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We discuss some problems studied in diverse contexts but with a common
theme: the use of Fourier analysis to evaluate norms of some special

matrices.

Let M,, be the space of n x n matrices. For A € M,, let
|All = sup {||Az|| : € C", ||z|| = 1},

be the usual operator norm of A. Let Ao X be the entrywise product

of two matrices A and X and let

NAlls = sup {[]A o X} - 1 X[| = 1}.
This is the norm of the linear map on M, defined as X ~ Ao X. Since
AoX isa principal submatrix of AQ X, we have |[AoX| < |J[A®X] =

| A]l || X, and hence
1A]ls < [IA].
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Let Ai,..., A, be distinct real numbers and let
Let H be the skew-symmetric matrix with entries h,; defined as

hrs = YO =) s (1)
0 r = 8.

Motivated by problems arising in number theory, Montgomery and Vaughan

[5] proved the following.

Theorem 1. The norm of the matriz H is bounded as

[H|| < afs, (2)

where

a = iﬂf{|l<PHL1 9 € Li(R), >0, and ¢(§) = % for [£] > 1} (3)

Here ¢ stands for the Fourier transform of @. Further,
cp = T. (4)

A very special case of this theorem is “Hilbert’s inequality”. Let
A; = j, j=1,2,.... Then the (infinite) matrix H defined by (1) is
called the Hilbert matrix. Hilbert showed that H defines a bounded
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operator on the space ¢, and ||H|| < 27. This was improved upon
by Schur who showed that ||H|| = n. Different proofs of this fact were
discovered by others, one using Fourier series by Toeplitz. (Matrices
structured as H are now called Toeplitz matrices.)

In particular, this shows that the inequality (2) with ¢; = 7 is sharp
(in the sense that if it is to hold for all n, then no constant smaller than
7 would work).

Now suppose we have two real n-tuples A1,..., A, and i, ..., Hn

where for all 1 and j we have A; # p;. Let
6= minw ])\1 - /,LJ[ .

Let M be the matrix with entries m,, defined as

1

B Ar_ﬂ/s. (5)

m'r‘s

Motivated by problems arising in perturbation theory, Bhatia, Davis and

MclIntosh [1] proved the following.

Theorem 2. The norm ||M|ls is bounded as
IMlls < efd, (6)
where

o= inf{nwm 9 € Li(R),p(6) = £ for I 2 1} S



The constant ¢, had been evaluated earlier by Sz-Nagy [6] and we

have

Co = 5 (8)

Note that the infimum in (7) is over a class of functions larger than the
one in (3).

It has been shown by McEachin [4] that the inequality (6) is sharp
with ¢y = 7/2, and the extremal value is attained when the points {Ai}
and {yu;} are regularly spaced.

The resemblance between the two problems is striking and it is a
natural curiosity to ask whether good expressions for the norms |||
and ||Hl||s may be found to supplement what is known.

In [1] the authors considered also the case where {X;} and {u;} are

n -tuples of complex numbers with the same restriction as before, viz.,
§ = mini’j ‘)\,L - :U’_')'t > (.
They proved the following.

Theorem 3. Let M be the matriz (with complex entries) defined as in

(5). Then
IMls < es/d, 9)

41
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where

for §12+§§2 1}.

s = inf{nasim b€ (B, 060, 6) =
(10)

+ i&o

An attempt to calculate the constant ¢3 was made by Bhatia, Davis
and Koosis [2]. These authors first obtained another characterisation of
cs. Let C be the class of all functions ¢ on R that satisfy the following

conditions

(i) g is even,

(if) g(z) =0 for |z| > 1,
() [5g@)dr=1,

(iv) g€ Li(R).

The following theorem was proved in [2]

Th 4. 0
eorem ¢3 = inf {/ 9l g€ c} . (11)
4]

Using this the following estimate was derived in [2]

7w [Tsint
ey < —/ P gt < 2.90001. (12)
2/, ¢



The constant ¢y occurs in another context called Bohr’s inequality.
This says that if a function f and its derivative f’ satisfy the following

conditions
(i) feliR), f € Lo(R),

(i) f(€)=0 for | <&

Then
C

1l < 1 lloos (13)

and the inequality is sharp.
Attempts have been made to extend this result to functions of several
variables. Hormander and Bernhardsson [3] have shown that if f is a

function on R? satisfying conditions akin to (i) and (ii) above, then

1fllee < SVl (14)

With this motivation they tried to evaluate cz. Like the authors of [2],

they too first prove (11), and then use it more effectively to show that
2.903887282 < c3 < 2.90388728275228. (15)

It would surely be of interest to find the exact value of c3, especially
since the formulas (4) and (8) are so attractive.
Some other problems remain open. The estimate (6) has been shown

to be sharp by McEachin [4]. The question about (9) does not secem to
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have been addressed. The matrix (5) when {\;} and {1} -are points
on the unit circle was considered in [1]. An extremal problem involving
Fourier series. instead of Fourier transforms as in (7) and (10) arises in

this case. This too has not been solved.
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