m)) = 0 and p(E(r,m)) = 0 for any m > M (where p is the Lebesque measure).
Furthermore, in this case, the lower optimal frame bound 1is ot least 1, and the upper
optimal frame bound is at most M®/2.

EXAMPLE 2.6. Let E = [-3, -2} U [§,7), then E is a frame wavelet set with lower

bound at least one and upper bound at most 4v/2 since E(r,1) = [—m, —§)U[], §) satisfies
condition (i) of Theorem 2.5 and E(8,m) = E(r,m) =0 for m > 2. In fact, in this case

we can show that the lower bound is exactly one since E(d,1) N E(r,1) = [, —8) £ 0.

On the other hand, we have a necessary condition stated in the following theorem
which is “very close” to above sufficient condition. And we do not have a right candidate
for a possible statement as if and only if conditions.

THEOREM 2.7. [10] Let E be a Lebesgue measurable set with finite measure. If E
is a frame wavelet set, then (i) Unez2"E = R and (i) There exists M > 0 such that
uw(E(,m)) =0 and u(E(r,m)) =0 for any m > M.
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Although Theorems 2.5 and 2.7 are very useful tools in identifying frame wavelet sets
and non frame wavelet sets, they do not provide if and only if conditions for a frame
wavelet set, as shown by the following examples.

EXAMPLE 2.8. Let B = [~m, —%) U [r,27), Then E is not a frame wavelet set. We
leave this to our reader to verify as an exercise. Notice that Theorem 2.7 fails to detect
this sect.

ExaMPLE 2.9. Let E = [—3w, —m) U[x, 27), then E does not satisfy the conditions in
Theorem 2.5 since By = E(r,1) = [ 2%, —7) s0 Unez2"E; # R. However, one can prove
that F is indeed a frame wavelet set [10]. Thus, Theorem 2.5 fails to detect this set.

REMARK 2.10. The results derived in this subsection arc independent of Theorems
2.1 and 2.2 since the approaches used are totally different. One can verify that examples
2.6 and 2.9 above do not satisfy the conditions given in 2.2.

It turns out that Theorem 2.5 can be greatly improved, however we will nced to
introduce some new tcerms before we do so. Let E be a Lebesgue measurable sct such
that E(§,m) = E(r,m) = 0 for m > M and let Q = Up2*E. Define E; = EN
(Uk622kE(T,1)), El _ E\El, Ez = El M (Uk€Z2’“E1(T, 1)), Eg = E1\E2, Eg, = EQ N
(Urez28E5(7,1)), ... . In general, once E, is defined, we will define E, = E,_1\E,
and then define E,1; = E, N (Ugez2E,(7,1)). Let Q; = Upez2"E;. By the definition,
Q= Urez2* By (7,1) and QN Q; =0 if i # j. The set C(E) ={J;;, A(E;-1(1,1)) is
called a core of the set E.

THEOREM 2.11. [9] Let E be a Lebesgue measurable set such that E(§,m) = E(r,m) =
O form > M. If R = Uicj<nfY; for some n > 1, then E is a frame wavelet set.

We close this subsection with the following open question:

PRrROBLEM 2.12. Find the characterization of a framc wavelet set. That is, find the if
and only conditions for a frame wavelet set.

2.3. Frame Wavelets with Frame Set Support in the Frequency Domain.
An application of the frame wavelet sets is the construction of various frame wavelcts
whose Fourier transforms are supported by frame wavelet sets. This turns out to be quite
fruitful in the sense that we are able to construct many frame wavelets that have not been
constructed by conventional methods. A few results toward this direction are listed in the
following theorems.

- THEOREM 2.13. [9] Let E be a frame wavelet set satisfying the conditions of Theorem
2,11, i.e., §(6, m) = E(t,m) = 0 form > M, and R = Uy<j<,; for some n. If the
support of ¥ is contained in E and there exists a constant a > 0 such that [1;(5)' > a a.e.
on q core of E, then ¥ is a frame wavelet.

Theorem 2.13 provides a very flexible means for constructing frame wavelets, so long
as we can find a core of the frame wavelet set. However, it remains an open question
whether a frame wavelet set always has a core or not.

PROBLEM 2.14. Prove or disprove: there exist corcless frame sets.

On the other hand, the following theorem provides us a different method of construct-
ing frame wavelets without having to rely on a core of the frame wavelet set.
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THEOREM 2.15. (9] Let E be a frame set, then iy € L2(R) is a frame wavelet if ¥ is

—~

bounded, supp(y) = F, |?Z| > a >0 on E for some constant o > 0 and W(s) = 9(2Fs)
whenever s and 2%s are both in E for any integer k.

The last result of this section concerns the measure of the support of the frequency
domain frame wavelets. This is stated as the following theorem.

THEOREM 2.16. [9] Lel o > 0 be any given constant, then there exist frequency domain
frame wavelets with support of measure a.

. bE)liAMPLE 2.17. Let E = [-¥, —ZyU[Z, m) so that E(r,1) = [-m, —§)U[}, §). Define
v letting

Y = Xj—n,—n/2) + 2X[=3r/2-m) T Xin/a2/2) + 2Xja/2,m)-
One can verify that A, = 1—4 = —3 so Theorem 2.2 does not apply. However, according
to Theorem 2.13, ¥ is a frame wavclet.

Many examples can be constructed in this way, sec [9]. It is an interesting question
whether therc are other ways to verify frame wavelets so constructed. We list this as an
open problem to end this section.

PRrROBLEM 2.18. Find alternative ways to verify whether a function with its support
on a frame wavelet set is a frequency framc wavelet.

2.4. Frame Wavelet Sets in R%. Most results in Section 2.2 can be extended to
the high dimensional cases, although somc care needs to be taken at some details. We
will outline a few results in the following.

Let A be a real expansive matrix (i.e., all eigenvalues of A have absolute value greater
than 1). We define a unitary operator D4 (called an A-dilation operator) acting on L*(R?)
by

(2.4) (DAf)(t) = |det A3 f(At),Vf € L*(R),t € R?.

In an analogous fashion, & vector s in R? induces a unitary translation operator T® defined
by

(T*F)(t) = f(t — s),¥f € LA(RY),t € R%.

If we let H = L2(R%) and let U be the unitary system {D37°: n€Z,s € Z4}, then again
we can speak of frame wavelets of H with respect to U. Let E be a Lebesguce mcasurable
set of finite measurc. E is called a frame wavelet set if W;{E is a frequency domain

frame wavclet, i.e., its inverse Fourier transform is a frame wavelet for L*(R%) under the
system U = {D%T%: n € Z,s € Z*}. Here, the Fourier transform is defined by

(2.5) FINS) = gy [, fam,

where s o ¢ denotes the real inncr product. The torms tight frame wavelet sets and
normalized tight frame wavelet sets can be similarly defined as we did before. Also, the
sets E(7, k) and E(6,k) can be defined along similar lincs. The following theorems are
quoted from [12].
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THEOREM 2.19. Let £ C R? be a Lebesque measurable set with finite measure. Then
E is a tight frame wavelet set if and only if B = E(7,1) = E(6,k) for some k > 1 and
Unez(ANME = R¢ (A’ is the transpose of A). It follows that if E is a tight frame wavelet
set, then the corresponding optimal frame bound is an integer.

THEOREM 2.20. If E = E(7,1), Unez(A)"E(7,1) = R? and there exist 1 < k;

<
such that w(E(6,m)) = 0 for m < ki and m > ky, p(E(6, k1)) # 0 and p(E(3, k2)) #
then E is a frame wavelet set with ky as a lower bound and kg as an upper bound.

ka
g,

THEOREM 2.21. Let E be o Lebesque measurable set with finite measure. If 5 15 a
frame wavelet set, then (i) Unez(A)"E = R* and (1) There exists M > 0 such that
w(E(6,m)) = 0 and p(E(r,m)) = 0 for any m > M. On the other hand, if E = E(5,1)
and p(E(1,k) # 0 for some k > 1, then E is not a frame wavelet set.

We end this section with the following question.

QUESTION 2.22. If we drop the condition that A is expansive, then can we still obtain
results similar to the above under somc other weaker conditions?

3. Wavelets with Frame Multiresolution Analysis

A classical way of constructing wavelets is through the use of multiresolution analysis
(MRA) method. This method is based on an expansive matrix A with integer entries and
requires | det(A)| — 1 functions to generate a multiple A-dilation wavelet basis for LA(R%)
although single function A-dilation wavelets also exist for any expansive dilation matrix
A [15]. The usual well-known and most widely applied A-dilation wavelets are MRA
wavelets. Unfortunately, single function MRA A-dilation wavelets do not always exist.
For example, in the case that A is a matrix with integer entries, a single function MRA
A-dilation wavelet exists if and only if |det(A4)} = 2 [20, 26]. So, if A has integer entrics
and |det(A4)| > 2, then there are no single function MRA A-dilation wavelets (though
there exist multi-function MRA wavelets), even if A = 2J when d > 2. For the matrices
A with non-integer entries, it is not clear whether or when MRA A-dilation wavelets exist.
However, under some conditions similar to, those in the MRA, there exist MRA-like single
function A-dilation wavelets. One such approach is to usc the concept of normalized tight
frames. This section is devoted to the A-dilation wavclets constructed using this approach
which is called a frame multiresolution analysis (FMRA), a natural generalization of MRA
and was introduced in [3]. For more general multiresolution analysis and wavelets, sce
[1]. For more related topics and works, see {2, 6, 13].

3.1. Definition of Frame Multiresolution Analysis (FMRA).

DEFINITION 3.1. A frame multiresolution analysis associated with a real expansive
matrix A (or in short, an A-dilation FMRA) is a sequence {V; : j € Z} of closed
subspaces of L2(R?) satisfying the following conditions:

() V; C Vi, VjEZ
@) NjeaVs = {0}, GeaV; = LA(RY;
(3) feV;ifand onlyif f(As) € Vi, j € Z;
(4) There exists a function ¢ in V; such that {¢(z — £) : £ € Z%} is a normalized
tight frame for V5.

3
4
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The function ¢ in (4) is called a frame scaling function for the A-dilation FMRA. A
function ¢ in V_; © V; is called an A-dilation FMRA wavelet (or just an FMRA wavelet
with the understanding that it is associated with the given expansive matrix A) if it is
an A-dilation orthonormal wavelet for L2(R9).

If, in the above definition, we replace “normalized tight frame” by “orthonormal basis”
in (4), then we obtain the standard definition for a multiresolution analysis.

3.2. The Existence of FMRA Wavelets. A measurable set £ C R? is called an
A-dilation wavelet set if F( \/IEE)XE> is an A-dilation wavelet. E C R? is called an
1
A-dilation FMRA wavelet set if F1( \/—;—(—E,‘—)X z) is an A-dilation FMRA wavelet.
THEOREM 3.2. [11] For every exzpansive matriz A with integer entries, there cxists
an A-dilation FMRA wavelet set. It follows that FMRA Wavelets always exist for any
expanswe matriz A with integer entries.

In the case that A docs not nceessarily have integer entries, we have

THEOREM 3.3. [11] Let A = diag(as,. . . ,aq) be a diagonal expansive matriy such
that |a;| > 2 for somei. Then there exists an A-dilation FMRA wavelet set. In particular,
ifd =1 and A = a, then there exists an a-dilation FMRA wavelet set for L3(R) if and
only if |a] > 2.

The following theorem gives a necessary condition for an expansive matrix to admit
an A-dilation FMRA wavelet sct.

THEOREM 3.4, [11] Let A be an expansive matriz. If there exists an A-dilation FMRA
wavelet set E, then |det(A) > 2.

The proofs of the above theorems are actually quite technical and lengthy, see [11] for
the details. The following examples will give the rcader some idea how such A-dilation
FMRA wavelet sets are constructed.

1 1
-1 1
an A-dilation FMRA wavelet set as shown in Figure 1.

EXAMPLE 3.5, Let A* = and Q = [—m,7) X [~7,7), then E = A'Q\ Q is

27

FiGURE 1. The set E = A*Q\ Q
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g 2 ) where a > 1. Definc two sequences {¢,} and {b,}

suchthatc_lz(),cn:(1~§—§;)2§+22%Jifn20,b,1:wandbn:%"—{—ngnﬁif

n > 0. Notice that {c,} is increasing, {b,} is decreasing and

2
lim ¢, = lm b, = —35
n-—00 n—o00

EXAMPLE 3.6. Let A = (

Let P be the rectangle with corners (¢j-1, z5r), (¢4, g7), (¢j-1, —gzer) and (¢j, —zofm)
where j > 0. Let Q; be the rectangle with corners (b1, ), (b, 252), (bj—1, —-iyz)
and (bj, — %) where j > 0. Also, let —F;, —@Q); be the mirror images of P;, (J; through
the y-axis respectively. Let K = Ujso(P; U Q; U (—P;) U (=Q;)). See Figure 2. Then
E = A'K \ K is an A-dilation FMRA wavelet sct. Sec Figure 3.

|7

L ) 1L
IR

—m/a

FicUure 2. The set K.

BRI

FIGURE 3. The set F = A¥ \ K (marked with #’s).

Several interesting problems remain open in this direction of study and we list them
below.

PrOBLEM 3.7. Is the condition | det{A)| > 2 also a nccessary condition for A to allow
an A-dilation FMRA wavelct? In order to disprove this, one would have to construct an
expansive matrix such that |det(A)| < 2 and there exists an A-dilation FMRA wavelet.

PrOBLEM 3.8. Is the condition | det{A)| > 2 also a sufficient condition for 4 to allow
an A-dilation FMRA wavelet?
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The above problem is actually quite hard. One may want to study some special cases
such as the following problem to gain some knowledge first.

PROBLEM 3.9. Prove or disprove that the expansive matrix A = ( \{? \% ) has an
A-dilation FMRA wavelet sct.

4. Weyl-Heisenberg Frame Wavelet Sets

Let a, b be two fixed positive constants and let 7, and M, be the translation operator
by o and modulation operator by b respectively, i.e., Tog(t) = g(t—a) and Myg(t) = e®g(t)
for any g € L2(R). Notice that T, and M, are both unitary operators. If we let U(a,b) =
{MPTE - myn € L} = {MppThy : M0 € Z}, then we may speak of frame wavelets
under the unitary system CU(a,b). A frame wavelet under this setting is called a Weyl-
Heisenberg frame wavelet, or a Gabor frame wavelet. A measurable set £ C R is called a
Weyl-Heisenberg frame wavelct set for (a,b) if the function g = x& is a Weyl-Heisenberg
frame wavelet under the unitary system U(a, b).

Tt is known that if ab > 2, then there are no Weyl-Heisenberg frame wavelets undcr
the unitary system U(a,b). On the other hand, for any a > 0, b > 0 such that ab < 27,
there always exists a function g € L*(R) such that g is a Weyl-Heisenberg frame wavelet
under the unitary system U(a, b) [8]. However, in general, for any given a > 0, b > 0 with
ab < 2, characterizing the Weyl-Heisenberg frame wavelets under the unitary system
U{a,b) is a very difficult problem. So again, it is natural for us to try some simpler cases
first. In this section, we will take a look at the Weyl-Heisenberg frame wavclet scts under
the special case a = 27 and b = 1. We will show that the study of this simple case can
actually lead us to some rather interesting results.

4.1. The Characterization of a Special Kind of Weyl-Heisenberg Frame
Wavelet Set. Let ny < ng < -+ < 7 be k positive integers and let E be the sct

(4.1) : Ut ([0, 27) + 27n;).
The following problem is proposed in {7].

PROBLEM 4.1. Characterize the Weyl-Heisenberg frame wavelet sct £ as dcfined above
(for (2m,1)). In other word, we need to find a necessary and sufficient condition on the
integers 0 < ny < mg < --- < My such that the corresponding set E is a Weyl-Heisenberg
frame wavelet set for (2m, 1).

Although Problem 4.1 is still an open question, it was observed that there is an
equivalence relation between this problem and the following well-known open problem in
complex analysis [4, 5, 27]:

PROBLEM 4.2. Classify the (positive) integer sets {n; <nz < -+~ < ni} such that the
polynomial p(z) = lejgk 2" docs not have any unit roots.

In other word, the following theorem holds.
THEOREM 4.3. [7] Let 0 <mg <mng < -+ <7 be k positive integers, then the set
(4.2) E = Ut ([0,27) + 2mny)
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is o Weyl-Heisenberg frame wavelet set for (2m,1) if and only if the polynomial p(z) =
Z;‘f:l Z™ has no unit roots.

A key tool used in the proof of the above theorem (as well as the theorems in the next
subsection) is the Zak transformation, whose general definition can be found in [25]. The
following is a slight variation of it since we have used the set [0, 27] instead of [0, 1].

DEFINITION 4.4, The Zak transform of a function f € L*(R) is defined as
(4.3) Zf(t,w) =V2r Y f(t+2mm)e™, Vi, we [0,27).

nEs

The usefulness of the Zak transformation can be seen from the following lemma.

LEMMA 4.5. [25] The Zak transform is a unitary map from L*(R) onto L*(Q), where
Q = [0,27) x [0, 27] and the inner product on L*(Q) is defined by

(gt =gz [ [ e waEwdd,

4.2. The Characterization of More General Weyl-Heisenberg Frame Wavelet
Sets. Following the ideas in [7], we can establish some equivalence relations between the
characterization problem of a Weyl-Heisenberg frame wavelet set of a more general form
to several classification problems of as stated in Problem 4.2. For the sake of simplicity,
we will only consider a set F that is the union of finitely many disjoint (finite) intervals.
Such a set is called a basic support set in [21].

LEMMA 4.6. [21] Let E be a basic support set, that is, E = | J[" | A; for some finite and
non-overlapping intervals {A;}1,, then there exists a finite sequence of disjoint intervals
{E:}e, with E; C [0,2n), and an integer sequence {n;;}i., for each i, such that

k i
E = Fi, where F; = U(Fq +27rn3j).

i=1 j=1
The scquence {E;}E, associated with the set E (defined in the above lemma) will
be called the 2m-translation generators of E. Notice that | fiL,(E; + 2mny) is simply

the pre-image of the function 7o, restricted to E. We will call the sequence {n;; }i-"zl the
step-widths of the corresponding generator E;. We then have the following theorem.

THEOREM 4.7. [21] Let E be a basic support set with {E;}E, as its 2m-translation
generators and let {n;;}7., be the step-widths of E;. Then E is a Weyl-Heisenberg frame

wavelet set if and only if none of the equations E;:l 2™ =0 has unit zeros.

In fact, the above result can be extended to various functions whose support is a basic
support set, see [21] for more details.

4.3. From Weyl-Heisenberg Frame Wavelet Sets to Some Infinite Quadratic
Forms. Finally, we demonstrate how the Weyl-Heisenberg frame wavclet scts can be used
to bridge a connection between some complex polynomials and some quadratic forms of
infinite dimension. Only a rough outline will be given with one example given at the end.
Interested readers please sce [22] for the details.
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Let {z,,} be a real sequence in £*(7Z), i.e., {z,} is a rcal valued sequence such that the
series Y .oz 72 is convergent. Let {ai;}s ez be a scquence of real numbers with a;; = aj;
. We can formally write A = {a;;} and think of A as an infinite dimensional symmetric
matrix. Similarly, we will write z = {2} and zAz" for the formal sum ), ;o ai;z;z;. If

this formal sum is convergent for all z = {z,} € £*(Z), then we will call zAz* an infinite

quadratic form. Notice that it is easy to come up with examples of A such that T Azt

is not defined for some z (that is, the series Zi,jEZ ai;T;z; is not convergent). We say
that an infinite quadratic form zAx? is strongly positive definite if there exists a constant
¢ > 0 such that zAz! > c||z||? for all z € £2(Z), where ||z]|?> = 3,z %5 Similarly, one
can define negative definiteness. First, we have the following theorem.

THEOREM 4.8. [22] Let 0 = ng < ny < mg < +-+ < my be k+ 1 given integers, and
o, G1, G2, -+, ag be k + 1 given nonzero real numbers, then if the infinite dimensional
quadratic form

Z(ainn + 01T p4n, + C2Tntng R akxn-i-nk)z

neZ
is strongly positive definite such that

]2 < .. 2 < 2
allz)? < (ao®n + 01%ntn, + GTpin, + o F WUTnin,)” < 27

neZ
for some positive constants ¢, < co, then the function g = Z?:o @5 X, is a Weyl-
Heisenberg frame wavelet for (2m,1) with ¢; as a lower frame bound and ¢z as an upper

frame bound. Conversely, if the function g = Z?:o 45Xk, is a Weyl-Heisenberg frame
wavelet for (2m,1) with ¢; as a lower frame bound and ¢y as an upper frame bound, then

alzl? € 3 (a0zn + a1Znin + Q2Tnbng T+ GiTnin )’ < collz?
nEZ .
for any z € P*(Z).

This theorem then leads to the following when it is combined with the results from
the last subsection.

THEOREM 4.9. [22] Let 0 =ng <ng <ng <+ < my be k + 1 given integers, ag, a1,
ag, -+, ag be k+1 given nonzero real numbers, and A be the symmetrical infinite matriz
corresponding to the infinite quadratic form

2
E (aﬂxn + 01%nan; T Q2Tntny +-- ak$n+nk) .
neL

Let min,ey Jao + a12™ + -+ - + axz™ > = C1 and maX,ey lag + a12™ + -+ arz™ |2 = Cy,
then the eigenvalues of any main diagonal block of A are bounded between Cy and Cs.

We end this paper with the following example.

EXAMPLE 4.10. Lot p(2) = 2+4322+423. We have min.cr|p(2)* =1, maz,erp(2)|* =
81. Thus the infinite quadratic form Y, 5 (2%n + 3%Tn4a + 4z,43)% is strongly positive
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definite. The corresponding symmetrical infinite matrix is

12 29 12 6 8 0

0 8 6
- 08 6 12 29 12 6 8 0
B= 0 8 6 12 29 12 6 8 0
0 8 6 12 29 12 6 8
6

0 -
0 8 6 12 29 12 8 0
Any eigenvalue ) of any main diagonal block of B must satisfy

1< )< 8l

A few main diagonal blocks of the above infinitec matrix along with their eigenvalues are
listed below.

(29 12), A =17, A = 41

12 29
29 12 6
12 29 12 |, X\~ 14.8, ) = 23, As &~ 49.2
6 12 29
/29 12 6 8
12 29 12 6
6 12 99 19 s A A 12.7, 29 & 2009, A3 &~ 25.3, Ay & 57.1
8 6 12 29
29 12 6 8 0
12 29 12 6 8
6 12 29 12 6 |, A ~0.8 X~ 207, =21, Ay =31, X5 = 62.5
8 6 12 29 12

0 8 6 12 29
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