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B VON NEUMANN BOEICOLWTORE

BIARZEEIRZMIR  /NR 55 (OZAWA, Narutaka)
Department of Mathematical Sciences,
University of Tokyo

1. CONVENTIONS

We focus on the classification problem for group von Neumann algebras. Let
us first fix conventions. Group which are written as I, A, etc. are assumed to be
discrete and countable. The left and right regular representations of I' on £I" are
denoted by A and p respectively; A(s) and p(s) are unitary operators on £,I" such
that

)\(s)dt = 5st and p(s)éi = 5t8_1

for s,t € T. The reduced group C*-algebra C;I' is the C*-algebra generated by A,
likewise for C7T';

;7 = NE€O' ' c B(&r) and ;T = p(CD)

C B(£T).
The group von Neumann algebra LT is the von Neumann algebra generated by A;
LT = MCTY' = p(CTY".

We sometime use M instead of LT, and L?M instead of {,T". We denote by 7 the
canonical tracial state on LI" defined by

7(a) = (ade, d¢)
Lemma 1. Let ¢: A — B be a ucp map. Then, for any a,b € A, we have
lle(ad) — p(a)®)] < lvla*a) ~ w(a) e(@)||*lle(6°8) — w(B)*p(B)II*2.

Proof. Let B C ]B('H) By the Stinespring theorem, we have pla) = V*r(a)V,

where 7: A — B(H) is a *-homomorphism and V:H — H is an isometry. For any
a,b € A, we have that p(a*b) — ¢(a)*@(b) = V*r(a*)(1 — VV*)x(b)V and that

[V r(@)(1-VV*) 2| = [Vr(a®)(1- VV’*)??(QW!I”2 = {lp(a*a) = p(a)*e(a)|[/2.
The same thing for b and we are done. O

We have the following consequence.



Lemma 2 (Choi). Let Ag C A and B be C*-algebras and ¢: A — B be a ucp map.
Suppose that |, is a x-homomorphism. Then, @ is Ao-linear, i.e., :

p(azb) = (a)p(2)p(b)
for all a,b € Ay and z € A.
We set [a,b] = ab — ba and [A, B] = {Zé[ak,bk] tap € A, by € B},

2. MaIN REsuULT

Let I’ be a compactification of T, i.e., I' is & compact topological space which
contains I' as a dense open subset. There is a one-to-one correspondence between
T and the C*-algebra C(T) such that coI' € C(I') C €I We assume that the
left translation action of ' on I' extends to a continuous action of T on I'. This is
equivalent to that C(T) is left translation invariant; o, (C(T)) = C(T) for every s €
T, where a,(f)(t) = f(s7't) for s,¢t € T and f € {,I'. We say the compactification
T is amenable if T' x, C(T) = C*(MT) U C(T)) C B(¢,T') is nuclear.

Let G be a non-empty family of subgroups of I'. We denote by ¢o(T'; G) the closed
ideal in £ I generated by {xea: : s,t € I, A € G}. We note that co(T; G) is left
and right translation invariant. For f € £, and t € T', we define ft € £ by
fi(s) = f(st™). That is f* = p(t)* fp(t) in B(fT). Then, the C*-algebra

C(AT) :={f el T : f'— feal;6)} C ol
is a left translation invariant and hence AT is naturally identified with the associ-

ated compactification of I".

Example 3. If G consists of the trivial group 1, then co(T';G) = coI.
If G contains T itself, then ¢o(I';G) = £I" and AT = T,

Definition 4. Let G be a non-empty family of subgroups of I. We say G is admis-
sible if A9T is an amenable I'-space.

We note that T is exact iff the Stone-Cech compactification SI' is amenable i.e.,
G = {I'} is admissible.

Theorem 5. Let G be an admissible family of subgroups of T'. Suppose that Q@ C LT
is an injective von Neumann subalgebra such that the relative commutant QnLr
is non-injective. Then, there ezists A € G such that “a prece of @ is conjugated into
LA”.

The meaning of a “piece” will be explained later. Under additional assumptions,
we can patch the pieces and find a unitary operator u € LT" such that uQu* C LA.

Theorem 6. We have the following.
(1) IfT is a subgroup of a hyperbolic group, then G = {1} is admuissible.
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(2) LetT =T'y xTy and G; be admissible for T;. Then, G = {I'1} x Gy UG x{T}
is admissible for '

(8) Let T = TI'y x5 Iy be an amalgamated free product. If G; is admissible for T';,
then G = {A} UG UG, is admissible for I.

Corollary 7. If T is a hyperbolic group and @ C LT is a diffuse subalgebra, then
the relative commutant @ N LT is injective.

Corollary 8 (O+Popa). LetTy,..., T, be ICC hyperbolic groups and let N7, ... , N
be type I1; nmon-injective factors. Suppose that @N; C @LL;. Then, we have
m < n. If in addition m = n, then “N; C LT;” modulo permutation of indices,
rescaling, and wnitary conjugacy.

Corollary 9. Let ' = I'; x I'y be the free product of ICC exact groups I'y and I's.
Suppose that @ C LT is a subfactor such that the relative commutant Q' N LT is
a non-injectie factor. Then, there exist i € {1,2} and a unitary operator u € LT
such that uQu* C LI in LT.

Corollary 10. Let I'y,..., T, and Ay, ..., Ay, be ICC product ezact non-amenable
groups. Suppose that
L(Fgo Tk s Ty) & L(Foo x Ay %o x Apy).

Then n = m and, modulo permutation of indices, LT; and LA; are unitarily conju-
gated in LT for every i > 1.

3. INJECTIVITY

Theorem 11 (Connes). For ¢ von Neumann algebra M, T.F.A.E.

(1) M is hyperfinite
(2) M is injective
(3) the *-homomorphism

MM > Zak@)iﬂk — Zak-f% € B(L*M)
% %

s continuous w.r.t. the minimal tensor norm.
In particular, LT is hyperfinite iff T is amenable.

For a von Neumann subalgebra P of M, we let
Pp: MRIM' > Zak ® Tp — Z Ep(a)zr € B(L*M).
k k

We note that ®p is a ucp map on the x-algebra M ® M’ and is continuous w.r.t. the
maximal tensor norm. We observe that the von Neumann subalgebra P is injective
if the ucp map ®p is continuous on M R, M’'. Indeed, by restricting ®» to
P ® JuPJps and then compressing the range to B(L?P), the ucp map ®p gives



rise to the map appearing in the above theorem. Since it is difficult to deal with
general tensor products of von Neumann algebras, we reduce the problem to that
of C*-algebras. We recall that a C*-algebra A is said to be ezact if

(A ®min B)/(A Qmin J) = A @min (B/J)

for any C*-algebra B and its closed 2-sided ideal J. A group I' is said to be ezact if
the reduced group C*-algebra C}I is.

Proposition 12. Let T be an ezact group and P C LT be a von Neumann subalge-
bra. Then, P is injective if the ucp map

Op: T @CT > Y 0@z — Y Bp(ar)zs € B(LT)
k k

18 continuous w.m.t. the minimal tensor norm.

Proof. Suppose that ®p is continuous on C5I' ®pin C3T. In the first step, we will
show that ®p is continuous on LT @i, C3T. Let [ be a directed set and let

B= P 1 N e T
{a € H CiT : strong 1i1€1§1 a(i) exists in LT'} C H c;r
iel (1334
It is not hard to see that B is a C*-subalgebra of [[,.; CiT" and that
m:B3>aw strong*—l_ienll a(i) € LT
%
is a *-homomorphism. By Kaplansky’s density theorem, we may assume that the
directed set I is large enough so that 7 is surjective. Let J = ker 7 and observe that

(B Qumin C;T)/(J @min CiT) = LT ®min C;I' because of the exactness of C;I'. We
consider the ucp map

bp: BROIT 3 Y ax®z,— Y Ep(r(ax))ar € B(T)
k k

The ucp map (f’p is continuous on B ®muix CT. Indeed, we have

H&)P(Z ax ® zx)|| = [strong’- lim CI)P(Z ax(1) ® z)||
k P

< sup 1S ak(i) ® allcgremmosr = | ) @ ® 2l Boumcsr
! k k
Since J @ C;I' C ker &5, the ucp map ®p gives rise to a continuous ucp map on
LI @min C;F, that actually coincides with ®p.
Now, ®p: LI Qmin C;T' — B(£,[") is a continuous ucp map. Since B(4T) is
injective, the ucp map ®p extends to a ucp map ®p: B(fol) Ouin C;T — B(4,1).
For any a € B(£I') and = € C;T, we have by Lemma 2 that

p(a®@ 1)z =Pp(a®z)=2dp(a®1),
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ie., ®p(a®1) € C;I' = LT It follows that the ucp map
}B(ﬁzF) >a— E'p((-j)'p(a ® 1)) eP

is a conditional expectation from B(£,I") onto P. W]

It is still a difficult problem to deal with C3I' ®max C;I'. Thus, we restrict our
attention to the case where P C M is a relative commutant; P = @ N M for
some von Neumann subalgebra. We assume that Q is injective. (This is a very
mild assumption because of Popa’s theorem.) Since Q is hyperfinite by Connes'’s
theorem, we can “average” over U(Q). Hence, there exists a conditional expectation
g from B(H) onto Q' such that Yo(z) € omv*{uzu® : u € U(Q)} for all z €
B(H). It follows that (¥o) um is a trace preserving conditional expectation from M

onto Q' N M. Since a trace preserving conditional expectation is unique, we have
(¥g)im = Eginpm. Moreover, since M’ C @', we have

\I’Q(Z G,k.”lik) = Z EQ:QM(ak)xk = @Q’nM(Z ai ® QCk),
k k k

for all Zk ar QT € M QM.

Lemma 13. Let Q C LT be an injective von Neumann subalgebra. If there is a
nuclear C*-algebra A such that C3I' C A C B(£2T') and that [A,C3T] C ker Vg, then
the relative commutant @' N LT 18 ingective.

Proof. Since ¥g is C3T-linear and [4, C3T| C ker ¥g, we have Ug(A) C CJI". Since
A is nuclear, the ucp map

(\I’Q)EA X idc;ri A® C:F > Zak R Ty — Z‘Ilg(ak)a:k € B(EQF)
k k

is continuous on A @uin C;I". The restriction of (Tg)ja x idc;r to (T @ COT is
nothing but ®giner. Therefore, oinsr is continuous on CFT Qi C5T and QoNLT
is injective by Proposition 12. (We note that T is exact because C;I' C A.) g

Theorem 14. Let G be an admissible family of subgroups in I'. Let Q C LT be an
injective von Neumann subalgebra. If
To(xsa) =0
for every s € T and A € G, then the relative commutant @ N LT s injective.
Proof. Since g is C}T-linear, the assumption implies that ¢y(T';G) C ker ¥g. Since
A9T is amenable, A = C*(A(I") U C(AT)) is nuclear. Now, [A, C;T'] is spanned by
A(s)f, (D] = As)p(t)(f* = f),
where s,t € I and f € C(AT). Since f* — f € ¢o(T; G), the conclusion follows from

the previous lemma. We note that [[¢(a*b)|| < ||¢(a*a)||/?||[&:(6*b)]|'/? for any ucp
map 1 and a, b. 0



Let F, = {g1,..., g be a free group on r generators. The ideal boundary

OF, C{g,9:" .. g g7 1"

of F, is the set of all infinite reduced words. The space F, = F, UJF, is compact in
the relative product topology; an open neighborhood basis of z = s189--- € IF, is
given by

U(J(,,?’L) :{y-——tltg--' EFT.'Sk:tk forkgn}
The free group F, acts on F, by left multiplication (and rectifying possible redun-
dancy). It was shown by Spielberg that I' x,. C (F,) is *-isomorphic to an extended
Cuntz-Krieger algebra and hence is nuclear. It is not hard to see that if {z,} is a
sequence in F, which converges to z € OF,, then z,t — z for every t € F,. This
means that ff — f € ¢, for every f € C(Fq.) and t € F,. Since the conditional
expectation Ug is singular (i.e., K(£T') C ker Ug) whenever @ C M is diffuse (i.e.,
contains no minimal projection), we obtain the following corollary.

Corollary 15. If @ C LF, is a diffuse subalgebra, then Q@ N LT, is injective.

4. PorA’s MACHINERY

Let (M, 7) be a finite von Neumann algebra, e.g. M = LT'. We denote by LM
the GNS Hilbert space and by Z the vector in L>M corresponding to z € M. The
conjugation J = Jyg on LM is given by

JT = z*

for £ € M. The von Neumann algebra M acts on L2M from the left and from the
right;

at=az and Za=Ja*"JT=1Za
Let N € M be a von Neumann subalgebra, e.g. N = LA C LT = M for some

subgroup A < T'. (The tracial state on A is given by the restriction of 7.) Then,
(assuming the index is infinite) there exists a Hilbert space K such that

IPM=KQL*N eg, &I=06LT/A)®LA

as a right N-module. Suppose now that Q@ C M is an injective von Neumann
subalgebra such that :
K(K) @ B(L*N) ¢ ker Tg.

Then, there is a rank one projection z on K such that b = ¥g(z ® Ly) # 0. Since
b € conv¥{u(z ® 1)u* : v € Q}, the element b commutes with the right N action,
or equivalently b € (B(KX)@N) N Q. Moreover, we have (Tr ®7y)(b) < Tr(z) < oo.
Thus, there is a non-zero spectral projection p of b with (Tr ®7x)(p) < co. It follows
that H = pL?M is a Q-N sub-bimodule of L2M with dimy Ha < oco. (Strictly
speaking, H is a Qp-Np’ bimodule where p' = JupJu.)
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Theorem 16 (Popa). Let (M, 7) be a finite von Neumann algebra, N and Q be von
Neumann subalgebras. Suppose that there exists a non-zero Q-N sub-bimodule H of
I[2M such that dimy Hy < co. Then, there exist projectionse € N and g € @, a
non-zero partial isometry v € M and a homomorphism 6: qQgq — eNe such that

w* € (qQq) N gMg, v*v € 8(¢Qq) NeMe and zv = v(z) for z € qQq.

Proof. For simplicity, we assume that Q is diffuse and N is a factor. Let H be a
non-zero Q-N sub-bimodule of L2M such that d = dimy Hy < co. Let ¢ € @
be a non-zero projection such that 7(g)d < 1 and take a projection e € A so that
7(e) = 7(g)d. Then, the ¢Qg¢-N module gH is isomorphic to eL?A as a right V-
module. Let U: ¢H — eL?N be a unitary operator which intertwines the right
N actions. Then, § = AdU is a unital *-homomorphism from ¢Qqg into eNe.
Moreover, if we denote & = U*ely € gH, then z€ = ¢0(z) for every z € ¢Qq. Since
£ € ¢gH C L*M, we may regard £ as a square-summable operator affiliated with
M and do the polar decomposition £ = v|¢|. Then, |£| commutes with 8(¢Qg) and
zv = vf(z) for every z € qQq. O

Proof of Theorem 5. Let G be an admissible family of subgroupsin . f @ C LT isa
von Neumann subalgebra such that @'NLT is non-injective, then Theorem 14 implies
that Ugo(sxa) # O for some A € G and s € T. Since sxa € K(£(I'/A)) ® lB(EzA)
Theorem 16 is applicable for N = LA.

5. AMENABLE ACTION

For a group I', we write Prob(I") for the space of all probability measures on I

Prob(I') = {p € £4(T") : 4 > 0 and Z,u,(t) =1}

tel

The group I acts on Prob(T") by the left translation; (su)(t) = p(s™'t) for s,t € T
and p € Prob(T"). We equip Prob(I") with the pointwise convergence topology. It
is not hard to see that the pointwise convergence topology coincides with the norm
topology on Prob(T').

Definition 17. A (topological) I'-space is a topological space X together with a
continuous I'-action on X. A compact I-space X is said to be amenable if for any
finite subset F C I" and € > 0, there exists a continuous map

p: X — Prob(T)
such that

max sup l[spts — phs|| < &

We say a group I' is exact if there exists an amenable compact I'-space.



Suppose that X and Y are compact ['-spaces and that there exists a I'-equivariant
continuous map from Y into X. Then, Y is amenable if X is amenable. Let X be
a compact T-space and fix a point 0 € X. For f € C(X), we define f, € £*(I') by
fo(8) = f(s0). Let

CT) =cil+{f,: fe C(D)} C 4T
Since the map I' 3 s = s0 € X extends to a [-equivariant continuous map - X,

the amenability of X implies that of I'. We note that T' is exact iff the Stone-Cech
compactification ST is amenable.

Theorem 18 (Anantharaman-Delaroche). Let X be a compact T'-space. Then, the
reduced crossed product T . C(X) is nuclear iff the I'-space X is amenable.

Example 19 (Connes). Let T be a discrete subgroup in a locally compact group G
and H < G be a closed amenable subgroup such that X = G/H is compact. Then,
I" acts amenably on the compact homogeneous space X from the left.

This applies to, for instance, G = SL(n, R) (or any group which admits an Iwasawa
decomposition). The subgroup P < G of upper triangular matrices is solvable and
hence is amenable. Thus, a discrete subgroup I' < G (e.g., I' = SL(n,Z)) acts
amenably on X = G/P = SO(n,R)/{£1}.

We denote by Prob(X) the set of all regular Borel probability measures on X.
For any I'-space X, we denote the stabilizer subgroup of z € X by I'” = {seTl:
sz = z}. The following technical result is useful.

Proposition 20. Let T a countable group, X be a compact I'-space, K be a countable
[-set. Assume that for any finite subset E C T and ¢ > 0 there exists a Borel map
¢: X — Prob(K) (i.e., the function X > & — (;(a) € R is Borel for every a € K)
such that

max sup ||8¢; — Gl < €.

s€E peXx

Let Y be a compact T-space which is amenable as a I'*-space for every a € K. Then,
X x Y (with the diagonal T-action) is an amenable I'-space.

Proof. We first claim that we may take ¢ in the statement to be continuous rather
than Borel. Fix a finite symmetric subset £ C I'. For every continuous map

¢: X — Prob{K), we define f, € C(X) by
felz) = Z lls¢e = Csall = ZZ Kx(s-l@) — {ee(@)]-

sEE s€F acK
Since fy, auce < Dop kfe, for every oy > 0 with Y ,ar = 1, if 0 is in the weak
closure of {f : ¢} in C(X), then 0 is in the norm closure of {f : ¢} by the Hahn-
Banach separation theorem. We note that the dual of C(X) is the space of finite
regular Borel measures on X by the Riesz representation theorem. Let £ > 0 and
m € Prob{X) be given. By assumption, there exists a Borel map 7: X — Prob(K)
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such that sup,cx ||s7: — 7sz|| < €/|E|. By the countable additivity of the measure,
there exists a finite subset F' C K such that [, Y ,cp7e(a) dm(z) > 1 —¢/|E|. We
approximate, for each a € F, the Borel function 2 + 7;(a) by a continuous function
and obtain a continuous map ¢: X — Prob(K) such that supp(; C Fforallz € X
and :
, / G = 7| dm(z) =f > I¢(a) = na(a)| dim(z) < 2¢/|E).
X ' X ek
It follows that

/); f((m) dm(:c) < LZ HS’I}w — ’qst dm(g;) + 4e < 5e.

Thus, we proved our claim.

Now, let a finite subset £ C T and € > 0 be given. By the previous result,
there exists a continuous ¢ such that sup,cy [s¢; — (sfl < € for every s € E. We
may assume that there exists a finite subset ' C I such that supp(, C F for all
z € X. We fix a I'-fundamental domain V C K with a projection v: K — V and
a cross section o: K — T, i.e., K decomposes into the disjoint union | ], I'v and
a = o{a)v(a) for every a € K. We note that o(sa) 'so{a) € T for every s € T'
and a € K. For each v € V, we set

E° ={o(sa)'so(a) :a € FNTvand s € E} C T".

Since Y is I-amenable and E" is finite, there exists a continuous map v*: Y —
Prob(T") such that

gré%%zgg l|svy — vo,ll <e.
Now, we define u: X xY — Prob(T) by
pay =D Cal@) 0 (@) sy
ac K
The map p is clearly continuous. Moreover, we have

Slhyy = Z Cx(a) sg(a)yzgz%—ly

1324

=" Gla) o(sa)(o(sa) s,

[13¢

B Z () a(sa)uggz;_lsy

~, Z (sz(s0) o(sa)uggzg,lsy = flsz.sy
aEK

for every s € F and (z,y) € X x Y. O



We consider a group action on a countable tree T. We will identify T with its
vertex set. For example, the Cayley graph of a finitely generated free group F, w.r.t.
the standard generating set is a homogeneous tree of degree 2r—1. Another example
is the Bass-Serre tree T for an amalgamated free product I' = I'ixI's. This is defined
as T =T'/T, UT /Ty, where sT'y and ¢I'y are adjacent iff sI'; Nty # . The group I'
acts on T by the left multiplication. The vertex stabilizer I'* = {s € I" : sz = z} for
each vertex z € T is conjugate to either I'; or T'y. The edge stabilizers are conjugate
to A. We note that T is not locally finite unless both I'; and T’y are finite.

A path is a finite or infinite sequence zgx;--+ in T such that zy is adjacent to
Ty for each k. It is a geodesic path if there is no backtracking, i.e., all z’s are
distinct. We say a path zg- - -z, connects Zo t0 Z,. Two infinite geodesic paths =
and y are said to be equivalent if they eventually flow together, ie., if there exist
m € Z and N > |m| such that z, = Ym4n for every n > N. We define the ideal
boundary 8T of the tree T as the set of all equivalence classes of infinite geodesic
paths. If z is a boundary point which is represented by oz - -, then we say the
infinite geodesic path zoz; - - - connects zo to z. Likewise, we say a biinfinite geodesic
path ---2_,707; - - - connects the boundary point zgz_;--- to the boundary point
Tozy---. Let T = TUAHT. It is not too hard to show that for any two points
z,y € T, there exists a unique geodesic path [z,y] which connects z to y. The
topology of T is defined by declaring that

Uz, F)={yeT:[zyNFC{z}}
are open for every z € T and every finite subset F C 7. It is not hard to see that
the family {U(z, F)}r is an open neighborhood of z € T. We omit the proof of the
following theorem.

Theorem 21. The topological space T is compact and contains T as a dense subset.
Every graph automorphism on T extends uniquely to a homeomorphism on T

We are including the Hausdorff property in the definition of compactness. The
space T is metrizable when T is countable.

Theorem 22. Let T be a group and T be a countable tree on which ' acts. LetY be
a compact I'-space such that Y is amenable as a T'°-space for every vertex stabilizer
I®. Then, T x Y is an amenable I'-space.

We note that if A < I is an exact subgroup, then the Stone-Cech compactification
AT is an amenable A-space. Therefore, above theorem implies the result of Dykema
and Tu that a group T' acting on a (countable) tree is exact provided that all the
vertex stabilizers are exact. By Proposition 20, Theorem follows from the following
lemma. (Fix an origin 0 € T and set ¢: 7' — Prob(T) by ¢, = (o, z).)

Lemma 23. Let T be a countable tree. Then, there ezists a sequence of Borel maps
&,: T x T — Prob(T) such that

£a(s3,82) = s (a(2, 2)
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for all graph automorphism s on T and

lim SUP Hgn(m* Z) - gn(xla Z)“ =0
N0 Lo

for every z,z' € T

Proof. Let n € N be given. Let x € T and 2z € T. Then, there exists a unique
geodesic path agaias--- connecting z to z. We define (,(z, z) € Prob(T’) as

n—1
1
Colz,2) == E Oag-as
i

the normalized characteristic function of the first n segment of the geodesic path
[z,2]. (When k > d = d(z, z), we use ag - - - a4 instead of ag - - - a.)

It is not hard to see that (,, is Borel and

, d{z,z
sup [€0(z,2) — &a(a', 2| < 22D
zeT n
for every z,z’ € T See the figure. O

Lemma 24. Let T be a group and T be a countable tree on which T’ acts. We denote
by G the family of all edge stabilizers T@Y) of . Let o € T be fived. Then, we have

{fi—fo: F €C(T), teT} C eo(T;6).

Proof. We recall that f, € £,I is defined by f,(s) = f(so). Suppose by contradiction
that there exist f € C(T'),t € T and ¢ > Osuch that S = {s € I': | fi(s)— fo(s)| > €}
is not contained in a finite union of sAt’s. Then, there exists a sequence {s,} in S
such that every sAt contains only finitely many s,’s. Since T is compact, we may
assume that s,0 — z € T and s,t "o — y € T. Since f(z) # f(y), we have z # y.
Since d(s,0,5,t7'0) = d(o,t™%0) for all n, if z is a boundary point, then so is y
and z = y in contradiction. Therefore, we must have z,y € T. Since s,0 — z, we
have [z, 5,0] N [z,y] = {z} eventually. Likewise, [y, s.t"'0] N[y, z] = {y} eventually.
These imply that s,[o,70] = [s,0, $,¢ " 0] intersects with [z, y] for every sufficiently
large n, in contradiction to that s, — oo w.r.t. sAt’s. J



Corollary 25. Let I =Ty x5 [y be an amalgamated free product. For each i, let G;
be an admissible family of subgroups of Ty. Then, G = {A} U G, UG, is admissible
for I, '

Proof. Let T' = I'1X; be a coset decomposition. We have the corresponding I';-
equivariant map from I" (resp. ') onto I'; (resp. GI'1). Equivalently, we have the
I';-equivariant embedding

71 b1 D fom(f) € 8T, m(f)(sz) = f(s) for sz € I'1 X1

We note that if f € m(C(A%T})), then we have supp(f* — f) C co{I'1;G1) C Lol
fort €Ty, and ft — f =0 for t € I'; \ A. Thus, we have

Fhivte _ f o (fft o f)irtn g (fl2 fYlerte g (ftn ) € (T G)

for all f € m(C(A%T,)) and t; -+ -t, € T'. Tt follows that = (C(A9T)) C C(AT).
This means that there exists a I'1-equivariant map from AST into A9T'; and hence
AST is an amenable I';-space. The same thing for I';. Hence, if we denote by T'
the Bass-Serre tree associated with the amalgamated free product, then T’ x AT is
an amenable I'-space by Theorem 22. But by Lemma 24, there exist [-equivariant
maps from AST into T and hence from A9T into T x AST. Tt follows that AST is
an amenable I'-space. O

For fine hyperbolic graphs, see [4].
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