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Abstract

We prove that a Grobner basis of an ideal I in a polynomial ring (K[A})[X] over the coefficient ring
K[A] with a field K also becomes a Grobner basis in a polynomial ring R[X] over the commutative von
Neumann regular ring R = K[A]/I N K[A] under the assumption that the elimination ideal I N K[A4]
is a zero-dimensional proper radical ideal in K [E] This result gives us an alternative natural proof for
the former results concerning stability of the Grébner basis property under specializations obtained by
T. Becker first and further generalized by M. Kalkbrener. We also give a modified ACGB algorithm to
compute parametric Grébner bases, which starts from Grobner bases in a polynomial ring K{A, X] over
a field K. Our algorithm is a similar but different approach from the algorithms obtained by A. Montes,
which are essentially based on computation of Grébner bases in a polynomial ring K (A)[X] over the
quotient field K(A).

1 Introduction

Stability of Grébner bases is an important notion in computer algebra. There have been published

many papers by many authors. In , {1} the following result is shown

Theorem 1.1 (T. Becker) Let I be an ideal of a polynomial ring K[A. X over a field K with variables
A and X such that INK[A] is a zero-dimensional radical ideal in K[A]. Let G = {g1(4,X),..., qu(4, X)}
be o Grobner basis of I w.r.t. a term order > of T(A, X) such that each variable X; is greater than any
term in T{A) and the restriction of > on T(A) is a lexicographical term order. Let @ be an m-tuple of
elements of the algebraic closure K of K which is a zero of the ideal INK [A]. Then, G is stable for @,
that is G becomes a Crébner basis with the specialization by @, i.e. {g1(a,X), -..,q(8,X)} becomes a
Grébner basis in K|X] w.r.t. the term order that is a restriction of > on T(X).

In [2], the above result is further generalized by the following result.

Theorem 1.2 (M. Kalkbrener) Let J be an ideal of a polynomial ring K[A] and & = a1,03,...,0n
be a zero of J in some algebraic extension field K' of K, then we have the following properties.

1. The mazimal ideal (A ~ a1, Az — G2, .. ., Am — Gm) 18 the associated prime of some isolated primary
component of J in K'[A] if and only if G is strongly stable for @ for any Grébner basis G in (K[A)))[X]
such that (G) N K[4] = J.
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2. In case the number of the variables X is more than 1, the mazimal ideal (A1—a;1,Av—as, ..., Am—amn)
is some isolated primary component of J in K’ [A] if and only if G is strongly stable for a for any
Grobner basis G in (K[A)])[X] such that (G) N K[A] = J.

(See Definition 4.2 for the definition of strong stability.)
This result actually extends Theorem 1.1 because of the following facts.

Proposition 1.3 Let G be a Grobner basis of an ideal I of a polynomial ring K (A, X] wrt aterm
order > such that each varieble X; is greater than any term in T(A), then G is also a Grébner basis of

I in (K[A])|X] w.r.t. the term order that is a restriction of > on T(X).

Proposition 1.4 Let J be a 0-dimensional ideal of a polynomial ring K [A], K’ be an algebraic extension
field of K and @ = a1,03,...,0m € K™ be a zero of J', then we have the following properties.

1. The mazimal ideal (A1 —ay, Aa—as, . .., Am—am) is the associated prime of some primary component

of J' in K'[A], where J' is the extension of J in K'[A].

2. In case J is a radical ideal, the mazimal ideal {Ay — a1, Az — a2,..., Am — Gm) is some primary
component of J' in K'[A] , where J' is the extension of J in K'[A].

The result also shows that the condition (G) N K[A] being 0-dimensional(and radical) is indispensable as

far as concerning strong stability, i.e. we have the following.

Lemma 1.5 Let J be an ideal of K[A] such that J is not a 0-dimensional ideal, then we have the following

properties.

1. There exists an ideal I of K[A, X| such that INK[A] = J and any Grobner basis G of I in (K [AD]X]

is not strongly stable for some zero of J.

2. In case the number of X is more than 1, with an additional assumption that J is not a radical ideal,

there exists an ideal I of K[A, X] such that INK[A] = J and any Grébner basis G of I in (K[A])[X]

is not strongly stable for some zero of J.

In [9, 10], we showed that alternative of comprehensive Grobner bases can be defined in terms of Grébner
bases in polynomial rings over commutative von Neumann regular rings, and we called them ACGB
(Alternative Comprehensive Grobner Bases). In [8], we further optimized ACGB to get the following

result.

Theorem 1.6 Let F = {f1(4,X),..., fs(A,X)} be a set of polynomials in

K[A, X, let I be a zero-dimensional proper radical ideal in K[A]. Then the quotient ring K[A]/I becomes
a commutative von Newmann regular ring.

Let G = {g1(A, X),...,q(A,X)} be a Crobner basis of (F) in the polynomial ring (K[A}/I)(X] over
K[A]/I. Then, {9:(@,X),...,q(@, X)} becomes a Grébner basis of the ideal (f1(a,X),..., fs(a, X)) for
any m-~tuple of elements & which lies on the variety V(I) in an algebraic extension field of K.

In this paper, we prove that G in Theorem 1.1 actually becomes a Grobuer basis in the polynomial
rings (K[A]/I N K[A])[X] over the commutative von Neumann regular ring K[A]/I N K[A4]. jFrom this
result together with Theorem 1.6, the extended version of Theorem 1.1 by Theorem 1.2 directly follows.



197

Our proof is not only easy but also natural since the notion of Grébner bases in polynomial rings over
commutative von Neumann regular rings and the notion of comprehensive Grébner bases are essentially
same as is shown in [13]. We also give a redescription of Lemma 1.2 in terms of ACGB. .

We also give a new method to comute a parametric Grobner basis of an ideal I in K[4, X | even when
IN K[A] is not a zero-dimensional ideal, which is an improvement of our algorithm introduced in [9, 10].
Our new algorithm starts from a usual Grébner basis of an ideal I in the polynomial ring K[4, X| over
the field K. Our method is a similar but different approach from the algorithms presented in [4] that
compute parametric Grébner bases with careful consideration of parameters, which are essentially based
on computation of Grébner bases in a polynomial ring K (4)[X] over the quotient field K (A).

We assume the reader is familiar with a theory of Grébner bases in polynomial rings over commutative
von Neumann regular rings, which was introduced in [11]. Though we give a minimum review in section
2, we strongly recommend reading (5] or [11] for the reader who are not familiar with the theory. In
section 2, we also prove some properties which will be used for proving our main results. In section 3,
we give a brief review of ACGB. Though the contents is self contained, we also refer the reader to [6, 10]
for more detailed description. Our main results are proved in section 4. In section 5, we discuss a new

approach to computation of parametric Grobner bases.

2 von Neumann regular rings and Groébner bases

A commutative ring R with identity 1 is called a von Neumann regular ring if it has the following
property:
VacRIbe R d’b=a.

For such a b, a* = ab and o~} = ab? are uniquely determined and satisfy as* = a, ae™! = a*, and

( a*)2 — a*-
Notice that every direct product of fields is a von Neumann regular ring. Conversely, any von Neumann
regular ring is shown to be isomorphic to a subring of a direct product of fields as follows.

Definition 2.1 Let R be o von Neumann regqular ring. If we define ~a = 1 —a, a Ab = ab and
aV b= —=(=a A-b) for each a,b € R such that a® = a,b*> = b, then ({z € R | 2® = },~, A, V) becomes a
boolean algebra, which is denoted by B(R).

Considering B(R) as a boolean ring, Stone representation theorem gives the following isomorphism @
from B(R) to a subring of [];cs.p(r)) B(R)/I by ®(z) = [resum(rylalr, where St(B(R)) is the set of
all maximal ideals of B(R). This representation of B(R) is extended to a representation of R as follows.

Theorem 2.1 (Saracino-Weispfenning) For a mazimal ideal I of B(R), if we put Ip = {zy | z €
R,y € I}, then Ig is a mazimal ideal of R. If we define a map @ from R into Hiresenr) R/Ir by
&(z) = [11esum(ry@lin: then @ is a ring embedding.

A maximal ideal coincides with a prime ideal in a boolean ring. In the rest of the paper St(B(R)) is
denoted by Spec(B(R)). We use p for an element of Spec(B(R)) as in the papers [11, 13]. We also use
the same notations R, to denote the field R/p, and z, to denote the element [z]p, in fp.

In the following unless mentioned, Greek letters «, 8,7y are used for terms, Roman letters a,b,c for
elements of R, and f,g,h for polynomials over R. Throughout this section, we work in a polynomial
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ring over R which is a von Neumann regular ring unless mentioned. We also assume that some term
order is given. The leading term of f is denoted by It(f) and its coefficient by le(f). By li(f) we denote
le(f)*. The leading monomial of £, i.e., le(f){t(f) is denoted by Im(f). The set of all terms consisting
of variables X is denoted by T(X).

Definition 2.2 For o polynomial f = ac + g with Im{f) = ae, ¢ monomial reduction —y is defined

as follows:
bafB + h —y baf + h — ba"'Blac + g)

where ab # 0 and baf need not be the leading monomial of baB + h.

A monomial reduction —# by a set F of polynomials is also naturally defined. When F is a finite set,
—p has a termination property. Using this monomial reduction, Grébner bases are defined as follows.

Definition 2.3 Let I be an ideal of a polynomial ring over R, A finite subset G of I is called a Grobner
basis of I, if it satisfies the following property:

Vi fel<e=fIgo0.
We simply say G is a Grébner basis if G is a Grébner basis of the ideal {(G) generated by itself.

Notice that a Grébner basis G of I is clearly a basis of I.
It is not difficult to show the following property.

Lemma 2.2 A finite subset G of an ideal I is a Grobner basis of I if and only if
({Im(f)If € I}) = {Im(g)lg € G})

Proof. Assume that G is a Grobner basis of I. Let f be a non-zero polynomial in I. Since f 5e 0,
there must exist polynomials gi,...,gs € G such that [t{g;)|lt(f) foreach i =1,...,s and ((li(g1)V -V
li{gs)i(f) = li(f). Define ey, ..., cs € R inductively as follows. ¢; = b;li{g;) foreachi =1,...,s, where d;
=1—(c1+-+-+e¢i-1) foreachi=2,...,s. (Weputb; =1 for convenience.) Then we have c;c; = 0 for each
distinct 4 and j and ¢ +- - - +¢5 = li(g1) V- - - Vii(gs). Since le(f) = li(f)le(f), we have le(f) = (e +- -+
cs)le(f). Hence, Im(f) = (c1+- - +es)e(Hit(f) = ele( (Y +- -+ esle( HHlt(f) = bili{g)le(F)iE(f) +
<o+ bsli(gs)le(Fit(f) = buliga)le(f)it(g)(1(f) /1{gn)) + - - -+ bslilgs)lc(£)It(gs) (1(f) /Tt(gs)) =
bale(gr)~Mle(gu)le(F)lt(a) () /1(gn)) + - + bale(gs) ~He(ge)le(F)it(gs) (1) /1t(35))
= byle(g2) " He()(U(F)/1E(g:)lm{g) + - - + bale(gs) el )P/ 1(9))m{gs)-
It follows that ({im(f)|f € I'}) C {{Im(g)lg € G}).
{Im(NHIf € 1) 2 {im{g)lg € G}) is trivial.

Assume conversely that ({Im(f)|f € I}) = {({{m{g)ig € G}).
To get a contradiction suppose there exists a non-zero polynomial f in 7 which is irreducible by —¢ . This
means that le(f)lelg) = 0 for any g in G satisfying It(g)|{t{f). By our assumption, there exists g1,..., s
€ G and monomials ayay,. .., asas such that Im(f) = ailm{gi)ar + - - - + aslm(gs)a,s. Multiplying le(f)
from both sides, we get a contradiction le{f)im(f) = 0. g

Definition 2.4 For a polynomial f, li{f}f is called the boolean closure of f and denoted by be(f). A
polynomial f such that f = be(f) is said to be boolean closed. Notice that be(f) is boolean closed.

Lemma 2.3 Let G be a Grobner basis of an ideal I, then G' = {be(g)|g € G} also becomes a Grébner
basis of 1.
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Proof. By the definition of boolean closure, G is clearly a subset of 1. Since Im(g) = Im(be(g)) for each
polynomial g, ({im{g)lg € G}) = {{Im(g)lg € G'}). So, G’ is a Grébner basis of I by Lemma 2.2. g

The following result of [3] will be used for proving our main results.

Lemma 2.4 Let R be a commutative ring with identity, which need not to be a von Neumann regular
ring. Let I be an ideal in a polynomial ring R[X| and G = {g1,...,9m} be a finite subset of I. Then the

Jollowing properties are eguivalent:

1 {Im(Hlf € I}) = ({Im{g)lg € G})

2. For any polynomial f € I, f has a Gribner representation w.r.t. G, that is there exist polynomials
D1...,Pm such that f = 32, pigs and 18(f) > lt(p:)it(g;) for eachi=1,...,m.

We conclude this section with the following fact.

Lemma 2.5 For a polynomial f in a polynomial ring R[X] and p € Spec(B(R)), fp denotes the polyno-
mial in Rp[X) given from f by replacing each coefficient a with ap. For a set F' of polynomials in R[X],
F, denotes the set {fp|f € F} — {0}. Let G be a Grébner basis of an ideal I in a polynomial ring R[X].
Then Gy becomes a Grobner basis of the ideal I, in the polynomial Ting R,[X] for each p € Spec(B(R)).

Proof. Notice first that for each element e in R, there exists an element a in R such that a, = e. Hence,
for each polynomial 4 in R,[X] there exists a polynomial f in R[X] such that f, = h, from which it
follows that I, is an ideal in Rp[X]. In case each element of G is boolean closed, this lemma is already
shown in [11]. (Where the converse also holds.) If G is not a set of boolean closed polynomials, let G
= {bc(g)|lg € G}. Then G’ is also a Grdbner basis of I by Lemma 2.3. Therefore, G}, is also a Grobner
basis of I,. We claim that G, is a subset of Gp. Let g be a polynomial in G. Notice the following two
properties: :
If li(g)p = O, then bc(g), = 0. Ifli(g)p = 1, then be(g)p = gp-

Since li(g), is 0 or 1 for each p, we have be(g), = 0 or be(g)p = gp, from which our claim follows. Since

G, is clearly a subset of I,, Gy, is a Grobner basis of I, in Rp[X]. g

3 ACGB

A polynomial ring K[A] over a field K with variables A= A,,..., A, is not a von Neumann regular
ring. But considering a polynomial in K[A] as a function from K™ to K, K[A] can be considered as
a subring of a von Neumann regular ring FKm. This idea leads us to define an ACGB(Alternative
Cormprehensive Grobner Basis) as follows..

Definition 3.1 Let F be a finite set of polynomials in a polynomial ring K[A, X over a field K with
varighles A = A1, ..., Am and X = X1,...,Xn. Let G be a Grébner basis of (F') in the polynomial ring

— R .

K" [X]. G is called an ACGB of F with parameters A.

Theorem 3.1 Let G = {g1,...,q} be an ACGB of F={fi(4,X),..., fs(4,X)} with parameters A.
Then, for each m-tuple @ = ai1,...,am of elements in K, Gz becomes a Grébner basis of the ideal
{ (@, X), ..., Fs(a8,X)}) in K[X]. Where Gg denotes the set {gia, ..., qia} of polynomials gias. .., %
in K[X] given from g1,..., 9 by replacing each coefficient ¢ with ¢(a@).

(Remember that ¢ is an element of ).
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Proof. Let R = K . Notice that for any element ¢ of R, ¢? = ¢ if and only if ¢(g) = 0 or ¢(a) = 1
for each element @ of K. Hence, the boolean ring B(R) consists of all ¢ of R such that c(@y =0or
c(@) =1 for each element a of K"™. (B(R) is not a subring of R, the addition of ¢(@) and /(@) for ¢ and
¢ in B(R) is defined as the addition of the finite field Zy.) Clearly the set {c € B(R)|c(@) = 0} forms
a prime ideal in B(R) for any element & of K™. Let @ be an element of K and p be the prime ideal
{c € B(R)|c(a) = 0}. Notice also that the maximal ideal pr = {zy|z € R,y € p} In R has the following
form: pr = {c € Rlc(@) = 0}. Remember that R, is the quotient field R/pr. Since ¢ — ¢’ € pr if and
only if ¢(@) = ¢(@) for any c and ¢’ in R, the mapping 8 from R/pr to K defined by 8([c]pz) = (@) is
an isomorphism. If we identify R/pr with K by this isomorphism, [c]p, is equal to ¢(@). Remember that
[¢]ps 18 denoted by cp. So the theorem follows from Lemma 2.5. g

In ACGB, we implicitly assume that a specialization can take any value from K. If we give a restriction

on specializations, we can generalize ACGB as follows.

Definition 3.2 Let S be a subset of K. Let F be a finite set of polynomials in a polynomial ring
K[A, X]. Let G be a Grébner basis of (F) in the polynomial ring x5 [X]. G is called an ACGB on S of
F with parameters A. We simply simply call G an ACGB on S of F when A is clear from contexts. We
also simply call G an ACGB on S when G is an ACGB on § of G.

We have the following theorem by an exactly same proof of Theorem 3.1.

Theorem 3.2 Let S be a subset of K and G = {g1,..., g} be an ACGB on S of F = {fi.(4,X), ...
,fs(A,X)}. Then, for each m-tuple & in S, G5 becomes a Grébner basis of the ideal (F(a)) in K[X].

Notice that we can not generally construct ACGB’s on S for arbitrary set S. Even when we can construct
ACGR’s on S such as the case § = K, we usually can not represent them in a form of a set of polynomials
in K[4, X]. In the rest of this section, we show that we can always construct ACGB’s on § in a form of
a set of polynomials in K[A4, X] when S is given in a form of a variety of zero-dimensional ideal.

Let V be the variety of an ideal 7. Let K[V] denote a subring of KV which consists of all elements
that can be represented as polynomial functions. Notice that K[V] is isomorphic to the quotient ring
K[A]/I(V), where I(V') denotes the ideal {f € K[A]|f(a) = 0 for every & € V'}. In general, K[A]/I(V) is
not a von Neumann regular ring. However, in case I{V) is zero-dimensional, it becomes a von Neumann
regular ring. Since I{V') is a radical ideal, it can be represented as an intersection of distinet prime ideals
P n-.-N P If I{V) is zero-dimensional, each P; is also zero-dimensional, so it is maximal. Therefore,
K[A]/I{(V) is isomorphic to the direct product K[A]/P; x - - -x K[A]/ P, of fields by the Chinese remainder
theorem. So, K[A]/I(V) becomes a von Neumann regular ring. These observations lead us to have the

following theorem.

Theorem 3.3 Let F = {fi(4,X),...,fs(4,X)} be a finite set of polynomials in a polynomial ring
KA, X] with variables A = Ai,...,Am and X. Let I be a zero-dimensional proper radical ideal in
K[A]. Then the quotient ring K[A]/I becomes a von Neumann regular ring. Let G be a Grobner basis
of (F) in the polynomial ring (K|A]/I){X] over K[A]/I. Each coefficient of a polynomial h(X) in
(K[A)/D[X] is a member of K[A]/I, so it can be represented by a polynomial in K |[A]. Hence, h(X) can
also be represented as a polynomial in K[A, X|. Therefore, G can be represented by a set of polynomials
{g1(4,X),...,q:(4,X)} in K[A, X]. Then, for any m-tuple G of elements in the algebraic closure K of K
which is a zero of I, {g1(a, X), - .., 01(d, X)} becomes a Grébner basis of the ideal (f1(d,X),. .., fs(@ X))
in K[X].
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Proof. If K is an algebraically closed field, let V be the variety of I. Since I{(V') = I, K[V] is isomorphic
to K[A]/I. Therefore G is actually an ACGB on V of F with parameters 4, from which the theorem
directly follows from Theorem 3.2. In case K is not an algebraically closed field, we need to optimize the
above proof. Represent I = PiN---N Py as an intersection of distinct prime(maximal) ideals in K[A]. For
eachi=1,... .k leta, € K beazeroof B. If we put K; = {f(a;)|f(A) € K[A]} for each i, K; becomes
a field which is isomorphic to K[A]/P,. Define a map ® from K[A]/I to Ky x -+ x Kj by ®(f(4)) =
(£(@1),..., f(a@x)). Then ® is an isomorphism. Hence, B(K[A]/I) can be considered as a boolean algebra
which consists of all subsets of {1,...,k}. A prime ideal of B(K[A]/I) has a form {s C {1,...,k}|i ¢ s}
for some i. If we denote {s C {1,...,k}i ¢ s} by ps, (K[A]/I)p, can be identified with K; and f(4),,
is equal to f(@;) for each f(A) € K[A]/I. By Lemma 2.5, {g1{(@;, X),...,q:(G;, X)} becomes a Grobuer
basis of the ideal (f1(a@;, X),..., fo(@:;, X)) in K;[X]. Since the Gr&bner basis property is conservative
under 2 field extension, it is also a Grébner basis in K [X]. y

4 Stability of Grobner bases

In this section we prove our main results. Let us begin with the standard definition of Grébner bases.

Definition 4.1 Let I be an ideal of a polynomial ring K[A, X] over a field K with variables A and X.
Let G be o finite subset of I. Consider K|[A, X] as a polynomial ring (K[A])[X] ever the coefficient ring
K[A). If we have ({Im(f)|f € I}) = ({Im(g)lg € G}) in (K[A])[X] with a term order > of T(X), G is
colled o Grobner basis of T in (K[A])[X] w.rt. >.

The next fact is a special instance of a well-known result shown in [8, 14].

Proposition 4.1 Let I be an ideal of a polynomial ring K[A, X over a field K with variables A and X
such that I N K[A) is a zero-dimensional proper radical ideal in K[A]. Let G = {g1(4,X), ..., a1(4, X)}
be a Grébner basis of I in (K[A)[X] w.rt. a term order > of T(X). If we consider G as a set of
polynomials in a polynomial ring (K[A)/INK[A))[X] over the von Neumann regular ring K[A]/INK[4],

then G also becomes o Grobner basis tn this polynomial ring w.r.t. >.
Together with Theorem 3.3, we directly have the following.

Theorem 4.2 Let I be an ideal of a polynomial ring K[A,X] over a field K such that I N K[A] is a

zero-dimensional radical ideal in K[A].

Let G = {gi(A,X),...,q(A, )} be a Grobner basis of I in (K[A])[X] w.rt. a term order > of T(X).
Let @ be an m-tuple of elements of the algebraic closure K of K which is a zero of the ideal IN K [4).
Then, G becomes a Grébner basis with the specialization by a, that is {0108, X), ..., q:(8, X)} becomes a
Gribner basis of the ideal (1(@, X), ..., 0@ X)) in K[X] wrt >

Proof. When I N KJ[A] is not a proper ideal, the result is trivial, otherwise apply Proposition 4.1 and

Theorem 3.33
We can get a slightly stronger result as follows.

Definition 4.2 Let G = {g1{4, X),...,a(4, X)} be o finite set of polynomials of K|A, X] with a field
K. Let > be a term order of T(X) and & be an m-tuple of elements of some extension field K' of K. G
is said to be strongly stable for @ w.r.t. > if {gn, (@8, X),. ., 9ns (@, X)} becomes a Grébner basis of the
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ideal (1(a@, X),...,0(a, X))} in K'[X] w.rt. >, where {gn,,...,9n, } 18 the set of all polynomials g of G
such that 1c(g)(a) # 0.(We consider g as a polynomial in (K[A)[X], so ic(g) is a polynomial in K[A].)
G is also simply said to be stable for @ w.r.t. > if {g1(a, X),... ,g1(@, X)} becomes a Grébner basis of
the ideal (91(8,X),...,q(a, X)) in K'[X] wrt >.

The strong stability condition is actually much stronger than the stability condition.

Example 1.
Let G = {A* X1+ X5—1, X3 —1} with a lexicographic term order X1 > X». Then G is not strongly stable

for 0 since {X2 ~ 1} is not a Grobner basis of (X —1,X3 — 1), but G is stable for 0 i.e. {Xs—1, X5 -1}
is a Grdbner basis of (X — 1, X3 — 1)

Corollary 4.3 Let I be an ideal of a polynomial ring K[A, X] over a field K such that I 0 K[4] is a
zero-dimensional radical ideal in K[A]. '

Let G = {gi(A4,X),...,q(4, X)} be a Grobner basis of I in (K[A])[X] w.rt. a term order > of T(X).
Let @ be an m-tuple of elements of the algebraic closure K of K which is a zero of the ideal I N K[A].
Then G 1is strongly stable for @ w.r.i. >.

Proof. Notice that {gn, (@, X),...,gn, (@ X)} and {9:(@,X),...,9(a, X)} in Definition 8 correspond to
G, and G, in the proof of Lemma 2.5. So we can replace {g1(@, X),-.,91(@ X)} by {gn, (a8, X), ...,
Gny (@, X)} in Theorem 3.3, from which our corollary follows.g

By Proposition 1, the following facts are direct consequences from Proposition 4.1 and Corollary 4.3.

Theorem 4.4 Let I be an ideal of a polynomial ring K[A, X] over a field K with variables A and X such
that I N K[A] is a zero-dimensional proper radical ideal in K[A]. Let G = {g1(4, X),...,q(A, X)} be a
Grobner basis of I w.r.t. a term order > such that each variable X; is greater than any term in T(A). If
we consider G as a set of polynomials in the polynomial ring (K[A]/I N K[A]}[X] over the von Neumann
regular ring K[A]/INK[A], then G also becomes a Grébner basis of the ideal (G) in this polynomial ring
w.r.t. the term order that is a restriction of > on T(X).

Corollary 4.5 Let I be an ideal of a polynomial ring K[A, X] over a field K such that IN K[A] is a
zero-dimensional radical ideal in K[A).

Let G = {g1(A, X),...,g1(A, X)} be a Grébner basis of I w.r.t. a term order > such that each variable
X; is greater than any term in T(A). Let & be an m-tuple of elements of the algebraic closure K of K
which is a zero of the ideal I N K[A]. Then, G is strongly stable for @ w.r.t. the term order that is a

restriction of > on T(X).

We conclude this section by the following fact which is a redescription of Lemma 1 in terms of ACGB.

Proposition 4.6 Let J be an ideal of K[A] such that J is not ¢ 0-dimensional ideal, then we have the
following properties. ‘

1. There ezits an ideal I of K[A, X| such that INK[A) = J and any Grébner basis G of I in (K[A])[X]
is not an ACGB on V{(J).

2. In case the number of X is more than 1, with an additional assumption that J is not a radical ideal,
there exits an ideal I of K[A, X such that INK[A] = J and any Grobner basis G of I in (K[A])[X]
is not an ACGB on V(J).
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5 Computation of parametric Grébner bases

Let F = {fi(4,X),..., fs(4,X)} be a finite set of polynomials in K[A, X]. Compute a Grébner
basis G = {g1(4, X),..., (4, X), h1(A),..., he(A)} of the ideal (F) w.r.t. a term order > such that any
variable X; is greater than any term in 7'(4), where {h1(A4), ..., ~Ax(4)} is aset of all polynomials in G that
do not include any variable X;, it might be an empty set. In case (h1{A4),...,hr(4)) is a zero dimensional
radical ideal in K[A], G becomes a parametric Grobner basis of F that is {g:1(a, X), ..., (@, X), h1(a),

, hi(@)} becomes a Grébuer basis of the ideal (f1(@,X),..., fs(@, X)) in K[X] for any m-tuple & of
elements of &, as is shown in Corollary 4.5. When (hi1(A4), ..., hx(A)) is not a zero dimensional radical
ideal, G is not a parametric Grdbner basis of F' in general. If we want to construct a parametric Grobner
basis of F using G, the most interesting question is whether we can construct a computable condition of
@ which is necessary and sufficient for G to be stable for & w.r.6. >.

With a minor change, that is replacing ’stable’ by ’strongly stable’, we can construct such a condition

using the following fact which is also presented in [2](Theorem 3.1).

Theorem 5.1 Let I be an ideal of a polynomial ring K[&,X]. Let G = {g:1(4,X),..., (4, X)} be a
Grobner basis of I in (K[A)[X] w.rt. aterm order > of T(X). Let @ be an m-tuple of elements of the
algebraic closure

K of K which is a zero of the ideal I\ K[A]. Let {gn,,...,9n, ) e the set of all polynomials g of G such
that le(g)(a) # 0. Then G is strongly stable for @ w.r.t. >, that is {gn, (@ X), ..., gn, (@, X)} becomes a
Grébner basis of (g1(@, X),...,q(a@, X)), if and only if g(a, X) is reducible to 0 modulo

{9n, (@, X), ..., gns (8, X)} for every g in G.

Algorithm 1.

Let I and G be as in the above theorem. We can compute an algebraically constructible set S such that
@ e S if and only if G is strongly stable for & w.r.t. >. We call p = ({p1,...,0r},{91, ..., ¢s}) be a binary
partition of G, if {p1,...,pr} N{q1,...,¢s} = @ and {p1,...,pr} U{g1,..-,¢s} = G. (Whenr = 0(s =
0), we abuse the notation {p1,...,prr{({q1,.--, gs}) to denote an empty set.) For such a binary partition
p, we put a case distinction G, = {le(p1) # 0,...,lc(py) # 0, le(qr) = 0,...,le(gs) = 0}. Compute a
normal form ¢} of g¢; modulo {p1,...,p} in K(A)[X] for each ¢ = 1,...,s. Let {h1,..., s} be the set
of all polynomials of K[A] that is a numerator of some coeficient of some g;. For each @ that satisfies
all conditions of the case distinction C,, we can see that G is strongly stable for @ w.r.t. 2 if and only
if hi(a) = 0 for every ¢ = 1,...,t, by the theorem. Let Cp={h =0,.. k= gyuC, and S, =
{a € K| a satisfies all conditions of C,} and put an algebraically constructible set S = U,S,. Then S
has the desired property.

The above algorithm is simple and fast when we do not have so many binary partitions. When [ is not
small, however, if G does not include any polynomial consisting of only variables A, we have to take
care of 2! many case distinctions, which of course is not 2 light job. This difficulty is overcome by using
ACGB. The following algorithm produces the above algebraically constructible set S with a minimum
cost. Using the output of the algorithm we can also get an ACGB of I, which can be considered as a

parametric Grébner basis of 1.

Algorithm 2.
Let I and G be as in the above theorem. For each i = 1,...,[, compute a normal form g; of g; modulo G



204

in the polynomial ring 7°[X] over the von Neumann regular ring T’ which is defined as the smallest von
Neumann regular subring of IK?Km that includes K[A]. T is defined as a computable ring using so called
terrace. (See [10] for more detail.) Notice that g} is not necessary to be 0 since we do not generally have
the property f —; 0 in a polynomial ring over a von Neumann regular ring. Put G ={gi,...,9} Let
{61,...,0y} be the set of all coefficients which appear in some polynomial gj. Let 8 = 67 v .- V63,
where V is a boolean sum, i.e. z V y is defined by z + y + zy for any pair of idempotent elements z and

y. 8 has the following property for any a & X"

6(a) = { : § 6:(a) # 0 for some i

0 otherwise.

Notice the fact that normal forms of monomial reductions by a set of boolean closed polynomials in 7'[X]
are specialization invariant, that is, if f(4,X) S5 F(4,X) and f'(4,X) is irreducible by — 4 then
f(a,X) Su, £(@,X) and f/(a, X) is irreducible by — g, for any m-tuple & of elements of K and any set
H of boolean closed polynomials in 7'[X]. Since — and —e(n) do an exactly same monomial reduction,
we have the following property for any m-tuple & of elements of K and any set H of polynomials in T{X’ I:

If f(A,X) Sy f/{A X) and f/(A4, X) is irreducible by — g
then £(a,X) Sz f'(a,X) and f'(a, X) is irreducible by — ;.
(Where H' = {bc(h)| h € H}.)

Notice also that be(h)(@) = 0 if and only if le(h){@) = 0. Hence, with the above property of 8, we can see
that G is strongly stable for a if and only if 8(a) = 0.

Notice also that we can also express the set § = {@ € K |6(a@) = 0} in a form of algebraically constructible
set using the structure of terrace. For the construction of S, boolean simplification is also useful.

We can further obtain a parametric Grobner basis of 7 in a form of ACGB as follows.

Let Gy = {{1 — 8)g1,...,(L — &g} and compute a Grobner basis G2 of

{8g1,...,0g:} in T[X]. (Notice that G5 is nothing but an ACGB on K™\ S of G.) Then G1 UG5 forms
a Grébner basis of I in T[X], that is G; U G is an ACGB of .

6 Conclusions and Remarks

Theorem 1.2 is given in more general situations in terms of a homomorphism from an arbitrary com-
mutative ring R to a field.(See theorem 3.2 and 3.3 in [2]). In our situation that is R is a polynomial ring
K|[A] over a field K, it is equivalent to Theorem 1.2 since a homomorphism is nothing but a specialization
and its kernel is a maximal ideal.

The stability property defined in [2] corresponds to the strong stability property defined in this paper.
We use this terminoclogy since it reflects its meaning more precisely and there is a closed relationship
between its notion and the notion of monomial reductions in polynomial rings over von Neumann regular
rings as is shown in this paper. '

Three theorems of section 3 are originally given for boolean closed Grébuner bases in {6, 9, 10]. In this
paper, we optimize our proofs so that the theorems hold for arbitrary Grébner bases.
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