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An extension of Kantorovich inequality
to n-operators

fRIIRFE 1L SCHA (Takeaki Yamazaki)

Kanagawa University

ABSTRACT

In this report, we shall extend Kantorovich inequality. This is an estimate by
using the geometric mean of n-operators which have been defined by Ando-Li-
Mathias in [1]. As a related result, we obtain a reverse inequality of arithmetic-
geometric means one of n-operators via Kantorovich constant. Moreover, we give
a formula of geometric mean of n-touples of 2-by-2 matrices with a trace condition,
and we shall obtain more precise results of extended Kantorovich inequality in
case 2-by-2 matrices case.

This is based on the following preprint:
[Y] T. Yamazaki, An extension of Kantorovich inequality to n-operators via the
geometric mean by Ando-Li-Mathias, preprint.

1. INTRODUCTION

In what follows a capital letter means a bounded linear operator on a complex Hilbert
space H. An operator T is said to be positive if (T'z,z) > 0 holds for all z € H. For an
operator T such that 0 < mI < T < MI, the following inequality is called “Kantorovich
inequality” [6, 7]:

1 (m+ M)?
(m

, m
erties of convex functions, and many authors have given many results and comments
(3, 5, 9, 10, 12]. It is well known that (1.1) is equivalent to the following form by
1

T2z .
g o (1.1):

for |jzi| = 1.

2
We call the constant ) Kantorovich constant. {1.1) is closely related to prop-

replacing z with

z||
(m+ M)?
dmM

For positive invertible operators A and B, the geometric mean AfB of A and B is
defined as follows [8]:

(1.1) (T?z,z) < {Tz,z)* for ||z| = 1.

AB = A(A7T BAT)3A%.
AfB is an extension of the geometric mean Vab of positive numbers ¢ and b. It is
well known that Kantorovich inequality is equivalent to the following inequality [2]: Let
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A and B be positive invertible operators whose spectrums are contained in [m, M| with

O0<m< M. Then
2
(12) (Az, o){(Bz,z) < (i’%ﬁ—)

In this report, we call it “Kantorovich inequality of 2-operators.”

(AtBz,z)? for z € H.

Very recently, as an extension of AfB, the geometric mean G(A;, Ag, -+, An) of n-
touples of positive invertible operators A; have been defined by T. Ando, C.-K. Li and
R. Mathias [1] as follows:

Definition 1 {Geometric mean of n-operators [1]). Let A; be positive invertible operators
fori=1,2,--- ,n. Then the geometric mean G(A;, Ay, -+, Ap) is defined by induction
as follows:

(i) G(Ay, A3) = A As.

(ii) Assume that the geometric mean of any n— 1-touple of operators is defined. Let
G((Aj)jp) = G(As, -+ Air, Aigrs o, An),

and let sequences {A7}2, be A9 = A; and A" = G((A;T“l))#i). If there
(r)

exists lim A;”, and it does not depend on i, then we define the geometric mean

T—00
of n-operators as

lim A" = G(A1, Ay, -+, An).

700

In [1], it has been shown that for any positive invertible operators A; fori = 1,2, -+ ,n,

there exists lim A" and
00

lim A7 = G(A1, 4, , An),

T30

uniformly. In fact, they have shown it for n-matrices in [1]. But by their proof, we can
understand that the result can be extended to Hilbert space operators.

The geometric mean defined above has the following properties in [1]:

(P1) Comnsistency with scalars. If A; commute with each other, then
1

G(Ala A?a T sAn) = (AIAQ o An)z-
(P2) Joint homogeneity. For positive numbers s;,

G(51A17 S9Ag, - 7SnAn) = (5132 T Sn)%G(Al,Az, tee ,An)-

(P3) Permutation invariance. For any permutation 7(A;, As, -+ , A,) of (A1, Ag, -+ , A,),

G(W(Alv A21 e 7A'n)) = G(-AlaAQ; e 7An)

(P4) Monotonicity. If A; > B; > 0, then G(A;, As, -+, An) > G(By1,Bs,- -+, By,).
(P5) Continuity above. For each i, if {4;,}%2, are monotonic decreasing sequences
converging to A; as k — oo, respectively, then

]}gilo G(Aig, Az, -+, Ang) = G(A1, As, -+, A}

(P6) Congruence invariance. For an invertible operator 9,
G(S*A,8,5%A,S, -+ ,5"A,S) = S*G(A1, As, -+ , Ay)S.



61

(P7) Joint concavity. The map (Ay, As,- -+, An) > G(A1, Ay, -+, A,) is jointly con-
cave, l.e., for 0 < A < 1,

G(A\AL +{(1—=XN)B1, M+ (1 = A)Ba, - , M, + (1 = N)B,)
. > AG(Ay, Az, o+, Ap) + (1= A)G(By, By, -+, By).
(P8) Self-duality. G(A;, Ay, -+, An) = G(ATH, ATY, -+ AT
(P9) Determinant identity. For positive invertible matrices A;,
det(Ar, Ag, -+, An) = (det A; - det Ay - - det A,)7.
Moreover, G(A;, Ay, -+ , A,) satisfies the arithmetic-geometric means inequality:

G(A1,A27~-. ,An)g A1+A2++An

I

For positive numbers a;, as a reverse inequality of arithmetic-geometric means one, it
is known the following inequality [11]: For positive numbers a; with 0 <m < a; < M,

(h — 1)k

holds, where h = % >1and S, = . We call S, the Specht’é ratio, and there

elogh
are a lot of properties of Kantorovich constant and Specht’s ratio in [3, 4, 5]. We remark
that Specht’s ratio in (1.3) is the optimal constant.

In this report, we shall give an extension of Kantorovich inequality of 2-operators to
one of n-operators via geometric mean by Ando-Li-Mathias. As a related result of it,
we shall discuss on an extension of (1.3). These results are estimates via Kantorovich
constant. Next, we shall show more precise estimations of them under some cases.

2. MAIN RESULTS

Theorem 2.1. Let A; be positive operators fori=1,2,--+ ,n satisfying 0 <ml < 4; <
MI withm < M. Then

A1+A2+---+An<{(m+M)2

n—1

2
} GlAr, A+, An).

n dmM

Theorem 2.2. Let A; be positive operators fori=1,2,-- ,n satisfying 0 <ml < A £
MI withO<m < M. Then
(n-1)

(Alsc,x)<A2:n,a;)---(An:c,:v)g{M)—Z} L (G4 Agy o, A)e, D)

dmM
holds for all z € H.

Remark. In [1], the following inequality has been already shown: For positive invertible
operators A;,

(G(A1, Az, -+, An)z, )" < (A1, 2)(Asz, 7) -+ - (AnZ, T).-

Hence Theorem 2.2 is a reverse inequality of the above one.
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For positive invertible operators A and B, as a kind of distance between A-and B, the
following R(A, B) is defined in [1]:

R(A, B) = max{r(47'B),r(B7'A)}, .
where 7(T’) means the spectral radius of T. Especially, the following inequality holds:

(2.1) R(AD, ALY = R(G((A)j5), C((A)sx)) € R(Ai, Ap)7™3

To prove the above theorems, we shall show the following lemma:

Lemma 2.3. Let A; be positive invertible operators fori = 1,2, -+ ,n, and h = max R(A;, A;).
i3
Then

Ayt Ay 4+ A, (1-&h>"‘1
< G(Ay, Ay, -+, Ay).
n _._.2\/-}-1- (12 )

Proof. Here we shall introduce the proof of the cases n = 2 and 3. The complete proof
is obtained in [Y]. X .
Incasen=2. Let X = AT BA7, and

X:/)\dEA

be the spectral decomposition of X. Since h = R(A, B), then we have % < A<hand

1+ X /1+A 14+ 1+h 1+h 1
— dE, = | ——2VAdE, < | —L2VMdE, = —=X=.
2 2 A \/— )\ \/— Ey= 2\/E

Hence we have
1+ A% BA% _Ll+h
2 | - 2\/ /h

(AT BAT)E,

Multiplying A7 to both sides of this inequality we have

A+B _1+h 1+h
< AfB =
N LN
Next we shall prove the case n = 3. For a nonnegative integer r, we define A,, B,, C.,
h. and K, as follows:
AQ =A and A = G(Brwl, O,-_l),
BO B and B = G(Cr 1,A,~ 1)
CO = (C and Cr - G(Ar—la Br—l):
ho = h and h, = max{R(4,, B,), R(B,,C,), R(C,, A.)},
1+ h,
2vh,

264, B).

(2.2)

K, =




Then by the case n = 2, we have

A+B+C’:1 Ao+Bo+Bo+Oo+Co+A0
3 3\ 2 3 3

1
< g(KOG(AO, Bg) + KoG{Bq, Cy) + KoG(Co, Ao))

A+ B+ C;

3
As+ By + Oy

3

= K,

< KyKy

Ar—H_ ‘{" BT+1 -+ CT.{.]_

< KoKy-- K,

3
Since
lim A, =G(A,B,C),
we have
lim Arpr + B;)H +Cri1 _ G(A, B, C).

So we have only to prove the following inequality:

700

By (2.1), we have

Since

(5 ?f%(é )< {3 (o))

holds for 1 < z < y* and « € (0,1}, we have

1+h 1 1 @y
K, = _ 1 ) (LR — K7
2 z( R ) { (m‘ )} 0

Therefore we obtain

I+ g +-+(3)T

KoK K, <Ky '* — K} as T — oo.

Hence we have

A+B+C _ 1+h\?
G(A, B, ).
3 (mf) ( )

This completes the proof.

Proof of Theorem 2.1. By putting h = 2 in Lemma 2.3. we obtain Theorem 2.1.

63
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Proof of Theorem 2.2. By using Theorem 2.1 and arithmetic-geometric means inequality,

we have
- L1
< = i,
gmx z)w < n;mz z
= <i ZAQ-:E,:E>
niz
2y %5
< {%} (GAr, dg, -+, An) ).
This completes the proof. U

3. MORE PRECISE ESTIMATIONS

In this section, we shall give more precise estimations than the results shown in section
2 under some cases.

Theorem 3.1. Let A, B, C be positive operators whose spectrums are contained in [m, M)
with 0 <m < M. Then

A+B+C _ AW -1

<
3 - 2hloghG(A’B’C)’
where h = % > 1.
Proof. As in the proof of Lemma 2.3, we have
A+B+C < KgKl---K,ArH + B,y —%—C,,H’
3 3
where ol
K, - 2\;2_ and h, = max{R(A,, B,), R(B,,C,), R(Cy, A)}.
By (2.1}, 1< h, < h < h7, and we obtain
K, = —(—*-‘“hr> e )Zh?-ﬁ_l.
2hzFT

Hence we have
h+1 hi+1 Az +1
KWK, K. < - — -
2hz 2hi QhFFT

_h+1 hi+l hF=T — 1
ComE ok e (hE 1)
B h2 -1
T EE (b — 1)

h2 —

Shlogh as n — 0o,

where the limit is given by lim n(h% — 1) =logh.
n—co
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This completes the proof. 0

Theorem 3.2. Let A, B, C be positive invertible operators whose spectrums are contained
in [m, M| with 0 <m < M. Then

h?—1
2hlogh

(Az,z)(Bz,z){Cz,z) < ( ) (G(A, B,C)z, 7,

where h = —fg— > 1.
Theorem 3.2 is easily obtained by the same way to the proof of Theorem 2.2.
2 _

2hlogh
2.1. However, this is not less than the Specht’s ratio in (1.3) as follows: First of all, we

shall show
(3.1)  f(h)=(h—1log(h+1)—(h—1)log2 —hlogh+(h—1)>0 forh>1.

Remark. In Theorem 3.1, we obtain a more precise constant than Theorem

By easy calculation, we have
' 2
!
= — - — —log?2
f'(h) =log(h+1) —logh T +1—log
h—1

"h) = o > > 1.
(k) RS >0 forh>
Since f/(1) = 0 and f“(h) > 0 holds for h > 1, f'(k) > 0 for h > 1. Then by flly=0
and f'(h) > 0 for h > 1, we have (3.1).

Next, (3.1) is equivalent to

h h+1
1< z -
h—llOgh _1og< 5 ),
Le.,
1

h*==T _h+1
< — > 1.
— <57, for h>1

Hence we obtain
h—1 hh—‘-—l<h-1 h+1  R2-1

Sn = Togh e = Togh 2h  2hlogh

The next theorem is a formula of geometric mean of n-touples of 2-by-2 matrices.

Theorem 3.3. Let A; be positive 2-by-2 matrices satisfying the following conditions: (i)
det A; = 1 (ii) tr{(A;'A;) = ¢ (constant) for 4,7 =1,2,---,n. Then
A+ A+ +A
G(A1, Ay, , Ay) = L2 L
Videt(Ar + Az + -+ An)
In [1], the formula of geometric mean of 2-touples of 2-by-2 matrices has been shown,
and Theorem 3.3 is an extension of it. To prove the result, we prepare the following
lemma:
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Lemma 3.4. Let A; be positive 2-by-2 matrices with det A; =1 fori=1,2,--- ,n. Then
det(A; +As+---+A) =n+ Z tr(A;14;).

1<i<jsn
ESPBC?:U/ZZ:U) 7/f tT(A:lAJ) = (constant) fO’f 7,,_7 — 1’2’ e, then
-1
(3.2) det(A; + Ay + -+ A) =n+ n(n2 ),

Proof. Here, we shall introduce the proof in cases n = 2 and 3. Let

A= (gi f;)  B= (g; 32) and O = (‘;3 (’2)
In case n = 2. Since det A = det B = 1, we have
det(A + B) = (a1 + a2)(dy + dy) — (b1 + bs)?
= (a1dy — b2) + (agdz — b3) + (ardy + aady — 2b1by)
=2+ tr{A7'B).
Next we shall show the case n = 3. By the case n = 2 and det C' = 1, we have
det(A+ B+ C)
={a; +ay +a3)(ds +dy +ds) — (b1 + ba + bs)?
= (a1 + ag)(d; +da) — (by + bo)?
+ da(ay + ag) + as(dy + dy) — 2b3(by + Ba) + asds — b3
=2+ tr(A7'B) + (a1ds + azdy — 2bi1bs) + (asds + asdy — 2bybs) + 1
=3+ tr(A7'B) + tr(A7C) + tx(B7'C).
It completes the proof. O

Proof of Theorem 3.3. Here we will prove it the case n = 3. The case n = 2 have been
proven in [1}. |

Let A,, B, and C, be the geometric means which have been introduced in (2.2).
Firstly, we will prove that they can be written as the following form:

Ar = arA + ﬁrB + ,Brc
(33) B, = 0,A+a.B+5.C
OT = ﬁ?‘A + ﬂ-rB + OATO

In case r = 1, by the case n = 2 and (3.2) in Lemma 3.4, we have

B+C B+C
A :GB,C = = R
1 =G(5,C) Jaet(B+C) V2+c
B, = (0, 4) = _CEA O+ A
: ’ Vaet(C+4) v2+¢
Ci = G(A, B) = A+ B =A+B

Vdet(A+B) V2+c¢



Hence we have only to set a; and 3; as follows:

a; =0and By = —\/—2_1—+_~_E
Assume that A,_;, B,_;, C-_; can be written as the following form:
Ay =, 1A+ BB+ 510,
(3.4) B,y =6 1A+ 0,1 B+ 6, 1C,
Cro1 = r1A+ BB+, ,C.
By the case n = 2, we have
Br—l + C -1

Vdet(B,—1 + Cr_y)’
Crﬂl + ArAl

B, = ,
\/det(Cr_y + Ar_1)
A1+ B,

Cr = .
\/aet(A'r—l + Br—l)

We will show that det(A,_; + B,_1) = det(B,—1 + Cr 1) = det(C,_1 + A,—1). Note that
by (P9), det A,_, = det B,_; = det C,_; = 1 and (3.4), we have

(A} = AT+ BB+ i C7H,
(3.6) (B, 1}t =B AT + e BT BraC7Y,
{Coa}y P =B AT + B 1B+ e G
Since tr(A™'B) = tr(B7!C) = tr(C7*A) = c, we have
tr({A,_1} ' Byoq) = tr ({ar—lA—l + BB+ ﬁr—lc—l} {Grm1A+ a1 B+ ﬁ'rflc})
= ca?_, + (4+26)ar 1S + (14 )B4,
and also we can set
tr({A,_1} " Bry) = tr({Ar1} T Crn) = tr({B,_1}'Cro1) = o1
By (3.2) in Lemma 3.4, we have '
det(A,-1 + Br—1) = det(Br_y + Cr 1) = det(Cro1 + A1) =2+c1
Hence by (3.5), we obtain
A, = G(Br_1,Cr 1)
_ B._1+Cry
 /det(B_1 + Cry)
2B, 4A+ (atpy + Br1) B+ (0r 1 + IB'r'—l)C.

T:

(3.5)

' Vo R
Here we set
o = 2ﬁr—1 and ;8 — 1 + 67'—1 )
r + Cr—1 ’ \/ﬂ_c:—_l
Then

A, = oy A+ BB+ B,C.

87
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Similarly, we have (3.3).
Next, it has been shown that
lim A, = lim B, = lim C, = G(4, B,C).
00 P00

r—co

Hence by (3.3), we have

lim o, = lim 8, =a >0,
TR T=>00

and
G(A, B,C) = a(A+ B +C).
Here by (P9), det(G(A, B,C)) = 1, and we have

G(A.B,C) - A+B+C
T Vdet(A+B+C)

O

By Theorem 3.3, we have an extension of Kantorovich inequality of n-touple of 2-by-2
matrices which is a more precise estimation than Theorem 2.1.

Theorem 3.5. Let A; be positive 2-by-2 matrices fori = 1,2,--- ,n satisfyingdet A; = 1,
tr(A;7'A;) = ¢ (constant) and 0 < mI < A; < MI with m < M. Then
Al + A+ + A, < (m+ M)?
n - 4AmM
Theorem 3.6. Let A; be positive 2-by-2 matrices fori = 1,2, ,n satisfyingdet A; = 1,
tr(A7A;) = ¢ (constant) and 0 < mI < A; < MI withm < M. Then
(m + M)*
dmM

G(AhAz’ T An)

(Arz, 2){(Agz, ) - - - {Apz, z) < { } (G(A1, Ay, - L An)z, 2)"

holds for all z € C2.
To prove above results, we give the following inequality:

Lemma 3.7. Let A; be positive 2-by-2 matrices satisfying det A; = 1 and 0 < mI <
A; <K MI withm < M. Then

PR 2 2
det (A1+A2+ +A”> < {w} ‘

n dmM
Proof. For each i, let 0 < m;l < A; < M;I and M = maxM,;. Note that we have

1
b;

d-) , and let

ay dl 1

a d
S = ? . , T = ? i and z =

S

O, dy, 1



Then we have 0 < mI < S < MI and 0 <ml <T < MI and

det (A1+A2+.’.+An> < (a1+a2+...+an) (d1+d2+---+dn)
7

n n
= {(Sz,z){Tz,x)
(m+ M) 2
<m0
<M sprz, 2 by (12)
_ (o MP (Vardi+Vads + o+ V|
dmM n '
1
ere by M; < M and m = -,
idi - = - - - 4 < — —_— — .
W=y 2 ) 2(Mi+M)"2(M+M> )

Therefore we obtain

det<Al+A2+‘“+ ) (m + M)? (ﬁﬂ?wa’zd_w--.wa:d‘n)?
- n

n amM
< (m+M)?* (m+M 2
- 4mM 2
(m+ M)*\*
=& by mM = 1.
{ dmM ym :
It completes the proof. d

Proof of Theorem 3.5. By Theorem 3.3 and Lemma 3.7, we have

A+ Ay+-+ A det(A; + Ay + -+ + An)

G(A1)A2a T 7An>

7 T
:Jd:t(Al+A2_;+An>G(A1,A217An)
2
< MG(Al,AZ,--- L An).

AmM

Proof of Theorem 3.6 is the same as one of Theorem 2.2.

Remark. It is not known whether the constant (——i%" in Theorem 3.5 is opt1ma1 or
not. But in [5, p. 224, Remark 8.1, it is known that for 0 <m < M snd h =% > 1,

(m + M)?
Sy £
-  4mM
(m + M)?

i.e., the constant Evr v

in Theorem 3.5 is bigger than one of (1.3).

69
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