Property M and the fixed point property for nonexpansive mappings

Tamura Takayuki, Chiba University Mikio Kato, Kyushu Institute of Technology

1. PRELIMINARIES

Let N_a be the set of all absolute normalized norms $\|\cdot\|$ on \mathbb{C}^2 , that is, $\|(z,w)\| = \|(|z|,|w|)\|$ and $\|(1,0)\| = \|(0,1)\| = 1$, and Ψ the family of the convex (continuous) functions on the unit interval [0,1] with

(1)
$$\psi(0) = \psi(1) = 1$$
 and $\max\{1 - t, t\} \le \psi(t) \le 1$ $(0 \le t \le 1)$

By (Bonsall and Duncan [3], see also [16]), If, for some $\|\cdot\| \in N_a$, a convex function ψ is defined by

$$\psi(t) = \|(1 - t, t)\| \quad (0 \le t \le 1), \tag{1}$$

then the function ψ is convex (continuous) and satisfies (1) and conversely, if, for any $\psi \in \Psi$, a norm $\|\cdot\|$ is define by

$$\|(z,w)\|_{\psi} = \begin{cases} (|z| + |w|)\psi\left(\frac{|w|}{|z| + |w|}\right) & \text{if } (z,w) \neq (0,0), \\ 0 & \text{if } (z,w) = (0,0), \end{cases}$$
 (2)

then $\|\cdot\|_{\psi}$ is an absolute normalized norm on \mathbb{C}^2 and satisfies (4). The ℓ_p -norms $\|\cdot\|_p$ are typical such examples and for any $\|\cdot\| \in N_a$ we have

$$\|\cdot\|_{\infty} \le \|\cdot\| \le \|\cdot\|_1 \tag{3}$$

([3]). By (4) the convex functions corresponding to the ℓ_p -norms are given by

$$\psi_p(t) = \begin{cases} \{(1-t)^p + t^p\}^{1/p} & \text{if } 1 \le p < \infty, \\ \max\{1-t, t\} & \text{if } p = \infty. \end{cases}$$
 (4)

Let X and Y be Banach spaces and let $\psi \in \Psi$. The ψ -direct sum $X \oplus_{\psi} Y$ of X and Y is the direct sum $X \oplus Y$ equipped with the norm

$$\|(x,y)\|_{\psi} = \|(\|x\|,\|y\|)\|_{\psi},\tag{5}$$

where the $\|(\cdot,\cdot)\|_{\psi}$ term in the right hand side is an element of N_a with the corresponding convex function ψ . The following monotone properties were proved.

Proposition 1 ([3]). Let X, Y Banach spaces and $\psi \in \Psi$. And let $(x, y), (z, w) \in X \oplus_{\psi} Y$. The following hold:

- (i) $||x|| \le ||z||$ and $||y|| \le ||w||$ implies $||(x, y)||_{\psi} \le ||(z, w)||_{\psi}$.
- (ii) ||x|| < ||z|| and ||y|| < ||w|| implies, $||(x, y)||_{\psi} < ||(z, w)||_{\psi}$.

Proposition 2 ([17]). Let X, Y Banach spaces and $\psi \in \Psi$. And let $(x, y), (z, w) \in X \oplus_{\psi} Y$. The following hold:

- (i) $||x|| \le ||z||$ and ||y|| < ||w||, or, ||x|| < ||z|| and $||y|| \le ||w||$ implies $||(x, y)||_{\psi} < ||(z, w)||_{\psi}$.
 - (ii) For $t \in (0,1)$, $\psi(t) > \psi_{\infty}(t)$ holds.

Proposition 3 ([10]). Let X, Y Banach spaces and $\psi \in \Psi$. And let $(x, y), (z, w) \in X \oplus_{\psi} Y$. The following hold:

- (i) Let ||x|| < ||z|| and ||y|| = ||w||. $||(z, w)||_{\psi} = ||(x, y)||_{\psi}$ if and only if $||(z, w)||_{\psi} = ||w||$.
- (ii) Let ||x|| = ||z|| and ||y|| < ||w||. $||(z, w)||_{\psi} = ||(x, y)||_{\psi}$ if and only if $||(z, w)||_{\psi} = ||z||$.

Let Y be a Banach space and P a projection on Y. P is called an L(M)-projection if $x = \|Px\| + \|(id_Y - P)x\|(\max\{\|x\|, \|(id_Y - P)x\|\})$ for all $x \in Y$, respectively. Let $X^{\perp} \subset X^{***}$ be annihilater of X, i.e. $X^{\perp} = \{w \in X^{***}: w(x) = 0, \forall x \in X\}$. A closed subspace $X \subset Y$ is called an L(M)-summand on Y if X is the range of an L(M)-projection on Y. It is said that X is an L(M)-embedded Banach space if there exists a closed subspace $X_s \subset X^{**}$ such that $X^{**} = X \oplus_1 X_s(X^{***} = X^* \oplus_1 X^{\perp})$. (Cf. [8].) For some $\psi \in \Psi$, we shall introduce $\psi(\psi^*)$ -embedded Banach space if there exists a closed subspace $X_s \subset X^{**}$ such that $X^{**} = X \oplus_{\psi} X_s(X^{***} = X^* \oplus_{\psi} X^{\perp})$.

Let $\{x_n\}$ is a sequence of a Banach space X, it is said that $\{x_n\}$ spans an asymptotically isometric copy of ℓ_1 if there exists a nonincreasing sequence $\{\delta_n\} \subset [0,1)$ tending to 0 such that

$$\sum (1 - \delta_n) |\alpha_n| \le \|\sum \alpha_n x_n\| \le \sum |\alpha_n|$$

for every $\{\alpha_n\} \in \ell_1$. In this case we will denote $x_n \sim_{(asy)} \ell_1$.

The abstract measure topology (τ_{μ}) is defined by considering the class of convergent sequences. (Cf. [8].) Namely, if $\{x_n\}$ is a sequence in a Banach space X, we say that $\{x_n\}$ tends to 0 in the abstract measure topology $(\tau_{\mu} - \lim_{n} x_n = 0)$ if $\{x_n\}$ is norm bounded and every subsequence $\{x_{n_k}\}$ contains a subsequence $\{x_{n_k}\}$ such that $x_{n_{k_\ell}} \sim_{(asy)} \ell_1$ or $x_{n_{k_\ell}} \to 0$. A sequence $\{x_n\}$ tends to x in τ_{μ} if

 $(\tau_{\mu} - \lim_{n}(x_{n} - x) = 0)$ and a subset $A \subset X$ is τ_{μ} -closed if it is τ_{μ} -sequentially closed.

Pfizner[13] proved the following theorem.

Theorem A.([13]) Let X be an L-embedded Banach space $(X^{**} = X \oplus_1 X_s)$. Let P be the natural projection on X^{**} with range X, and consider $C \subset X$ which is closed, bounded and convex. Then the following two assertions are equivalent:

(i)
$$P(cl_{\sigma(X^{**},X^*)}C) = C$$
.

(ii) C is closed for the abstract measure topology.

By Thoerem A, Japón Pineda[14] proved the following theorems.

Theorem B.([14]) Let X be an L-embedded Banach space. If C is a convex, bounded, closed for the abstract measure topology, subset of X which is diametral, then C is weakly compact.

Theorem C.([14]) Let X be the dual of an M-embedded space E. Then the abstract measure topology τ_{μ} is finer than the $\sigma(X, E)$ topology on bounded subsets of X.

Theorem D.([14]) Let X be the dual of an M-embedded space E. Then the following are equivalent:

- (i) X has the $\sigma(X, X^*)$ -FPP.
- (ii) X has the $\sigma(X, E)$ -FPP.

By introducing the concept of ψ^* -embedded Banach space E, we obtained a generalization of Theorem C.

Theorem 1. Let X be the dual of an ψ^* -embedded Banach space E with $\psi > \psi_{\infty}$. If C is a $\sigma(X, E)$ -compact subset of X which is diametral, then C is weakly compact.

By the Theorem 1, we obtain a generalization of Theorem D.

Theorem 2. Let X be the dual of an ψ^* -embedded Banach space E with $\psi > \psi_{\infty}$. The following are equivalent:

- (i) X has the $\sigma(X, X^*)$ -FPP.
- (ii) X has the $\sigma(X, E)$ -FPP.

Banach space X has Schur propety if every weakly convergent sequence of X converges strongly.

Using a Dominguez's generalization of the Garcia-Falset coefficient R(X), M(X)([6]) is defined by

$$M(X) = \sup \left\{ \frac{1+a}{R(a,X)} : a \ge 0 \right\},\,$$

where

$$R(a,X) = \sup \left\{ \liminf_{n \to \infty} ||x_n + x|| \right\},$$

where the supremum is taken over all a > 0, x with $||x|| \le a$ and weakly null sequences $\{x_n\}$ of the unit ball of X such that its double limit of $\{||x_n - x_m||\}_{n,m}$ exists and $\lim_n \lim_m ||x_n - x_m|| \le 1$.

The following theorem is known.

Theorem E (cf. [1]). Let X be a Banch space. If M(X) > 1, then X has weak fixed point property.

The following two lemma have important roles for proving Theorem5.

Lemma 1. Let $\{x_n^{(k)}\}, \{y_n^{(k)}\}$ of a Banach space X be nonzero double sequences with $\lim_{n\to\infty}\|x_n^{(k)}\|>0$, $\lim_{n\to\infty}\|y_n^{(k)}\|>0$ for each k. The following are equivalent.

(i)
$$\lim_{k \to \infty} \liminf_{n \to \infty} \|x_n^{(k)} + y_n^{(k)}\| = \lim_{k \to \infty} \lim_{n \to \infty} (\|x_n^{(k)}\| + \|y_n^{(k)}\|).$$

(ii)
$$\lim_{k \to \infty} \liminf_{n \to \infty} \left\| \frac{x_n^{(k)}}{\|x_n^{(k)}\|} + \frac{y_n^{(k)}}{\|y_n^{(k)}\|} \right\| = 2.$$

Lemma 2. Let $\{x_n^{(k)}\}, \{y_n^{(k)}\}$ of a Banach space X be nonzero double sequences with $\lim_{n\to\infty}\|x_n^{(k)}\|>0$, $\lim_{n\to\infty}\|y_n^{(k)}\|>0$ for each k. The following are equivalent

(i)
$$\lim_{k \to \infty} \liminf_{n \to \infty} \|x_n^{(k)} + y_n^{(k)}\| = \lim_{k \to \infty} \lim_{n \to \infty} (\|x_n^{(k)}\| + \|y_n^{(k)}\|).$$

(ii) For every
$$\alpha > 0$$
, the following holds:
$$\lim_{k \to \infty} \liminf_{n \to \infty} \|x_n^{(k)} + \alpha y_n^{(k)}\| = \lim_{k \to \infty} \lim_{n \to \infty} (\|x_n^{(k)}\| + \alpha \|y_n^{(k)}\|).$$

(iii) For some $\alpha > 0$, the following holds:

$$\lim_{k\to\infty} \liminf_{n\to\infty} \|x_n^{(k)} + \alpha y_n^{(k)}\| = \lim_{k\to\infty} \lim_{n\to\infty} (\|x_n^{(k)}\| + \alpha \|y_n^{(k)}\|).$$

In [9], Property M was introduced to be a necessary and sufficient condition of that K(X), the Banach space of all linear compact operator of a Banach space X, is M-ideal in L(X), the Banach space of all continuous linear operator.

X has property M if $\lim\inf\|x_n-x\|=\liminf\|x_n-y\|$ for every weakly null sequence $\{x_n\}$ and $x,y\in X$ with $\|x\|=\|y\|([9])$. In Lemma 2.1 of [9], he showed that X has property M if and only if $\lim\inf\|x_n-x\|\leq \liminf\|x_n-y\|$ for every weakly null sequence $\{x_n\}$ and $x,y\in X$ with $\|x\|\leq \|y\|$.

We gives another characterization of Propety M by using a norm of ψ -direct sum $X \oplus_{\psi} X$.

Theorem 3. Let X be a Banach space. The following are equivalent.

(1)X has Property M;

(2) For every weakly null sequence $\{x_n\}$ of B_X , there exists $\psi \in \Psi$ such that $\liminf_n \|x_n - x\| = \|(\liminf_n \|x_n\|, \|x\|)\|_{\psi}$ for every $x \in B_X$.

By Theorem 3, we can prove the following propostion included in [5] without proof.

Propostion 4.([5]) Let X be a Banach space with Property M and $\{x_n\}$ a sequence converging weakly to x. Then

$$\liminf_n \|x_n\| \leq \liminf_m \liminf_n \|x_n - x_m\| + (\|x\| \vee \liminf_n \|x_n - x\| - \liminf_n \|x_n - x\|).$$

We recall that

$$R(1,X) = \sup\{\liminf \|x_n - x\| : x \in B_X, x_n \in B_x, x_n \text{ converges weakly } 0, \\ \liminf_m \liminf_n \|x_n - x_m\| \le 1\}$$

Theorem 4. Let X be a Banach space. If X has property M, then $R(1,X) \leq \frac{3}{2}$, i.e. $M(X) \geq \frac{4}{3} > 1$.

We shall prove the following theorem by Propostion 2 , Lemma 1 and Lemma 2.

Theorem 5. Let $\psi \neq \psi_1$. $M(X \oplus_{\psi} Y) > 1$ if and only if M(X) > 1 and M(Y) > 1

By Theorem 5 and Theorem F, we obtain weak fixed point property for $X \oplus_{\psi} Y$.

Theorem 6. Let $\psi \neq \psi_1$. If M(X) > 1 and M(Y) > 1, then $X \oplus_{\psi} Y$ has weak fixed point property.

Theorem 3 and Theorem 4 provide the following corollary.

Corollary 1.([5]) Let X and Y be Banach spaces and $\psi \in \Psi$. If X and Y have Property M and $\psi \neq \psi_1$, then $X \oplus_{\psi} Y$ has weak fixed point property for nonexpnasive mappings.

References

- [1] J.M. Ayerbe, T. Dominguez and G. Lopez, Measure of noncompactness in metric fixed point theory, Birkhaüzer, 1997
- [2] B. Beauzamy, Introduction to Banach Spaces and their Geometry, 2nd ed., North-Holland, 1985.
- [3] F. F. Bonsall and J. Duncan, Numerical Ranges II, London Math. Soc. Lecture Note Ser. 10 (1973).
- [4] R. Bhatia, Matrix Analysis, Springer, 1997.
- [5] S. Dhompongsa, A. Kaewkhao and S. Saejung, Fixed point property of direct sums, in printing.
- [6] T. Dominguez, Stability of the fixed point property for nonexpansive mappings, Houston J. Math. 22 (1996), 835–849
- [7] K. Goebel and W. A. Kirk, Topics in metric fixed point theory, Cambridge Univ. Press, 1990.
- [8] P. Harmand, D. Werner, W. Werner, M-ideals in Banach spaces and Banach algebras, in Lectures Notes in Math., 1547, Springer-Verlag, 1993.
- [9] N. J. Kalton, M-ideal of compact operators, Illinois J.Math., 37(1993),147-169
- [10] M. Kato, K.-S. Saito and T. Tamura, Uniform non-squareness of ψ -direct sums of Banach spaces, Math. Inequal. Appl. 7 (2004), 429-437.
- [11] M. Kato and T. Tamura, Some geometric conditions related to fixed point property for ψ -direct sums of Banach spaces $X \oplus_{\psi} Y$, Proceedings of the International Symposium on Banach and Function Spaces, Editors. M. Kato and L. Maligranda, Yokohama Publishers, to appear.
- [12] R. E. Megginson, An Introduction to Banach Space Theory, Springer, 1998.

- [13] H. Pfitzner, A note on asymptotically isometric copies of ℓ_1 and c_0 , Proc. Amer. Math. Soc. 129 (2001) 13671373.
- [14] M. A. Japón Pineda, J. Math. Anal. Appl. 272(2002), 380391
- [15] K.-S. Saito and M. Kato, Uniform convexity of ψ -direct sums of Banach spaces, J. Math. Anal. Appl. 277 (2003), 1–11.
- [16] K.-S. Saito, M. Kato and Y. Takahashi, Von Neumann-Jordan constant of absolute normalized norms on \mathbb{C}^2 , J. Math. Anal. Appl. 244 (2000), 515-532.
- [17] Y. Takahashi, M. Kato and K.-S. Saito, Strict convexity of absolute norms on \mathbb{C}^2 and direct sums of Banach spaces, J. Inequal. Appl. 7 (2002), 179-186.

Graduate School of Social Sciences and Humanities Chiba University Chiba 263-8522, Japan tamura@le.chiba-u.ac.jp

Department of Mathematics Kyushu Institute of Technology Kitakyushu 804-8550, Japan katom@tobata.isc.kyutech.ac.jp