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Abstract

We examine the conditions $\mathrm{o}\mathrm{n}1$ preferences and risks that guarantee the rnono-
tonicity of equilibrium derivative prices. In a Lucas economy with a derivative asset,
we derive the equilibrium derivative price under the expectation with respect to the
risk-neutral probability, and make comparative statics on the equilibrium derivative
price based on the risk-neutral probability.
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1 Introduction

One of thhe most important questions on optimal portfolio problems is what conditions

on prefer ences and risks guarantee the monotonicity of optimal portfolios. The analy-

sis has been extended to equilibrium asset prices in pure exchange economies by some

studies such as Gollier and Schlesinger (2002), and Ghnishi and Osaki (2004) because

they are consequen ces of investors’ portfolio optimization. For details on these topics,

Gollier (2001) provided an excellent survey. It is needles to say that the examination of

these effects on equilibrium derivative prices is necessary because of the importance of

derivatives from both academic and practical viewpoints in recent decades. How ever, to

our best knowledge, there has been no formal analysis of examining them. Our goal of

this paper is to examine the $\mathrm{m}$ .
Our analysis owes to previous literatures of comparative statics on optimal portfolios.

In particular, it has $\mathrm{a}_{l}$ close relation to Gollier and Sch lesinger (1996), and Kijima and
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Ohnishi (1996). Gollier and Schlesinger (1996) showed that the addition of noise risk

to the portfolio risk is led to the unambiguous comparative static result on the optimal
portfolio with some restrictions on the preference. Kijima $\mathrm{a}_{1}11\mathrm{d}$ Ohnishi (1996) examined

that two special classes of the First-order Stochastic Dominance (FSD) guarantee the

desirable comparative static result of decision problem by a different way from previous
studies such as Landsberger and Meilijson (1990), and Eeckhoudt and Gollier (1995).

Cleary, our analysis differs from these previous literatures, since its concern is not with
optimal portfolios but equilibrium derivative prices. Further, our analysis owes to previous

studies of comparative statics on equilibrium asset prices. In particular, our analysis

has a close relation to comparative statics based on the risk-neutral probability such as

Milgrom (1981) and Ohnishi and Osaki (2004). Our results are also related to Gollier
and Schlesinger’s recent analysis (2002) in which they made comparative statics based

on the excess demand functions.l) Our results are the generalization of results obtained
in these previous literatures because of analyzing assets with non-linear payoffs $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$

being obtained them under weaker conditions.
This paper is organized as follows. In Sec. 2 we derive an equilibrium derivative price

in a pure-exchange economy with homogeneous investors, and rewrite it by using the

risk-neutral probability. In Sec. 3, we show that shifts in the sense of two special classes

of the FSD have monotone effects on the equilibrium derivative price. We examine the

effects of additional noise risks on the equilibrium derivative price in Sec. 4. In Conclusion,

we summarize the results, and give some comments on future research.

2 Equilibrium Derivative Price

Let us consider a static version of Lucas (1978) economy except for the introduction
of derivative, that is, a two-date pure exchange economy with homogeneous investors.
Every investor has an identical expected utility representation with a strictly increasing,
strictly concave, and sufficiently smooth von Neumann-Morgenstern utility function $(\mathrm{v}\mathrm{N}-$

$\mathrm{M}$ function) $u$ , which means that all of required higher order derivatives are assumed to

be exist. Every investor is endowed with $w$ units of a risk-free asset, one unit of a risky
asset, and one unit of a derivative written on it. Let us put that the risk-free asset
is a numeraire in the economy, and the gross risk-free rate is normalized to one. The
risky asset payoff at the final date is a random variable $\tilde{x}$ with a Cumulative Distribution
Function (CDF) $F$ . The CDF $F$ of $\tilde{x}$ has a bounded support $[a, b]$ and assumed to be
differentiate, that is, the Probability Density Function (PDF) $f=F’$ exists. We consider

$1)\mathrm{G}\mathrm{o}\mathrm{l}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{r}$ and Schlesinger (2002) discuss some stochastic dominances that guarantee the monotonicity
of equilibrium asset prices based the central dominance introduced by Gollier (1995). How ever, these
stochastic dominances can be justified, only when its parameter satisfies a certain condition. We can
obtain the results of Sec. 3 without that restriction
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an economy in which the one-fund separation theorem holds, and therefore the risky asset
can be viewed as the market portfolio. The payoff of derivative is defined as a function of

the risky asset payoff $x$ and is denoted by $p$ . The payoff function of derivative is assumed
so that the final wealth in equilibrium given by $w+x+p(x)$ , is an increasing function
of $x$ . An economic interpretation of assumption is given as follows. Since the supply for
the risky asset which is endowed one unit for each investor, is considered as a norm of
quantity, the supply for the derivative is represented by the slope of its payoff function.
If the slope of payoff function is sufficiently small relatively to the risky asset payoff, the

assumption is satisfied. When the payoff function is differentiate, the condition is just
$p’(x)\geq-1$ , for all $x\in[a, b]$ . Because supplies for derivatives written on market portfolios

are suficiently small to those for market portfolios in actual financial asset markets, this

assumption is permissible.
The investor buys the portfolios $(\alpha, \beta)\gamma)$ to maximize his or her expected utility from

final wealth, where $(\alpha, \beta, \gamma)$ is the portfolios for the risk-free asset, the risky asset and

the derivative $\mathrm{r}\mathrm{e}\mathrm{s}\mathrm{p}\mathrm{e}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{v}\mathrm{e}15^{i}$ . Let us represent the price of risky asset by $m$ and the price of

derivative by $q$ . The investor problem is given as $\mathrm{f}\mathrm{o}11\mathrm{o}\mathrm{w}\mathrm{s}$ :

$\mathrm{P}$ : lnax $\mathrm{E}[u(\alpha+\beta\tilde{x}+\gamma p(\tilde{x}^{1}))]$

$(\alpha.\beta,\gamma)$

$\mathrm{s}.\mathrm{t}$ . $\alpha+\beta m+\gamma q$ $=w+m+q$. (t)

Define the Lagrangian $\mathcal{L}(\alpha,\beta,\gamma)$
. $\lambda$ ) $:=\mathrm{E}[u(\alpha+\beta\tilde{x}+\gamma p(\tilde{x}))]-\lambda(\alpha+\beta m+\gamma q-w-m-q)_{7}$

where A is the Lagrange multiplier. Because the objective function is a strictly concave

function and the constraint is linear, the $\mathrm{f}\mathrm{i}\mathrm{r}\mathrm{s}\mathrm{t}-\mathrm{o}\mathrm{r}\mathrm{d}\mathrm{e}\mathrm{r}$ -conditions meet the necessary and

sufficient conditions for the optimality. By the homogeneity of investors the demand for

the assets are equal to the endowment in equilibri un: $\alpha$ $=w$ , $\beta=1$ , $\gamma=1$ , that is, the

no-trade equilibrium occurs. The solutions of investor problem in equilibrium are given

as follows:

$\frac{\partial \mathcal{L}}{\partial\alpha}$ $=$ $\mathrm{E}[u’(z(\tilde{x}))]-$ A $=0$ (2)

$\frac{\partial \mathcal{L}}{\partial\beta}$ $=\mathrm{E}[\tilde{x}\iota\iota’(z(\tilde{x}))]-\lambda \mathrm{r}\mathrm{n}$ $=0$ (3)

$\frac{\partial \mathcal{L}}{\partial\gamma}$ $=\mathrm{E}[p(\tilde{x})u’(z(\tilde{x}))]-\lambda q=0$ (4)

where $z(x)$ is the final wealth in equilibrium defined by $z(x)$ $:=w+x+p(x)$ , and is an

increasing function of $x$ . By Eqs. (2) and (4), the equilibrium derivative price is given as

follows:

$q= \frac{\mathrm{E}[p(\tilde{x})u’(_{\sim}^{\gamma}(\tilde{x}))]}{\mathrm{E}[u(\sim\gamma(\tilde{x}))]},\cdot$ (5)

$2)\mathrm{T}\mathrm{h}\mathrm{e}$ constraint can be considered to be equality since the objective function is strictly increasing.
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Let us define the function

$\hat{f}(x : u, f):=\frac{u’(z(x))f(x)}{\mathrm{E}[u’(z(\tilde{x}))]}$ , $x\in[a, b]$ . (6)

Since $\hat{f}(x:u_{!}.f)\geq 0$ for all $x\in[a,b]$ and $\int_{a}^{b}\hat{f}(t:u, f)\mathrm{d}t=1$ , we can regard $\hat{f}(x:u_{7}f)$ as

a PDF defined on the bounded support $[a, b]$ . By taking the expectation with respect to

the PDF $\hat{f}$ , the equilibrium derivative price can be rewritten as

$q=\hat{\mathrm{E}}[p(\tilde{x})]$ , (7)

where $\hat{\mathrm{E}}$ denotes the expectation operator with respect to the PDF $\hat{f}$ . The probability
$\hat{F}(x:u, f)$ $:= \int_{a}^{x}\hat{f}(_{\backslash }t:u, f)\mathrm{d}t$ , $x\in[a, b]$ induced by the PDF $\hat{f}$ , is called the risk-neutral
probability, since asset prices become to be equal to the expected values of their payoffs

under the risk-neutral probabilities.

3 The First-order Stochastic Dominance

Let us consider two different economies, say economy 1 and 2. The payoff of risky asset in

economy $i(=1,2)$ , is represented by the random variable $\tilde{x}(\mathrm{i})$ , and these random variables
are ordered with respect to the First-order Stochastic Dominance (FSD). We examine

the effect of FSD changes in risk on equilibrium derivative prices using comparative static

analysis.
In this section, we consider the two special classes of FSD: the Monotone Likelihood

Ratio Dominance (MLRD) and Monotone Probability Ratio Dominance (MPRD).3) Since
these stochastic dominances imply the FSD, they can be view ed as the special classes of

FSD.

3.1 The Monotone Likelihood Ratio Domin ance

The definition of MLRD is given as follows:

Definition 3.1. $\tilde{x}(2)$ dominates $\tilde{x}(1)$ in the sense of MLRD if $f(y, 2)/f(y, 1)\geq f(x, 2)/$

$f(x,$1) holds for all y $\geq x$ . We denote it as $\tilde{x}(2)$ MLRD $\tilde{x}(1)$ . $\square$

According to Kijima and Ohnishi (1996), we can obtain the follow ing inequality by
the definition of MLRD:

$\frac{\hat{f}(y\cdot u,f(2))}{\hat{f}(y\cdot u,f(1))}.\cdot=\frac{\mathrm{E}[u’(z(\tilde{x}(1))]f(y,2)}{\mathrm{E}[u’(z(\tilde{x}(2))]f(y,1)}\geq\frac{\mathrm{E}[u’(z(\tilde{x}(1))]f(x,2)}{\mathrm{E}[u’(_{\sim}7(\tilde{x}(2))]f(x,1)}=\frac{\hat{f}(x.u,f(2))}{\hat{f}(x.u,f(1))}.$

. (S)

$3)\mathrm{T}\mathrm{h}\mathrm{e}$ MPRD is also called as the reversed hazard rate dominance
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holds for all $y\geq x$ . Eq. (8) means that the risk-neutral probability $F^{\mathrm{A}}(2)$ dominates $\hat{F}(1)$

in the sense of MLRD. Noting that the MLRD is stronger than the FSD, we can obtain

$\mathrm{q}(1)=\hat{\mathrm{E}}$ $[p(\tilde{x}(1))]\leq(\geq)\hat{\mathrm{E}}$ $[p(\hat{x}(2))]=q(2)$ (9)

for derivatives whose payoff functions are increasing (decreasing).
We summarize the above discussion as the following proposition:

Proposition 3.1. Let us consider two economies with the risky asset payoffs by $\tilde{x}(1)$

and $\tilde{x}(2)$ , and denote the equilibrium prices of derivatives written on them by $q(1)$ and
$\mathrm{q}(2)$ . If $\mathrm{x}\{2$ ) $\geq_{\mathrm{M}\mathrm{L}\mathrm{R}\mathrm{D}}\mathrm{x}(1)$ , then $\mathrm{q}(2)\geq(\leq)q(1)$ holds for all derivatives with increasing
(decreasing) payoff functions. $\square$

3,2 The Monotone Probability Ratio Dominance

The definition of MPRD is given as follow $\mathrm{s}$ :

Definition 3.2. $\tilde{x}(2)$ dominates $i\tilde{I}\cdot(1)$ in the sense of MPRD if $F(y, 2)/F(y, 1)\geq F(x, 2)/$

$F(x,$1) holds for all y $\geq x$ . We denote it as $x\sim(2)$ MPRD $\tilde{x}(1)$ . $\square$

Note th at the MPRD is a stochastic dominance that is weaker than the MLRD but

stronger than the FSD, that is, the MLRD implies the MPRD, and the MPRD implies

the FSD, see Eeckhoudt and Collier (1995) for the proof. By the definition of MPRD we

have $f(x, 2)/F(x, 2)\geq f(x, 1)/F(x, 1)$ for all $x\in[a, b]$ . We will show that the risk-neutral
probability $\hat{F}(2)$ dominates $\hat{F}(1)$ in the sense of MPRD, that is, we have to obtain the

following $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}1\mathrm{i}\mathrm{t}\mathrm{y}$ : for all $x\in[a,b]$ ,

$\frac{\hat{f}(x,2)}{\hat{F}(x,2)}=,\frac{u’(z(x))f(x,2)}{\int_{a}^{i\mathrm{L}}u(z(t))f(t_{7}2)\mathrm{d}t}\geq,\frac{u’(7(x))f(a\cdot,1)}{\int_{\lambda}^{x}u’(z(t))f(t,1)\mathrm{d}t}.=\frac{\hat{f}(x,1)}{\hat{F}(x,1)}$ . (10)

Whitt (1980) proved that the following statements are equivalent:

. $\tilde{x}(2)$ dominates $\tilde{x}(1)$ in the sense of MPRD;

$\bullet$ $[\mathrm{x}(2)|\mathrm{x}\{2)\leq x]$ dominates $[\mathrm{x}\{2)|\mathrm{x}\{2)\leq x]$ in the sense of FSD for all $x\in[a, b]$ .

Since $u’(z(x))$ is a decreasing function of $x$ ,

$\mathrm{E}[u’(z(\tilde{x}(2)))|\tilde{x}(2)\leq x]=\int_{a}^{x}\frac{1}{F(x,2)}u’(z(t))f(t, 2)\mathrm{d}t$

$\leq f_{a}^{x}\frac{1}{F(x,1)}u’(z(t))f(t, 1)\mathrm{d}t=\mathrm{E}[u’(z(\tilde{x}(1)))|\tilde{x}(1)\leq x]$ (11)

4) Kij ima and Ohnishi (1996) obtained this inequality in a different manner and applied it to the decision
problem. However, we give a simpler proof for the self-containedness of our paper
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holds for all $x\in[a, b]$ . It follows from Eq. (11) and $f(x, 2)/f(x, 1)\geq F(x, 1)/F(x, 1)$ that

$l^{x}u’(z(t))f(t, 2) \mathrm{d}t\leq\frac{F(x,2)}{F(x,1)}l^{x}u’(z(t)).f(t, 1)\mathrm{d}t\leq\frac{f(x,2)}{f(x,1)}\int^{x}u’(z(t))f(t, 1)\mathrm{d}t$ (12)

holds for all $x\in[a, b]$ . Eq. (12) means Eq. (10), that is, thhe risk-neutral probability $\hat{F}(2)$

dominates $\hat{F}(1)$ in the sense of MPRD. We can obtain the following proposition by an

argument similar to the previous subsection:

Proposition 3.2. Let us consider two economies with the risky asset payoffs by $x\sim(1)$ and
$\tilde{x}(2)$ , and denote the equilibrium prices of derivatives written on them by $q(1)$ and $q(2)$ .

If $\tilde{x}(2)\geq_{\mathrm{M}\mathrm{P}\mathrm{R}\mathrm{D}}\tilde{x}(1)$ , then $q(2)\geq(\leq)q(1)$ holds for aft derivatives with increasing

(decreas ing ) payoff functions. $\square$

Remark 3.1, It is noted that the concavity of $u$ explicitly used in the proof of Prop. 3.2,

whereas it does not appear in the proof of Prop. 3.1. This means that Prop. 3.2 im-

plicitly holds under more restrictive conditions than Prop. 3.1, and this requirements are

consistent with the fact that the MPRD is weaker than the MLRD. $\square$

4 The Additions of Noise Risks

Let us consider the random variables $\tilde{\epsilon}$ such that the following two conditions are satisfied

. the expectations or conditional expectations are equal to zero: $\mathrm{E}[\tilde{\epsilon}]=0$ or $\mathrm{E}[\tilde{\epsilon}|.]=$

$0$ ;

$\bullet$ they are independent from the risky asset payoffs.

We call these random variables the noise risks. We examine the effects of the additional
noise risks on equilibrium derivative prices using $\mathrm{c}\mathrm{o}$ mparative static analysis. In this

section, we consider two cases of additional noise risks: the addition of noise risk to the

endowment and that to the risky asset payoff,

4.1 The Addition of Noise Risk to the Endowment

In this subsection, the investor endow $\mathrm{s}$ the no-tradable component except for the en-
dowment previously considered. The no-tradable component is the noise risk which is

the random variable $\tilde{\epsilon}$ such that $\mathrm{E}[\tilde{\epsilon}]=0$ . The objective function of investor problem
considered in Sec. 2 can be written under the additional (no-tradable) noise risk to the
endow ment:

$\mathrm{E}[u(\alpha+\beta\tilde{x}+\gamma p(\tilde{x})+\tilde{\epsilon})]$ . (13)



7

Let us define the derived utility function by $v(x):=\mathrm{E}[u(x+\tilde{\epsilon})]$ (Kihlstrom et. al., 1981;
Nachman, 1982), and rewrite Eq. (13) as:

$\mathrm{E}[v(\alpha+\beta\tilde{x}+\gamma p(\tilde{x}))]$ . (14)

This means that we can view the investor problem under the addition of noise risk to the

endowment as the problem of investor with preference $v$ . The equilibrium derivative price

can be written by using the risk-neutral probability:

$q(v)=\mathrm{E}_{v}[p(\tilde{x})]\mathrm{A}$ , (15)

where $\hat{\mathrm{E}}_{v}$ is the expectation operator with respect to the CDF $\hat{F}(x:v, f)$ .
Kimball (1990) introduced the notion of Standard Risk-Aversion (SRA) concerning

with $\mathrm{v}\mathrm{N}-\mathrm{M}$ functions, which is the property that both their risk-aversion and prudence

are decreasing functions, and proved derived utility functions induced zero-mean risks are

more risk-averse than the original one, that is, $A(v)=-v’/v’\geq-u^{\prime/}/u’=A(u)$ holds,

where, the prudence is defined by $\mathcal{P}(u):=-u^{t}/u’$ . An equivalent condition of this

inequality is given by the condition that there exists an increasing and concave function

$g$ such that $v=g\mathrm{o}u$ (Pratt, 1964). Differentiating the above equation yields that $v’/u’$

is an increasing function, Therefore, by a discussion of similar to Sec. 3.1,

$\frac{\hat{f}(y\cdot u,f)}{\hat{f}(y.v,f)}..=\frac{\mathrm{E}[v’(_{\sim}^{\gamma}(\tilde{x}))]u’(y)}{\mathrm{E}[u’(_{\sim}^{\gamma}(\tilde{x}))]v’(y)}\geq\frac{\mathrm{E}[v’(z(\tilde{x}))]u’(x)}{\mathrm{E}[u’(z(\tilde{x}))]v’(x)}=\frac{\hat{f}(x\cdot u,f)}{\hat{f}(x\cdot v,f)}.$

.
(16)

holds for all $y\geq x$ . This means that the risk-neutral probability $F\wedge(x : u, f)$ dominates
$\hat{F}(x : v, f)$ in the sense of MLRD.

Following to Sec. 3.1, we can obtain:

$q(u)=\hat{\mathrm{E}}_{u}[p(\tilde{x}.)]\geq(\leq)\hat{\mathrm{E}}_{v}[p(\tilde{x})]=q(v)$ (17)

for the derivatives whose payoff functions are increasing (decreasing). We sum narize the

result of this subsection as the following proposition:

Proposition 4.1. Assume that investor preferences display the SRA. Additions of noise

risks to endowments decrease (increase) equilibrium derivative prices, whenever their pay-

off functions are increasing (decreasing). $\square$

4.2 The Addition of Noise Risk to tlle Risky Asset Payoff

We examine the effect of additional noise risks to the payoffs of risky assets on equilibriu $\mathrm{m}$

derivative prices in this subsection. The addition of noise risk to the payoff of risky asset

is represented by $\tilde{x}+\tilde{\epsilon}$ . The noise risk $\tilde{\epsilon}$ is the random variable such that the following

two conditions are satisfied
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$\bullet \mathrm{E}[\tilde{\epsilon}|\tilde{x}=x]=0$, $\forall x\in[a,b]$ ;

. $\tilde{\epsilon}$ is independent on $\tilde{x}$ .

Rothschild and Stiglitz $(1970, 1971)$ introduced the notion of Second-order Stochastic
Dominance (SSD) that is defined via concave functions. One of the equivalent conditions

of SSD is given by an addition of noise risk such that the conditional expectation is equal

to zero. This means that the additional noise risk considered in this subsection, is a

special case of the SSD, since the SSD does not require the condition of independence.

By the addition of noise risk to the risky asset payoff, the equilibrium price of derivative
written on it is given as follows in a discussion of similar to Sec. 2:

$q(\epsilon)$ $=$ ,$\frac{\mathrm{E}[p(\tilde{x}+\tilde{\epsilon})u’(w+(\tilde{x}+\tilde{\epsilon})+p(\tilde{x}+\tilde{\epsilon}))]}{u(w+(\tilde{x}+\tilde{\epsilon})+p(\tilde{x}+\tilde{\epsilon}))}$

$=$ $\frac{\mathrm{E}_{\overline{x}}(\mathrm{E}_{\overline{\epsilon}}[(p(\tilde{x})+\tilde{\epsilon})u’(w+(\tilde{x}+\tilde{\epsilon})+p(\tilde{x}+\tilde{\epsilon}))|\tilde{x}])}{\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\tilde{\epsilon}}[u’(w+(\tilde{x}+\tilde{\epsilon})+p(\tilde{x}+\tilde{\epsilon}))|\tilde{x}])}$. (18)

Assuming that the payoff function is differentiate, the following inequality is obtained
for a sufficiently small noise risk in the case of increasing payoff functions:

$\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\tilde{\epsilon}}[(p(\tilde{x})+p’(\tilde{x})\tilde{\epsilon})u’(w+\tilde{x}++p(\tilde{x})+\underline{(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x})}$

$q(\epsilon)$ $\simeq$

$\overline{\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\overline{\epsilon}}[u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x}}))\tilde{\epsilon})|\tilde{x}])$

$=$ $\frac{\mathrm{E}_{\overline{x}}(\mathrm{E}_{\overline{\epsilon}}[p(\tilde{x})u’(w+\tilde{x}+p(\tilde{f_{J}}^{\gamma\gamma})+(1+p’(\tilde{x}))\hat{\epsilon}|\tilde{x}])}{\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\overline{\epsilon}}[u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x})\tilde{\epsilon})|\tilde{x})])}$

.

$+ \frac{\mathrm{E}_{\acute{x}}(p’(\tilde{x})\mathrm{E}_{\overline{\epsilon}}[\tilde{\epsilon}u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x}])}{\mathrm{E}_{\overline{x}}(\mathrm{E}_{\overline{\epsilon}}[u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x}))\tilde{\epsilon}|\tilde{x}])}$

$\leq$ $\frac{\mathrm{E}_{\overline{x}}(\mathrm{E}_{\overline{\epsilon}}[p(\tilde{x})u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x}])}{\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\tilde{\epsilon}}[u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x})\tilde{\epsilon})|\tilde{x}])}$, (19)

where the inequality follows from the covariance $\mathrm{i}\mathrm{n}\mathrm{e}\mathrm{q}\mathrm{u}\mathrm{a}1\mathrm{i}\mathrm{t}\mathrm{y}$ :

$\mathrm{E}_{\overline{\epsilon}}[\tilde{\epsilon}u’(w+\tilde{x}+\mathrm{p}\{\mathrm{x})+(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x}]\leq \mathrm{E}[\tilde{\epsilon}|\tilde{x}]\mathrm{E}_{\overline{\epsilon}}[u’(w+\tilde{x}+p(\tilde{x})+(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x}]=0.(20)$

Using the derived utility function $\mathrm{E}[v(\tilde{x})]:=\mathrm{E}_{\overline{x}}(\mathrm{E}_{\overline{\epsilon}}[u(x+(1+p’(\tilde{x}))\tilde{\epsilon})|\tilde{x}])$ , we can rewrite
Eq. (19) by

$q( \epsilon)\leq\frac{\mathrm{E}[p(\tilde{x})v’(w+\tilde{x}+p(\tilde{x}))]}{\mathrm{E}[v’(w+\tilde{x}+p(\tilde{x}))]}$. (21)

Assuming that the preference displays SRA, we have the follow ing inequality by a manner
of similar to the previous subsection:

$\underline{q(\epsilon)\leq\frac{\mathrm{E}[p(\tilde{x})v^{/}(w+\tilde{x}+p(\tilde{x}))]}{\mathrm{E}[v’(w+\tilde{x}+p(\tilde{x}))]}}\leq\frac{\mathrm{E}[p(\tilde{x})u’(w+\tilde{x}+p(\tilde{x}))]}{\mathrm{E}[u’(w+\tilde{x}+p(\tilde{x}))]}=q$ . (22)

$5)\mathrm{T}\mathrm{h}\mathrm{e}$ covariance inequality (Theorem 4.1 in McEntire, 1984) claims the following statement: if both
$f$ and $g$ are increasing functions, then $\mathrm{E}[f\{\tilde{x})g(\tilde{x})]\geq \mathrm{E}[f(\tilde{x})]\mathrm{I}\mathrm{E}[g(\tilde{x})]$ holds for every random variable $\tilde{x}$ .
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The following inequality holds for the case of decreasing payoff functions in a similar
discussion except for changing sign:

$q( \epsilon)\geq\frac{\mathrm{E}[p(\tilde{x})v’(w+\tilde{x}+p(\tilde{x}))]}{\mathrm{E}[v’(w+\tilde{x}+p(\tilde{x}))]}\geq\frac{\mathrm{E}[p(\tilde{x})u’(w+\tilde{x}+p(\tilde{x}))]}{\mathrm{E}[u’(w+\tilde{x}+p(\tilde{x}))]}=q$ , (23)

where the derived utility function is defined by $\mathrm{E}[v(\tilde{x})]=\mathrm{E}_{\tilde{x}}(\mathrm{E}_{\tilde{e}}[u(x+(1-p’(x))\tilde{\epsilon})|\tilde{x}]\rangle$.
Assuming the differentiability of payoff functions in this subsection, we have $1-p’(x)\geq$

$0$ , for all $x\in[a, b]$ by the assumption of Sec. 2. We summarize the result as the following
proposition:

Proposition 4.2. Assume that payoff functions of derivatives are differentiate. We also

assume that noise risks are sufficiently small and investor preferences display the SRA,

Additions of noise risks to risky asset payoffs decrease (increase) equilibrium derivative

prices, whenever their payoff functions are increasing (decreasing). $[$

5 Conclusion

Using comparative static analysis, we have shown that equilibrium derivative prices have

some monotone property for shifts of risky asset payoffs with respect to two sub-classes

of the FSD (Sec. 3), and for additions of noise risks under some restrictions on investor
preferences (Sec. 4). These results are generalizations of the previous studies, such as

Gollier and Schlesinger (2002) , and so forth.

We give two comments on future research. First, the analysis of Sec. 4.2. should

weaken the restrictions on noise risks and payoff functions. Although piecewise linear

functions are not differentiable, they are arbitrarily approximated by smooth functions.

Therefore, the result of Sec. 4.2 holds for derivatives with piecewise linear function, which

constitute an important class of derivatives because they include most types of derivatives

traded in actual financial asset markets, e.g. vanilla types of call and put options. Second,

we have to analyze the economy where the raison d’etre of derivatives is $\mathrm{j}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{f}\mathrm{i}\mathrm{e}\mathrm{d}.6$
) Despite

a standard setting, risks cannot be transferred am ong investors by the derivatives, since

the investors do not trade derivatives in equilibrium. This means that the roles which

derivatives play, are not clear in our economy.
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