
57

Random Numbers for Parallel Computations

Masanori Fushimi
Department of Mathematical Sciences

Nanzan University
27 Seirercho, Seto, Aichi 489-0863, Japan

fushimi@nanzan.u.ac.jn

1. Introduction
Large scale Monte Carlo simulations need lots of computational
time. A method of obtaining computational results quickly is a
parallel computation using many personal computers (PC’s). If
we want to perform N replications in a simulation and can use
m

$\mathrm{P}\mathrm{C}\mathrm{s}$, we may assign about N/BI replications to each PC and
collect the computational results of BI PC’s to obtain the final
answer as a result of Nreplications

In this case, it is important that we use mutually
independent or at least uncorrelated random numbers on each
$\mathrm{P}\mathrm{C}$. If we can use truly random numbers on each $\mathrm{P}\mathrm{C}$, there will
be no problem. In most Monte Carlo simulations, however, we
use pseudorandom numbers instead of truly random numbers,

and this may cause some problems. If we use different
pseudorandom number generators on each $\mathrm{P}\mathrm{C}$, we need to verify
the mutual independence or no correlations among the sequences
to be generated by these generators, but this is an extremely
difficult problem, and there have been few researches on this
problem. Under these circumstances, the almost only solution
is to choose one generator whose autocorrelation function is
known and use mutually uncorrelated subsequences on each $\mathrm{P}\mathrm{C}$.

Many pseudorandom number generators have been

数理解析研究所講究録 1462巻 2006年 57-62

58

proposed so far, and the folowing generators are specified in
Japanese Industrial Standard JIS Z 9031 : 2001[1].

. Linear congruential method. 3-term GFSR generators. 5-term GFSR generators

. Combined Tausworthe generators. Mersenne Twister. Irrational rotation method
It is very easy to use linear congruential generators for parallel
computations, but the periods of these generators are rather
short for large scale simulations. The autocorrelation functions
of the sequences generated by combined Tausworthe generators,
Mersenne Twister, and the irrational rotation method are
unknown so that they are not suitable for parallel computations
at present. So we consider using GFSR generators for parallel
computations in this paper because they have extremely long
periods enough for large scale simulations and their auto-
correlation functions are known.

2. Characteristics of GFSR generators

A GFSR generator uses the following recursion to generate a
sequence of integers $\{X_{t}\}$.

$X_{t+p}=X_{t+q_{1}}\oplus x_{+q_{2}}‘\oplus\cdots\oplus X_{t+q_{t}}\oplus X_{t}$ (1)

Here, the symbol \oplus means the bitwise addition modulo 2, and
the characteristic polynomial of the recursion (1)

$f(z)=z^{p}-z^{q_{1}}-z^{q_{2}}-\cdot$. $.-z^{q_{l}}-1$ (2)

is a primitive polynomial of degree p over $\mathrm{G}\mathrm{F}(2)$. In order to use
the recursion, we must give initial values X_{1},X_{2},\cdots,X and an
initialization method is described in the appendix of [lrbased on
the method proposed by Fushimi [2]. This initialization method
guarantees a good autocorrelation property as well as a good
multidimensional property. The autocorrelation function of the
sequence generated with this initialization method is given

59

below as follow $\mathrm{s}[2]$.
Let $\{X_{t}\}$ be the b-bit integer sequence generated by the

recursion (1) and $\{x_{t}\}=\{X_{t}/2^{b}\}$ be the normalized sequence.
The periods of these sequences are $T=2^{p}-1$. Let \overline{x} denote the
average of x_{t} ’s over the entire period, which is equal to
0.5(1-2) $/(1-2^{-p})$ and very close to 0.5 if p is large. Let $R(s)$

be the autocorrelation function of the sequence $\{x_{t}\}$ defined by
the following.

$R(s)= \frac{1}{T}\sum_{t=0}^{T-1}(x_{t}-\overline{x})(x_{t+s}-\overline{x})$ (3)

It is shown in [2] that

$R(s)=- \frac{1}{4T}($1-2 $)^{2}$ $(1\leq|s|\leq s_{0})$, (4)

which is almost equal to zero because T is very large. Here,
$s_{0}=(T+1)/b$ if b is a power of 2, e.g. $b=32$, and in general
$s_{0}=(T+1)/b’$, where $b’$ is a smallest power of 2 which is not less
than b . Thus s_{0} is also very large if, for example, $p=521$ and
b $=32$.

3. Using GFSR generators for paralel computations

As we mentioned before, we use one and the same generator for a
simulation, and use mutually uncorrelated subsequences on each
$\mathrm{P}\mathrm{C}$. More precisely, we choose an integer τ which is less than
or equal to s_{0}/m , where m is the number of $\mathrm{P}\mathrm{C}\mathrm{s}$ we use, and
use the subsequences $\{X_{t}:(k-1)\tau+1\leq t\leq \mathrm{k}\mathrm{t}\}$ on the $k\cdot \mathrm{t}\mathrm{h}$ PC
$(k=1,2,\cdots,m)$. Then we must compute “initial values” for PC’s
no. 2 through no. m from the initial values $X_{0}^{(1\}}=\{X_{1},X_{2},\cdots,X_{p}\}$

for PC no.l. To compute these initial values quickly $\mathrm{w}\mathrm{h}\mathrm{e}\mathrm{n}X_{0}^{(1\rangle}$

is given, we make preparations for initialization $\mathrm{b}\mathrm{e}\mathrm{f}\mathrm{o}\mathrm{r}\mathrm{e}X_{0}^{(1)}$ is
specified.

It is know n, see e.g. [2] or [3], that the sequence $\{X_{t}\}$ which
is generated by the recursion (1) satisfies

$X_{t}=X_{l-e(p-q,)}\oplus X_{t-e(p-q_{2}\rangle}\oplus\cdots\oplus X_{t-ep}$
(5)

where e is any integral power of 2. Using the recursion (5), we
can compute X_{t}

f or $X_{0}^{(1)}$ rather quickly even for avery large r .

so

Let $g(u)$ denote the greatest integral power of 2 which does not
exceed u . Let $e=g(t/p)$ in (5), then X_{l} can be computed
$\mathrm{f}\mathrm{r}\mathrm{o}\mathrm{m}X_{t’}^{r}$ ’s on the right-hand side with relatively small indices $t’$.
We apply the same technique to those $X_{t’}$ ’s, and repeat this
process until X_{t} is expressed as a linear combination (in the
sense of \oplus) of the elements of $X_{0}^{(\mathrm{I})}$.

We illustrate this procedure with a simple example
$p=521$, I $=1$, $q=32$, and $t=52101$. In this case, we have
$g(t/p)=g(52101/521)=g(100)=64$, and

$X_{52101}=X_{52101-64\cdot 489}\oplus X_{52101-64\cdot 521}$

$=X_{20805}$ $\oplus X_{18757}$.

Next, since $\#(20805/521)$ and $g(18757/521)=32$, we have
$X_{20805}=X_{20805-32\cdot 489}\oplus X_{20805-32\cdot 521}$

$=X_{5157}$ $\oplus X_{4133}$

$X_{18757}=X_{18757-32\cdot 489}\oplus X_{18757-32\cdot 52\mathrm{I}}$

$=X_{3109}$ $\oplus X_{2085}$.

Repeating the similar computations, we finally obtain the
following expression.

$X_{52101}=X_{1}\oplus X_{15}\oplus X_{29}\oplus X_{47}\oplus X_{111}\oplus X_{129}\oplus X_{175}\oplus X_{203}$

(f) $X_{221}\oplus X_{267}\oplus X_{468}\oplus X_{4\mathrm{S}6}\oplus X_{500}\oplus X_{504}\oplus X_{51\mathfrak{Z}}$

The above procedure can easily be implemented if we use a
programming language which provides a function of recursive
calls.

If we want to speed up further the above initialization
procedure, we may choose τ so that the following equality holds.

$\tau+1-g((\tau+1)/p)p=1$ (6)

We illustrate a choice of τ for the case $p=521$, $\mathit{1}=1$, $q_{1}=32$,
$b=32$, and $m=100$. IInn this case, $T=2^{521}-1$, $s_{0}=(T+1)/b=2^{489}$,
τ $\leq s_{0}/m=2^{489}/100$, $\tau/p\leq 2^{489}100.521,$ \leq 2 $/2^{15}=2^{474}$. So, if we
choose $\tau=2^{474}\cdot 521$, then $e=g((\tau+1)/p)=2^{474}$, and the equality
(6) holds. Then the initial value $X_{\tau+1}$ for PC no. 2 can be
expressed using (5) as follows

81

$X_{\tau+1}=X_{\tau+1-489e}\oplus X_{\tau+1-521e}$

$=X_{1+32e}$ $\oplus X_{1}$

Next we repeatedly apply the recursion (5) to X_{1+32e} in order to
express it as a linear combination (in the sense of \oplus) of the
elements of $X_{0}^{\zeta 1)}$, the initial values for PC no. 1.

Once $X_{\tau+1}$ is expressed as a linear combination of the
elements of $X_{0}^{(1)}$, the other expressions for the initial values
$X_{\tau+2}$, $X_{\tau+3},\cdot$

,
’

$X_{\tau+p}$ for PC no. 2 can be obtained with slight
modifications of the expression for $X_{\tau+1}$, It is important to note
that these expressions are independent of the actual numerical
values given to $X_{0}^{(1\}}$ in a particular simulation, so that it is
enough to compute them only once when the recursion (1) andr
are given. Actual initial values for PC no. 2 are computed using
these expressions when $X_{0}^{(1)}$ is given numerically in a particular
simulation. Similarly, the initial values for PC no. k can be
computed from the initial values for PC no. $(k-1)$, $3\leq k\leq m$.

The number of pseudorandom numbers assigned to one PC
is τ , and it is equal to $2^{474}\cdot 521=10^{145}$ in the above example,
which is extremely too many to use in one simulation. So, we
can choose a much smaller number for τ satisfying (6), which
will greatly reduce the time required for initialization. For
example, if we choose $\tau=2^{6\theta}\cdot 521$ $\simeq 10^{20}$, it will be more than
enough for any realistic simulations.

4. Conclusion and final remarks
We have shown a method for using GFSR pseudorandom
numbers for parallel computations. It is recommended to
choose anumber $\tau=2^{e}\cdot p$, where e is apositive integer and p

is the degree of the characteristic primitive polynomial of the
GFSR generator we use, such that τ is larger than the number
of pseudorandom numbers to be used on each PC and less than
$2^{p}/bm$, where b is the bit-length of the random numbers to be
generated and m is the number of PC’s to be used in parallel.
A method of computing initial values for each PC is described.
The random numbers generated on each PC are uncorrelated.

It is desirable to find methods of using other pseudorandom

82

number generators, $\mathrm{e}.\mathrm{g}$. irrational rotation method, Mersenne
Twister and combined Tausworthe generator, for parallel
computations.

References
[1] Japanese Industrial Standards Committee (2001) : JIS Z

9031:2001 Procedure for random number generation and
randomization (in Japanese), Japanese Standards Associ-
ation, Tokyo.

[2] Fushimi, M. (1989) : Random Numbers (in Japanese),
University of Tokyo Press, Thkyo.

[3] Golomb, S. W. (1982) : Shift Register Sequences, $2^{\mathrm{n}\mathrm{d}}$ ed.,

Aegean Part Press, Laguna Hills, California

