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A survey on asymptotic evaluations of Wiener functional expectations

Shinzo Watanabe, Ritsumeikan University

1 Introduction.

Since the Wiener measure was established by N. Wiener as a mathematical model
of Brownian motion in 1923, a rigorous theory of integrations on a function space
started. In this report, we would review on the problem of evaluating the behavior
of the Wiener measure expectation E(F.(w)) as ¢ — 0, where {F.(w), € > 0} is
a family of Wiener functionals parametrized by & > 0. There have been so many
problems of this kind and many important methods have been introduced. Here,
we would choose a topic related to Schilder’s theorem in 1966 (cf. [Sc]), which is
concerned with a Laplace method on Wiener space.

First, we recall a Laplace method in a finite dimensional Gaussian measure in-
tegration, of which a proof can be easily provided by an application of elementary
differential and integral calculus. Let p(dx) = (2m)~%? exp{—%z}da:, r € R% be the
d-dimensional standard Gaussian distribution. We consider the following integral
parametrized by € > 0:

1) = [ oteo) e { L2} wiam)

We assume the following conditions on functions f and g: R* = R.
(A.1.1)  f(z) is continuous and Hm supi;| e IF(@))/1]? < 3.

g(z) is continuous and |g(z)| = O(eX*") as |z| — oo for some K > 0.

(A.1.2) Setting F(z) = |z[*/2~ f(z) and My = {z € RYF(z) = mingre F(y)}, Mr
is a singleton; My = {zo}, f(z) is C? at =, g(zo) # 0 and det(I — 8*f(zo)) =
det 82F (xg)) > 0. Here, 8°f = (8—5,,%) is the Hessian of f.

Then we have

I(e) .

BN e

Furthermore, if f(z) and g(z) are smooth near zo, then, for any n=1,2,...,

F(xo)

(zg) - exp {— } as € —0.

F
exP{ (;20> } I(e) = co+cie? + e + O(™*?) as £—0
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det(1—82 f(x0))

8% f(zy) and &g(zy).
A proof can be carried out by writing I(e) = I;(¢) + I2(g), where

with ¢y = , and ¢, can be computed explicitly in compoments of

&

he= [ oo { {2 ua
and (ex)

ne= [ aenew{ {2
for 6 > 0. Then Iy(¢) can be estimated as

F(zg) o«
L(e)| < Kexp{—- O ;5} for all ¢ € (0,¢0)

for some K := K(8) > 0, o := a(d) > 0 and &g := &o(6) > 0. We have

g(ex + zo) exp {~F(m * m;) — Flzo) } dz

Ii(e) = (2m) /e Fl@ol/e* /

lew| <8

and the asymptotic expansion of the integral in the RHS can be easily obtained.

2 Schilder’s asymptotic formula on Wiener functional expectations

The asymptotic formula in the finite dimensional case as given above has been
extended by Schilder ([Sc]) to the case of integrals on Wiener space. Let (W, H, P)
be an abstact Wiener space (AWS); W is a real separable Banach space, H C W is
the Cameron-Martin subspace and P is the Borel probability on W such that the
family { l(w) | Il € W* C H* } is a Gaussian system with mean 0 and covariance
E{l(w)l'{w)) = (I, ") g+. Thus, we may think of P a standard Normal distribution on
the Hilbert space H realized on a suitable enlarged space W. As usual, the dual H*
is identified with H by the Riesz theorem. A typical example is the d-dimensional
Wiener space in which

Wo(RY) :={ w; [0,T] >t = w(t) € R%, continuous, w(0) =0},

with the usual maximum norm (jw|| = maxe<i<r W (t)],

t .

H= { h e Wo(RY) | h(t) = /0 h(s)ds, h e L2 ([0,T] - RY) } s Alla = [l

and P is the d-dimensional Wiener measure on it. Here T is a positive constant;
sometimes, the time interval is taken to be [0,00) and then Wy(R?) is a Fréchet
space with a family of maximum (semi)norms on subintervals.

Scilder’s theorem on the AWS (W, H, P) can be stated in the same way as the
formula given in Introduction if the differential calculus is understood in the sense
of Fréchet differential calculus on the Banach space W.
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Let f = f(w) and g = g{w) be real-valued continuous functions on the Banach
space W and consider the following Wiener functional integral parametrized by
>0

10 = 5[otew) o { LE2] = [ atewexn {152} praw)

£ g2
We assume the following conditions on functions f and g: W — R.

(A2.1)  lmsup,) e |f(w)|/|lw][* < a for some a > 0 such that E(ecll?) < oo,

lg(w)| = O(eX11Y ag Jjw]| — oo for some K > 0.

(A.2.2) Setting
F(h) = |hl§,/2 - f}H(h), he H, and Mp= {h € HIF(h) = minyey F(hi)},
Mg is a singleton; Mg = {hg}, f(w)is C? at he, g(ho) #0 and
det(I - Az[hg]) > 0. .

Here, Aslhg] : H — H is a linear trace class operator defined as follows: By (A.2.1),
we have

fho +ew) = flho) + %D%‘(hg)[w} +o(e?) as e—0

and, if D2f(ho)w] = o ® cr(w) ® cp(w) is the Wiener chaos decomposition of
the quadratic form D?f(h¢)[w] on W, then ¢; = 0, co(w) = (Aalhojw,w) where
Aslho] : H — H is a linear trace class operator and co = tr(Aslhe]). Note that

E [e3P*/®lul] = ezttt (dety (1 — Aglhol)) ™% = (det(I — Axfh]))™/?

where det, denotes the Carleman-Fredholm modified determinant. Now Scilder’s
theorem can be stated as follows

I{e) ~ exp {—E((;;—O)‘} g(ho)E [e‘%sz(ho){w]] as €—0.

Also, the asymptotic expansion can be obtained when f and g are smooth on W in
the sense of Fréchet differential calculus on W.

A crucial point in the proof is to justify the localization : I(e) = I1(e) + Lx{e)
as in the case of finite dimension. The justification is based on Schilder’s large
deviation: If F C W is closed and G C W is open, then we have

lim sup 26> log Plew € F) < —inf{ ||k, ; h€ F }
0
and
limsup 2¢%log P(ew € G) > —inf{ ||hll% ; h€G }.
g0

Cf e.g., [DS].
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3 Asymptotic formula on ”conditional” Wiener functional expectations

Thanks to the Malliavin calculus, we can discuss the conditional expectations for
smooth functionals, smooth in the sense of Malliavin, as a surface integral on a
hypersurface imbedded in Wiener space. Formally, we consider the following integral
parametrized by € > 0;

I(e)=E [g(sw) exp {f (;w ) } 5m(<1>(ew))}

where f and g W — R, & W — R"™ are Wiener functionals and 6,(-) is the
Dirac delta function with pole at + € R™. This may be regarded as a surface
integral of g(ew)exp {ﬁg"—} on the hypersurface {w € W|®(ew) = z} in W. We
would particularly like to include the case where Wiener functionals involved are
Ité functionals; the case which is important in applications to heat kernels, security
price models in a financial market, etc. It6 functionals are usually not continuous on
W so that Schlder’s theorem as given in Section 2 is not applicable. Indeed, since,
the map w € W — ew € W is singular with respect to the Wiener measure, the
functionals like f{ew) and g(ew) are usually meaningless. Also, since P(H) = 0, the
restictions to the Cameron-Martin space like f|g of g|y are meaningless, as well.

For Itd functionals f(w), we can define f(ew) and f(h) for h € H in a natural
way; just replace the Wiener path ¢ — w(¢) by t — ew(t) and t — h(¢) which
are semimartingale paths, anyway. Also, It6 functionals are smooth in the sense
of Malliavin-Sobolev differential calculus on Wiener space and the expression like
0:(®(ew)) can be justified as an element in the Sobolev space with negative differ-
entiability index, in other words, someting like Schwartz distributions on Wiener
space. The surface integral is well defined by quasi-sure analysis and disintegration
theory as are developed in e.g. [M], [AM], [Sul, [L]. In this way, we can develop
a rather satisfactory asymptotic theory for conditional Wiener functional expecta-
tions as above. We would formulate an asymptotic formula in the following way; we
refer to {IW] the notions and notations in the Malliavin calculus, Sobolev spaces of
(generalized) Wiener functionals and asymptotic expansions, in particular.

Let f(w;e) be a real valued Wiener functional parametrized by ¢ > 0, smooth
m the sense f € D™ for every £ > 0 such that it has the following asymptotic
expansion for every h € H,

Flw+ 2e) = foll] + elbi) + 2 halhl(w) + - Folhl(w) + -,

where f.[hl(w) € CoHC, & -+ & C,. Here, C, denotes the space of homogeneous
Wiener chaos (It6’s multiple Wiener integrals) of order n in the Wiener chaos ex-
pansion Ly = @ Y72, C, of square-inegrable Wiener functionals. In particular, fo[h]
is constant in w so that it is a function of h € H. We assume that it is continuous
in h € H. We assume also that h € H — f,[h](w) € L; is continuous for every n.

Consider another real functional g(w;e) and also an R"™-valued Wiener func-
tional ®(w;e), both parametrized by € > 0, smooth and have the same asymptotic
expansion as f(w;e). We assume
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(A3.1) Letting X(w;e) = (f(w;¢), g(w; €), 2(w; €)) and Xo[h] = (fo[h], go[hl, Bo[R]),
the following principle of large deviations holds: If F C R x R x R" is closed and
and G C R x R x R™ is open, then we have

1imjélp 2¢2log P(X (w;e) € F) < —inf{ |{hll% ;s Xolh] € F }

and
Iims(?.p 262 log P(X (w;e) € G) > —inf{ ||hll% ; X[k} € G }.
£~

(A.3.2) The Malliavin covariance (D®(w;¢), D®(w;e))u of ®(w;e) satisfies, for
some neighborhood U, of z € R,

1y, (®(w;€)) - det(DP (w;€), DY (w;e))z' € () Lp forevery e>0.

1<p<oo

The assumpion (A.3.2) guarantees that 8,(®(w;e)) can be defined as a gener-
alized Wiener functional in some Sobolev space of negative differentiability index.

(A3.3) Weset K, ={ h € H| ®hl =z } and assume that it is not empty.
Assume further that

Ky = {he Ko | Lkl — folbl = gip 5lIP1 = folk] )

WeEK,
is a compact manifold of dimension, dim K7*" = m, regularly imbedded in H.

Remark 3.1. By the Hilbertian inner product of H, KI*" is a Riemannian mani-
fold. The assumption (A.3.3) admits the case that KJ*™ consists of a finite number
of points. We refer this as the case of dim K7™" = 0. In Section 1 and Section 2, we
stated the results in the case when the minimizing manifold is a singleton; of course,
a generalization as in this section is possible, as well.

(A.3.4) det(®i[h], ®|[hl) g > O for every h € KI"™. Here, ®i[h] € H represents the
first order Wiener chaos &% [h}(w) € Ci.

By the Lagrange multipier principle, we see that for every h € K min_there exists
a unique p(h) € R™ such that h — fi[h] = (p(h), 1[h))&-

(A.3.5) The following holds for every h € K™n: for any k € H, k # 0 such that
(@, kg =0,i=1,...,n,and k L Kmin,

LUKl ~ (oalB, b @ Rysion — (p(1), (Baal) k © K)o > 0

Here, fo2[h] € H® H and ®33[h] € H @ H @ R" represent the Cy-component of
folh)(w) and @;]h}{w), respectively.
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Theorem 3.1.

Ife) =F [g(w;s) exp {f(w;é‘) } 8, (B(w; 8))} = g™ F (oy 4 cre + 0o + - )

g2

where o = 1{|1]|? — fo(h) = min{}||R||> - fo(Rh); h € K.}, h € K™, and ¢ is given
by the integral:

[.....aolhE e {5 alh ) + 5 (1), @alh )} B A w), i} () ).

Here, w(dh) is the Riemannian volume on K" (which degenerates to the counting
measure when dim K™ = () and i[h}(w) := ¥ e;(w) - €;, the sum being taken over
an ONB {e;} in the tangent space Tp,(K7"™)(C H), so that 0o(*, -) is the Dirac delta
function at (0,0) on R™ x T,(K™").

For details and examples, cf. [TW].
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