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Abstract

Recently real quantifier elimination (QE) has been widely used as an effective tool for solving real
algebraic constraints (in particular parametric and non-convex cases) arising in many engineering and
industrial problems In fact there are several successful applications of quantifier elimination to practi-
cal industrial problems. It is, however, still strongly required to develop practically efficient realizations
of quantifier elimination. In this paper we propose a new scheme for efficient cylindrical a\‘igebraic de-
composition (CAD) algorithm, which is the most fundamental part of quantifier elimination, based on
symbolic-numeric computation.

1 Introduction
Cylindrical algebraic decomposition (CAD) is a general-purpose symbolic method aiming for quantifier

elimination (QE) which is a powerful tool to resolve non-convex and parametric optimization problem $\mathrm{s}$

exactly. However, QE based on CAD is not practical on real computers, since CAD usually consists of

many of purely symbolic computations and has bad computational complexity in nature.

Against the inherent computational complexity of QE based on a CAD algorithm, several researchers

have focused on QE algorithms specialized to particular types of input formulas, see [Wei88, LW93,

Wei97 Hon93, GV98]. This direction is quite prom ising in practice since number of important problem $\mathrm{s}$

in engineering have been successfully reduced to the particular input torm ulas and resolved by using

the specialized QE algorithms. For the concrete applications of the scheme, see [Wei96, SW97, DSW98,

GV96, AHOO, $\mathrm{A}\mathrm{Y}\mathrm{S}\mathrm{H}04_{\mathrm{J}}^{]}$ .

However, there still remain many significant problems in engineering that can not be recast as such

particular formulas. Therefore, it is strongly desired to develop an efficient algorithm to realize CAD. One
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effective way for efficient CAD construction is achieved by utilizing numerical computation and derived

numerical information on algebraic numbers as far as possible without violating correctness of the results

instead of symbolic treatment. So far there are several related works to introduce numerical computation

into CAD construction [$\mathrm{H}\mathrm{o}\mathrm{n}93\mathrm{b}$ , Rat02, AP03] : for example, Ratschan proposed a combination of CAD
and interval arithmetic [Rat02], and Anal & Parrilo presented improved CAD by using the inform ation

of a numerical feasible point particularly for convex optimization [APG3].

In this paper we propose a new scheme for an efficient realization of CAD based on symbolic-numeric

computation [AY04] , where numerical computation is used particularly in handling algebraic numbers in

the lifting phase of CAD construction and we apply “symbolic reconstruction” with a sm aller number of

symbolic computations only to the unreliable numerical results to validate them. Our symbolic recon-
struction procedure in the lifting phase is based on a dynamic evaluation (DE) technique [Duv94], and

combined with successive representations of algebraic extensions.

2 Numeric Computation with Symbolic Reconstruction
Computational difficulty of the lifting phase of CAD comes from

. Computation over Algebraic Extension: For exact computation, we have to construct tow-

ers of algebraic extension fields successively over the rational number field Q. This requires heavy

computations such as algebraic factorization, GCD of polynomials.. Combinatorial Explosion: CAD decomposes the whole space $\mathbb{R}^{n}$ into numerous sub-algebraic sets.

The computational flow of the decomposition can be illustrated by a computational tree. However,

in $\mathrm{Q}\mathrm{E}$ , many such sub algebraic sets are unnecessary, and many subtree should be discarded.

To resolve these difficulties we consider using floating points number in CAD construction. In contrast

to symbolic construction of CAD, replacing every symbolic computation (except projection phase in
CAD construction) with its approximate numerical computation, we can compute an numerical CAD
(i.e. approximate CAD) quite efficiently due to avoidance of computation over algebraic extension.

2.1 Using numerical computation in CAD

Using numerical computation in handling algebraic numbers greatly improves the efficiency of CAD
construction because we can avoid symbolic computations over algebraic extension fields and also prune
unnecessary branches of a CAD tree by numerical values of algebraic numbers, while this causes uncer-
tainty of the computed results depending on accuracy of numerical computation. Hence we propose to

use numerical computation with machinery for validating numerically computed results by reconstructing
them exactly with a smaller number of symbolic computations. Some possible computational flow of our
schem $\mathrm{e}$ in the lifting phase is illustrated in Fig.1. The dotted arrows and solid arrows in Fig.l stand for
numerical computation and symbolic reconstruction, respectively.

Actually computations over algebraic extension fields are required in the lifting phase of CAD to

compute respective isolating interval of algebraic numbers over successive extension fields. Then what we
need to do is “sign determination” of many algebraic numbers, i.e., to determine exactly whether they
are 0 or not and their sign if not 0. We can usually expect that sign determinations are mostly properl



87

reconstruction $\mathrm{v}\mathrm{e}\mathrm{r}\hat{|}\mathrm{f}\hat{\iota}\mathrm{c}\mathrm{a}\mathrm{t}:’ \mathrm{o}\mathrm{n}\mathrm{a}\mathrm{c}\mathrm{o}\mathrm{r}\mathrm{r}\mathrm{e}\mathrm{c}\mathrm{E}\hat{;}0’$:

Figure 1: CAD construction - numerical computation with symbolic reconstruction

done by only numerical computation. We check again the sign exactly by symbolic computation only for

unreliable numerical results (We call this symbolic reconstruction,) This is the ground why our method

would improve the efficiency of CAD construction.

2.2 Efficient symbolic reconstruction by using a numerical CAD

Moreover we improve the reconstruction procedure by employing a dynamic evaluation technique

integrated with successive representations of algebraic extensions as follows: Algebraic extension is ex-

pressed by a residue class ring $Q[X]/A\mathit{4}$ , where $X$ is a set of variables and $M$ is a maximal ideal in $Q[X]$ .

Usually, computation of maximal ideals tends to be very hard. Instead of $\mathbb{Q}[X]/.\Lambda 4$ , we utilize “lazy

representation” $\mathbb{Q}[X]/J$ , where $J$ is not necessary maximal but easily computable. $\mathbb{Q}[X]/J$ may not be

a domain, i.e., it could have zero divisors. In the computation over $\mathbb{Q}[X]/J$ , if a given algebraic number

does not correspond to a zero-divisor, then it is not equal to 0 and we check its sign by using a certain

numerical method. If we met some zero divisors $ab=0$ , the we can split the ideal I as follows:

$J$ $=$ $(J +\langle a\rangle)\cap(J +\langle b\rangle)$ .

This decomposition is achieved by $\mathrm{g}\mathrm{c}\mathrm{d}$ computation for univariate case, i.e. simple algebraic extension,

and Grobner basis computation for multivariate case. Thus, by using lazy representation successively

for towers of extensions, where defining polynomials for algebraic numbers are used as generators of the

ideal $J$ , we do not require any algebraic factorization and a primitive element computation for a simple

extension which are often difficult especially in the case of tall towers of extensions. Furthermore the

most crucial point is that we can easily choose one necessary branch $J$ $+\langle a\rangle$ in the decomposition by

virtue of numerical information of algebraic numbers and hence can prune unnecessary branches for the

further computation of towers of extensions.
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3 Concluding Remarks
We present a new scheme for realizing efficient CAD based on symbolic-numeric computation. In order

to exa mine its effectiveness, implementation of our schem $\mathrm{e}$ into SyNRAC, which is a maple package for

solving real algebraic constraints developed at FUJITSU LABORATORIES LTD [YA04], is ongoing. We

rem ark that this work also provides one of prom ising directions for validated numerics for optimization
problems.
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Technology Agency).
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