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Extensions of the BMV-conjecture
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Abstract

The Bessis-Moussa-Villani conjecture asserts that for any n X n
matrices A and B such that A is Hermitian and B is positive semi-
definite, the function t — Trexp(A — tB) is the Laplace transform of
a positive measure. We say that a function f, defined on the positive
half-line, has the BMV-property if for arbitrary n x n matrices A
and B such that A is positive definite and B is positive semi-definite,
the function t — Tr f(A + tB) is the Laplace transform of a positive
measure. The BMV-conjecture is thus equivalent to the assertion that
the function t — exp(—t) has the BMV-property.

We prove that any non-negative and operator monotone decreasing
function defined on the positive half-line has the BMV-property.
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1 Introduction

Studying perturbations of exactly solvable Hamiltonian systems in statistical
mechanics Bessis, Moussa and Villani [2] noted that the Padé approximant
to the partition function Z(8) = Trexp(—f(Ho + AH1)) may be efficiently
calculated, if the function -

X\ — Trexp(—8(Ho + AH1))

is the Laplace transform of a positive measure. The authors then noted that
this is indeed true for a system of spinless particles with local interactions
bounded from below. The statement also holds if Hy and H; are commuting
operators, or if they are just 2 X 2 matrices. These observations led to the
formulation of the following conjecture:



Conjecture (BMV). Let A and B be nxn matrices for some natural number
n, and suppose that A is self-adjoint and B is positive semi-definite. Then
there is a positive measure p with support in the closed positive half-azis such
that

Trexp(A — tB) = / e du(s)
0
for every t > 0.

The Bessis-Moussa-Villani (BMV) conjecture may be reformulated as an
infinite series of inequalities.

Theorem (Bernstein). Let f be a real C®-function defined on the positive
half-azis. If f is completely monotone, that is

(1" ™M@ >0  t1>0,n=0,12,...,

then there exists a positive measure j1 on the positive half-azis such that

o= [ " e duls)

for every t > 0.

The BMV-conjecture is thus equivalent to saying that the function
f(t) =Trexp(A-tB) t>0

is completely monotone. A proof of Bernstein’s theorem can be found in [4].

Assuming the BMV-conjecture one may derive a similar statement for
free semicircularly distributed elements in a type /]; von Neumann algebra
with a faithful trace. This consequence of the conjecture has been proved by
Fannes and Petz [6]. A hypergeometric approach by Drmota, Schachermayer
and Teichmann [5] gives a proof of the BMV-conjecture for some types of
3 x 3 matrices. This paper is a review article based on {10}.

1.1 Equivalent formulations
The BMV-conjecture can be stated in several equivalent forms.

Theorem 1.1. The following conditions are equivalent:

(i). For arbitrary n X n matrices A and B such that A is self-adjoint and
B is positive semi-definite the function f(t) = Trexp(A —tB), defined
on the positive half-azis, is the Laplace transform of a positive measure
supported in [0, 00).



(i). For arbitrary n x n matrices A and B such that A is self-adjoint and
B is positive semi-definite the function g(t) = Trexp(A +itB), defined
on the positive half-azis, is of positive type.

(iii). For arbitrary positive definite n X n matrices A and B the polynomial
P(t) = Tr(A + tB)? has non-negative coefficients for any p=1,2,....

(iv). For arbitrary positive definite n x n matrices A and B the function
@(t) = Trexp(A +tB) is m-positive on some open interval of the form
(—o,a).

The first statement is the BMV-conjecture, and it readily implies the
second statement by analytic continuation. The sufficiency of the second
statement is essentially Bochner’s theorem. The implication (é4) = (i) is
obtained by applying Bernstein’s theorem and approximation of the expo-
nential function by its Taylor expansion. The implication (i) = (i) was
proved by Lieb and Seiringer [16]. A function ¢ : (~a, @) — R is said to be
m-positive, if for arbitrary self-adjoint k x k matrices X with non-negative
entries and spectra contained in (—a, @) the matrix p(X) has non-negative
entries. The implication (#4i) = (iv) follows by approximation, while the
implication (iv) = (i) follows by Bernstein’s theorem and [8, Theorem 3.3]
which states that an m-positive function is real analytic with non-negative
derivatives in zero.

In a recent paper [13| Hillar studied the coefficients of the above polyno-
mial P(t) = Tr(A + tB)?. The coefficient of t* in P(t) is the trace of the so
called kth Hurwitz product Spx(A, B) of A and B, which is the sum of all
words of lenght p in A and B in which B appears k times. This polynomial
has real coefficients, and in [15] it is proved that each constituent word in
S,x(A, B) has positive trace for p < 6 and all n. The first case in which
the conjecture is in doubt is thus for n = 3 and p = 6. Even in this case
all coefficients except Tr Sg.3(A, B) were known to be positive. The question
is very subtle since some of the words in the Hurwitz product may have
negative trace. It was shown in [15] that the word ABABBA may have
negative trace for some positive definite 3 x 3 matrices A and B. Finally it
was proved in [14], using heavy computation, that the polynomial P(t) has
positive coefficients! also in the case n = 3 and p = 6. :

1This means that the non-zero coefficients of the polynomial are positive.



2  Preliminaries and main result

Let f be a real function of one variable defined on a real interval I. We
consider for each natural number n the associated matrix function z — f(z)
defined on the set of self-adjoint matrices of order n with spectra in . The
matrix function is defined by setting

p p
fl)y=3"fO)P  where z=1 AP
i=1 i=1

is the spectral resolution of z. The matrix function z — f(z) is Fréchet
differentiable [7] if I is open and f is continuously differentiable {3].

2.1 The BMV-property

Definition 2.1. A function f: R, — R is said to have the BMV-property,
if to eachn =1,2,... and each pair of n x n matrices A and B, such that A
is positive definite and B is posifive semi-definite, there is a positive measure
© with support in [0, 00) such that

Tr f(A+1tB) = foo e~ du(s)
0

for every t > 0.

The BMV-conjecture is thus equivalent to the statement that the function
t — exp(—t) has the BMV-property.

Main Theorem. Every non-negative operator monotone decreasing function
defined on the open positive half-line has the BMV-property.

3 Differential analysis

An simple proof of the following result can be found in [11, Proposition 1.3].

Proposition 3.1. The Fréchet differential of the exponential operator func-
tion £ — exp(z) is given by

dexp(z)h = /0 exp(sz)hexp((l — s)z)ds = /0 A(s) exp(z) ds

where A(s) = exp{sz)hexp(—sz) for s € R.



This is only a small part of the Dyson formula which contains formalisme
developed earlier by Tomonaga, Schwinger and Feynman. The subject was
given a rigorous mathematical treatment by Araki in terms of expansionals
in Banach algebras. In particular [1, Theorem 3], the expansional

E.(h; ) =\i /0 1 /D /0 Alsn) Alsnor) -+ Als1) dsn dscs -~ don

n=0

is absolutely convergent in the norm topology with limit
E.(h;z) = exp(z + h) exp(—z).

We therefore obtain the pth Fréchet differential of the exponential operator
function by the expression

dP exp(z)hP
1 s1 Sp—1

~ f / / Als,)A(8y1) - Alsy) exp(s) dsy dsp—1 -+ dsx.
] Q 8]

3.1 Divided differences

The following representation of divided differences is due to Hermite [12].

Proposition 3.2. Divided differences can be written in the following form
1
[2:0, (E}]f = / _f’ ((1 - fl).'Eo -+ t1$1) dt
0

1 11
[.’.Eg, Zy, Iz]f = / / f” ((1 - tl)fﬂg -+ (tl — tz)ﬂ?l -+ t2$2) dtz dtl
0 0

’ 1 t1 y Foo |
To, L1, Inlf =] / / f(n)((l—t1)$0+(t1"t2)$1+“'
o Jo o
£ (bt — to) Ty + z,,a:,,,) di, - dty dty

where f is an n-times continuously differential function defined on an open
interval I, and 2o, 21,...,%Zn are (not necessarily distinct) points in I.

3.2 Main technical tools

Taking the trace of the pth Fréchet differential of the exponential operator
function [10, Theorem 3.4] one derive:



Theorem 3.3. Let z and h be operators on a Hilbert space of finite dimension
n written on the form

SC"Z)\% and h= Zhu%‘

{,7==1
where {%}u | is a system of matriz units, and A1, ..., A and hij fori,j =
1,...,n are complez numbers. Then the pth demmtwe

—éﬁ- Trexp(z + th)‘l

= P' Z Z thmp.. o 12t1 1.11.,-,. P‘i:{ ’ )\iza Y )\ip: Aip]expa

i1=1 ip=1

where [Niy, Aig, Mgy Miplexp 0T€ divided differences of order' p+ 1 of the
exponential function.

Making use of the linearity of the function f — (2o, 21,...,2n)s ODE
obtains {10, Lemma 3.5 and Corollary 3.6] the following:

Corollary 3.4. Let f : I — R be a C*®-function defined on an open and
bounded interval 1, and let ¢ and h be self-adjoint operators on a Hilbert
space of finite dimension n written on the form

T = Z Mg and h= Z hijes;

1,7=1

where {ei;}7;1 18 o system of matriz units, and Ay, ..., A, are the eigenvalues
of x counted with multiplicity. If the spectrum of z is in I, then the trace
function t — Tr f(z+th) is infinitely differentiable in a neighborhood of zero
and the pth derivative

dr

Ty fz + th .

o B fletth)|

= P’ Z Z hunhuzs ) zp-u,,thil [)‘ils Ai2> T '\i,,» Ai1]f7
iy=1 ip=1

where [Xi, Aig. -+, Ay, Ay )y are divided differences of order p+1 of the func-
tion f.



4 Proof of the main theorem
Proposition 4.1. Consider for a constant ¢ > 0 the function
1
1) = ~——— t .
9(t) c+t >0

For arbitrary n x n matrices ¢ and h such that z is positive definite and h
is positive semi-definite we have

(—1)’95; Teg(z +th)| >0

A=

forp=1,2,....
Proof. Note that the divided differences of g are of the form
) Dasdareesshle = (C1P2000e00) - 909)  P=1.2,.0

In the statement of Corollary 3.4 we set & = g(\)a; and by = g( X)) a;
where a; is the ith row in a matrix a such that h = aa*, and consequently
hi; = (a; | a;). By calculation we then obtain:

(-1 d?

T Trg(z+ th)‘

p! P =0

= Z B Z(§i1 | biz)(biz | b‘»a) T (bip—l I bip)(bi? ' Eil)’

f1=1 ip=l
and it is not difficult to prove that such a sum is non-negative. QED

Proof of the main theorem. Consider again the function

1
—— t
g(t) ; 3 >0

for ¢ > 0 and arbitrary n x n matrices z and h such that 2 is positive definite
and h is positive semi-definite. We first note that

Q{Tfr (m+th)‘ mﬁi'[‘r(+th+sh)
ar =g TIETR =0

t=lg =0
for p=1,2,... and to > 0. The function ¢t — Tr g(z + th) is therefore com-
pletely monotone. Letnow f: Ry — R be a non-negative operator monotone
decreasing function. One may show {10] that f allows the representation

s=p+ [ g

for a positive measure v. The function ¢ — Tr f(z + th) is hence completely
monotone and thus by Bernstein’s theorem the Laplace transform of a posi-
tive measure with support in [0, c0). QED



4.1 Further analysis

One may try to use the Hermite expression in Proposition 3.2 to obtain a
proof of the BMV-conjecture. Applying Theorem 3.3 and caleulating the
third derivative of the trace function we obtain

n

—;!— 5—; Trexp(z — th)lt:o = z (ap | a:)(a; | a;){a; | ap) P AidgAplexp

pii.j=1

5[£Jffx%mmnm@mmmm—m—mw

pig=1

(b — )N + (ta — ta) ;) dEs dia diy

where A = aa* and q; is the ith row in a. Assuming the BMV-conjecture
this integral should be non-negative, and this would obviously be the case if
the integrand is a non-negative function. However, there are examples 10,
Example 4.2] where the integrand takes negative values.

Another way forward would be to examine the value of loops of the form

(a1 | 02)(az | as) - (ap-1 | ap}(ap | 01)

since they, apart from an alternating sign, are the only possible negative
factors in the expression of the derivatives of the trace functions. By applying
a variational principle the lower bound

~co (T < an | aa)an | ) (ot | o) | @2

was established in [9]. The lower bound converges very slowly to —1 as p
tends to infinity, and it is attained essentially only when all the vectors form
a "fan” in a two-dimensional subspace.

Remark 4.2. If we only consider one-dimensional perturbations, that is if
h = cP for a constant ¢ > 0 and a one-dimensional projection P, then h is
of the form h = (£:£;)ij=1,..n for some vector £ = (&1,...,&n) and each loop

Pigighigis -+ iy aiphigia = (1€ 12+ 166, I
is manifestly real and non-negative. This implies that the irace function
t — Trexp(~(z + th)),

for any self-adjoint n X n matriz z, is the Laplace transform of a positive
measure with support in [0, co).
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