
79

Quantization Methods in Filtering and Applications to
Partially Observed Stochastic Volatility Models

Huyen PHAM
Laboratoire de Probabilites et

Modeles Al\’eatoires

CNRS, UMR 7599
Universite Paris 7

e-mail: pham@math.jussieu.fr
and CREST

October 12, 2005

Abstract

We present some recent developments on optimal quantization methods for discrete-

time nonlinear filtering, We analyse first the quantization algorithm for the filter given

a fixed observation, and then the quantization of the filter process. This last study

is motivated by dynamic optimization problems under partial information arising for
example in finance in the pricing of American options under partially observed stochas-
tic volatility models. Several numerical illustrations are carried out, emphasizing the
convergence and the stability of the approximate filter.
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1 Introduction

Optimal quantization of random vectors consists in finding the best approximation in $L^{p}-$

norm of a random vector by a discrete random vector taking at most $N$ values. This
was originally developed in the 50’s in the context of information theory where the basic
motivation was to transmit efficiently a continuous stationary signal by means of a finite
number of codes (or quantizers) . More recently, the quantization approach was applied to
various fields, and notably to numerical probability, where it appears as an efficient spatial
discretization method for solving multi-dimensional problems arising typically in finance.

In this article, we present recent developments of optimal quantization methods applied
to the nonlinear filtering problem. This is form ally the situation where we face a stochastic
system whose evolution is governed by a hidden process that we observe only through
some noise. Filtering is a traditional problem in probability and statistics, and occurs in
particular in a financial context where we can observe stock price but not its volatility.
Mathematically, the problem is to recover the optimal filter, i.e. the conditional law of the
hidden process (the signal) given the past observations. For instance, standard filtering
problems in finance are the estimation of the law of the volatility given the past price
observations, and then the pricing of derivatives and portfolio optimization in a partially
observed stochastic volatility model. Except some very specific cases like the Kalman-Bucy
model, there is no explicit solution for the filter and one has to resort on numerical methods.
The various approaches proposed in the literature (particle methods, grid methods) rely
basically on the principle of finding a finite-dimensinal representation of the filter. We
present here the quantization approach for filtering introduced in [7], which is a grid method,
and where one searchs for grids that fit optimally according to $L^{2}$-norm to the distribution
of the sign al. In these numerical methods, the filter is approximated for a given fixed
set of observations. However, in many applications arising in dynamic optimization under
partial observation, one need to approxim ate the filter process where randomness is due
to past observation process. We then present a quantization approach of the filter process
introduced in [9] and give a numerical application to the problem of optimal stopping under
partial observation.

The paper is organized as follows. Section 2 formulates and recalls some preliminaries
on the filtering problem. In Section 3, we present the quantization method for approxi-
mating the filter given a fixedx observation. Section 4 illustrates the results with numerical
experim ents. In Section 5, we introduce the quantization approach for the approximation
of the filter process, and we deal in the last Section 6 with a numerical application to the
optimal stopping problem in a partially observed stochastic volatility model.

2 Filtering problem for discrete observations
2.1 General framework

We consider a discrete time, partially observable process $(X, Y)$ where $X$ represents the
state or signal process that may not be observable, while $Y$ is the observation, The signal
process $\{X_{k}, k\in \mathrm{N}\}$ is valued in a measurable space $(E, \mathcal{E})$ and is a Markov chain with
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probability transition (Pk) (i.e. the transition from time $k-1$ to time $k$ ), and initial law
$\mu$ . The observation sequence (Yk) is valued in $\mathbb{R}^{q}$ , such that the pair $(Xk, Yk)$ is a Markov
chain on the probability space $(\Omega \mathrm{P})\}$ and

(H) The law of $Y_{k}$ conditional on (Xk-U $Yk-1,$ $Xk$ ), $k\geq 1_{7}$ denoted $qk$ (Xk-U, $Y_{k-1},$ $Xk,$ $dy’$),

admits a bounded density (called sometimes local likelihood function) :

$y’$ $\mapsto$ $g_{k}(X_{k-1}, Y_{k-1}, X_{k}, y’)$ .

For simplicity, we assume that $Y_{0}$ is a known deterministic constant equal to yo- No-
tice that the probability transition of the Markov chain $(Xk, Yk)_{k\in \mathrm{N}}$ is then given by
$Pk$ , $dx’)gk(x, y_{2}x’, y’)dy’$ with initial law $\mu(dx)\delta_{y0}(dy)$ .

We denote by $(F_{k}^{Y})$ the filtration generated by the observation process $(Y_{k})$ and by $\Pi_{k}$

the filter conditional law of $X_{k}$ given $\mathcal{F}_{k}^{Y}$ :

$\Pi_{k}(dx)$ $=$ $\mathrm{P}$ $[Xk\in dx| F_{k}^{Y}]$ , $k\in \mathrm{N}$ .
A typical case of signal-observation model is given by the following scheme :

$X_{k}$ $=$ $F_{k}(X_{k-1\mathrm{t}}\epsilon_{k})$ ,
$Y_{k}$ $=$ $G_{k}(X_{k-1}, Y_{k-1},X_{k}, \eta_{k})$ ,

for some measurable functions F&, $G_{k}$ , and where (ek) and $(\eta k)$ are two white noises. For
example in finance, $(X_{k})_{k}$ is the unobservable return $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ volatility of stock price $S$ while
$Y_{k}=$ In $S_{k}$ is the logarithm of the observed price process

$Y_{k}$ $=$ $Y_{k-1}+b(X_{k-1})+\sigma(X_{k-1})\eta_{k}$ ,

and gk is explicit once the density of the white noise $\eta k$ is specified.

2.2 Filter evolution

We denote by $\mathrm{A}l(E)$ the set of finite nonnegative measures on $(E, \mathcal{E})$ and by $\mathcal{P}(E)$ the

subset of probability measures on $(E, \mathcal{E})$ . It is known that $\lambda 4(E)$ is a Polish space equipped
with the weak topology, hence a measurable space endowed with the Borel $\mathrm{c}\mathrm{r}$-field. From
Markov property and Bayes formula, the filter process $\mathrm{I}\mathrm{I}k$ valued in $\mathcal{P}(E)$ satisfies the

filtering forward equation :

$\Pi_{0}$ $=$ $\mu$ ,

$\Pi_{k}(dx’)$ $=$ $\frac{\Pi_{k-1}H_{k}(dx’)}{\Pi_{k-}{}_{1}H_{k}(E)}$ $.= \frac{\int_{B}\Pi_{k-1}(dx)H_{k}(X_{\}}dx’)}{\int_{B}\Pi_{k-1}H_{k}(dx’)}$ (2.1)

where $H_{k}$ is the prediction-updating transition kernel given by :

$H_{k}(x, dx’)$ $=$ $gk$ ($x$ , Xk , $x’,$ $Y_{k}$ ) $P_{k}(x, dx’)$ .

Hence, the calculation from $\Pi_{k-1}$ to $\Pi_{k}$ is done in two steps: a first step of prediction, which
uses the a priori information from the signal transition probability $P_{k}$ , and a second step of



82

correction and updating, which uses the a posteriori inform ation given by the observation at
time $k$ via the local likelihood function g%. We denote the relation (2.1) (which is nonlinear

due the norm alization) from $\Pi_{k-1}$ to $\Pi_{k}$ by :

$\Pi_{k}$ $=$ $\overline{G}_{k}(\Pi_{k-1}, Y_{k-1}, Y_{k})$ .

Given a fixed set of observations, the filtering problem consists in solving or simulating
by approximation this filtering equation valued in the infinite di mensional space $\mathcal{P}(E)$

(when the state space $E$ is continuous). We distinguish essentially three types of methods :
- Analytical methods where one tries to solve analytically the forward equation. This is

explicitly possible when $X$ and $Y$ are Gaussian processes leading to the well-known Kalman
filter, which is a finite-dimensional filter completely characterized by its mean and variance.
Some extensions are derived with the so-called extended Kalm an filter. We also cite recent
work in [3], which derives an explicit filter of infinite dimension.

-Monte-Carlo methods :this approach consists basically in approximating $\mathrm{I}\mathrm{I}k$ by a
sequence of empirical measures associated to $\overline{N}$ interacting particles at each time $k$ and
simulate according to the $\mathrm{p}\mathrm{r}\mathrm{e}\mathrm{d}\mathrm{i}\mathrm{c}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}/\mathrm{u}\mathrm{p}\mathrm{d}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{n}\mathrm{g}$ mechanism given by the transition kernel
$H_{k}$ .

- Grid methods $\sim$

. this consists in approxirnating the transition kernel $H_{k}$ by a transition
matrix $\hat{H}_{k}$ , which leads in turn to an approximate forward equation valued in a finite
dimensional space

We develop in the two next sections optimal quantization methods that belong to grid
methods. It is also of interest to approximate not only the filter for a given set of obser-
vations, but more generally the filter process viewed as a random measure function of the
uncertainty of the observation process. This will be developed in the two last sections where
a quantization approach is introduced for approximating the filter process with applications
to partial observation problems.

3 Approximate filter by optimal quantization (Fixed obser-
vation)

3.1 Short background on optimal vector quantization

The basic idea of (quadratic) quantization is to replace an $\mathbb{R}^{d}$-valued random vector $X\in$

$L^{2}(\mathrm{P}, \mathbb{R}^{d})$ , with probability law $\mathrm{p}_{X}$ , by a random vector taking at most $N$ values in order
to minimize the induced $L^{2}$-error. For this, consider a grid $x=\{x^{1}, . , . , x^{N}\}$ of $N$ points in
$\mathbb{R}^{d}$ (we shall often identify such a grid with a $N$-tuple in $\mathbb{R}^{d}$), and its Voronoi tesselations,
that is Borel partitions $C_{1}(x)$ , , . ., $C_{N}(x)$ of $\mathbb{R}^{d}$ satisfying :

$C_{i}(x)$ $\subset$ $\{u\in \mathbb{R}^{d}$ : $|u-x^{\iota}|= \min j=1,$.
$,N|u-x^{j}|\}$ , $\mathrm{i}=1$ , $\ldots$ , $N$.

Then, one defines the $x$-Voronoi quantization of $X$ as the closest neighbour projection of
$X$ on the grid $x$ :

$\hat{X}^{x}$
$=$ $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}_{x}(X):=\sum_{\mathrm{i}=1}^{N}x^{i}1_{C_{i}(x)}(X)$ ,
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whose discrete probability law $\mathrm{P}_{\hat{X}}$ is characterized by :

$\hat{p}i|.=\mathrm{P}_{\hat{X}}(x^{i})=\mathrm{P}x$ (Ci (x)), $\mathrm{i}=1$ , .. . ’
$N$.

In the sequel, we often drop the exponent $x$ in $\hat{X}^{x}$ when there is no ambiguity, and we say
that $\hat{X}$ is a quantizer of $X$ . The $L^{2}$-error induced by this projection, called $L^{2}$-quantization
error, is $||X-\hat{X}||_{2}$ . As a function of the $N$-tuple (grid) $x=(x^{1}, \ldots x^{N})\}\in(\mathbb{R}^{d})^{N}$ , the
square of the $L^{2}$-quantization error, called distorsion, is written as :

$D_{N}^{X}(x)=||X-\hat{X}||_{2}^{2}$ $=$ $\int\iota=1\mathrm{m},\acute{.}1..\mathrm{n},N|u-x^{\mathrm{i}}|^{2}\mathrm{P}_{X}$ (du). (3.2)

First, notice by definition of the closest neighbour projection that the $L^{2}$-quantization error
is the minimum of $L^{2}$ error $||X-Y||_{2}$ among all random variables $Y$ taking values in the
grid $x$ . Then, two questions arise naturally: for fixed $N$ , is there an optimal grid $x^{*}$ which
minimizes the $L^{2}$-quantization error (or equivalently the distorsion), and how does this
minim um behave when $N$ goes to infinity7 The latter question is answered by the so-called
Zador theorem :

Theorem 3.1 (see [4])
Assume that $X\in L^{2+\epsilon}(\mathrm{P}, \mathbb{R}^{d})$ for some $\epsilon$ $>0$ and set $f$ the Radon-Nykodim density of $\mathrm{P}_{X}$

in its decomposition with respect to the Lebesgue measure $\lambda_{d}$ on $\mathbb{R}^{d}$ . Then,

$\lim_{N}N^{\frac{2}{d}}\min_{x}$ $||X-\hat{X}^{x}||_{2}^{2}$ $=$
$J_{d}||f||_{\phi+}$ ,

where $||f||_{r}=$ $(f |f|^{r}d\lambda d)^{1/r}$ for $r>0$ , and $J_{d}$ is a constant depending on $d_{f}$ corresponding
to the uniform distribution on $[0, 1]^{d}$ .

Remark 3.1 In dimensions d $=1$ and 2, $J_{1}= \frac{1}{12}$ aaand $\mathrm{J}_{2}=\frac{5}{18\sqrt{3}}$ . forr d $\geq 3$ , $J_{d} \sim\frac{d}{2\pi e}$ as
d goes to infinity.

The optimal $N$-quantization problem that consists in determ ining a grid $x^{*}$ , which min-
imizes the $L^{2}$-quantization error, relies on the property that the distorsion is continuously
diflerentiable at any $N$-tuple having pairwise distinct components, with a gradient obtained
by formal differentiation in (3.2) :

$\nabla D_{N}^{X}(x)$ $=$ 2 $( \int_{C,(x)}(x^{i}-u)Px(du))1\leq i\leq N$ (3.3)

A quantizer $\hat{X}=\hat{X}^{x}$ is said stationary if the associated $N$-tuple $ satisfies

$\nabla D_{N}^{X}(x)$ $=$ 0.

An optimal quantizer is a stationary quantizer. From (3.3), we have the useful property of
stationary quantizers :

$\mathrm{E}[X|\hat{X}]$ $=$
$\hat{X}$ .
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The integral representation (3.3) of $\nabla D_{N}^{X}$ suggests, as soon as independent copies of $X$

can be simulated, to implement a stochastic gradient algorithm (descent), in order to get

numerically a stationary quantizer. In our context, this leads to the Kohonen algorithm

or competitive learning vector quantization (CLVQ) algorithm, which also provides as a

byproduct an estimation of the weights $pi$ of the Voronoi tesselations associated to the

stationary quantizer. We refer to [8] for a description and discussion of the algorithm.

Optimal grids and their companion parameters, i.e. weights of the Voronoi tesselation and

distorsion, for the normal distribution are available and downloadable on the webpages of

Gilles Pages or Jacques Printems.

3.2 Filter quantization approximation for a fixed observation

We are in the framework where the signal state space is continuous, say $\mathbb{R}^{d}$ . We show how

one can apply quantization methods for providing a numerical approximation of the filter,

given a fixed set of observations. This is achieved in three steps.

Step 1. We assume that for each time $k_{2}$ the random vector $X_{k}$ is square integrable and

simulatable. Then, for each $k$ , we apply an optimal vector quantization of the random
vector $X_{k}$ . We denote

$\hat{X}_{k}$ $=$ $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}_{x_{h}}(X_{k}):=\sum_{i=l}^{N\mu}x_{k}^{i}1_{C_{i}(\mathrm{a}_{\mathrm{k}})}(X_{k})$ ,

the associated quantizer on the optimal grid $xk=$ $(x_{k}^{1}$. , . . . , $x_{k}^{N_{k}}$ $)$ of size $N_{k}$ points in $\mathbb{R}^{d}$ .

Step 2. : Marginal quantization of the Markov chain (Xk).
This consists in approximating the distribution law of the Markov chain $(Xk)0\leq k\leq n$ as
follows :

approximate law $\mu$ of $X0$ by law $\hat{\mu}$ of $\hat{X}_{0}$

approximate law $P_{k}$ of $X_{k}|X_{k-1}$ by law $\hat{P}_{k}$ of $\hat{X}_{k}|\hat{X}$k-12 A $=1$ , $\ldots$ }
$n$ .

In other words, $\hat{\mu}$ is the weight vector $(\hat{p}_{0}^{i})$ given by:

$\hat{p}_{0}^{i}$ $=$ $\mathrm{P}$ $[\hat{X}_{0}=x_{0}^{i}]$ , $\mathrm{i}=1$ , $\ldots$ , $N_{0}$ .

and for $k=1$ , $\ldots$ )
$n$ , $P\wedge k=(\hat{p}_{k}^{ij})$ is the probability transition matrix :

$\hat{p}_{k}^{ij}$ $=$ $\mathbb{P}[\hat{X}_{k}=x_{k}^{J}|\hat{X}_{k-1}=x_{k-1}^{i}]$ ,

for $\mathrm{i}=1$ , $\ldots$ , Nk-i, $j=1$ , $\ldots$ , $Nk$ . These transition weights

$\hat{\mathrm{p}}_{0}^{i}$ $=$ $\mathrm{P}_{X_{0}}[C_{i}(x_{0})]$

$\mathrm{P}x_{k-1},x_{\mathrm{k}}[C_{l}(x_{k-1}), C_{j}(x_{k})]$

$\hat{p}_{k}^{ij}$ $=$

$\overline{\mathrm{P}_{X_{k-1}}[C_{l}(x_{k-1})]}$
,

are estimated by Monte Carlo simulations of $X_{k}$ , $k=0$ , . . . ’
$n$ . They can also be obtaine

as a byproduct of the Kohonen algorithm.
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Step 3. : Filter approximation for a fixed observation.
We are given a set of observations $(Y\mathit{0}$ , . . . , $Y_{n})$ fixed to $(y\mathit{0}, \ldots, y_{n})$ . For each $k=1$ , . . , $n$ , we
consider the approximation of the prediction-updating transition kernel $H_{k}$ by the transition
matrix $\overline{H}_{k}=(\hat{H}_{k}^{i\gamma})$ defined as :

$\hat{H}_{k}^{\mathrm{o}j}$ $=$ $g_{k}(x_{k-1}^{l}, y_{k-1}, x_{k}^{f}, y_{k})\hat{p}_{k}^{ij}$ , $\mathrm{i}=1$ , $\ldots$ , $N_{k-1}$ , $j=1$ , $\ldots$ , $N_{k}$ .

We then approxim ate the filter $\Pi_{k}$ by the discrete probability measure $\hat{\Pi}_{k}$ on the grid $xk$ :
$\hat{\mathrm{I}}\mathrm{I}_{k}=\sum_{i=1}^{N_{k\Pi_{k}^{l}\delta_{x_{k}^{i}}}^{\wedge}}$, that is defined by the approximate forward equation :

$\hat{\Pi}_{0}$ $=$ $\hat{\mu}$

$\hat{\Pi}_{k}$ $=$ $\frac{\hat{\Pi}_{k-}{}_{1}\hat{H}_{k}}{(\Pi_{k-1}\hat{H}_{k})(x_{k})\wedge}$ .

The weights $(\hat{\Pi}_{k}^{l})$ , $k=0$ , $\ldots$ , $n$ , $l=1$ , $\ldots$ , $N_{k}$ , are then computed as :

$\Pi_{0}^{i}\wedge$ $=$ $\hat{p}_{0}^{\iota}$ , $\mathrm{i}=1$ , . . . $iN_{0}$ ,

$\Pi_{k}^{j}\wedge$ $=$ $\frac{\sum_{i=1}^{N_{k-1}}\hat{H}_{kk-1}^{ij_{\Pi}^{\wedge}i}}{\sum_{j=1}^{N_{k}}\sum_{i=1}^{N_{k-1}}\hat{H}_{kk-1}^{xj_{\Pi}^{\wedge}i}}$ , $k=1$ , $\ldots$ , $n$ , $j=1$ , $\ldots$ , $N_{k}$ .

Prom a practical viewpoint, the above procedure is implem ented as follows :

Phase 1. Off-line computations (the most demanding): Optimal quantization of the signal.

Notice that this phase does not depend on the observations. We need to :
- Specify the size $N_{k}$ of the grids for $k=1$ , $\ldots$ , $n$ given a total number of points $N=$

$N_{0}+$ . $..+N_{n}$ .

-Process optimal grids (by Kohonen algorithm) and the associated transition weights $(\hat{p}_{k}^{ij})$ .
A special case of interest :a stationary signal. In this usual case in filtering model,

we only need to compute the optimal grid $x^{*}=\{x^{1}, \ldots, x^{\overline{N}}\}$ of the stationary distribution
$\mu$ of $X_{0}$ , with size $\overline{N}=N/(n+1)$ . Then, $xk=x’$ , $k=0$ , $\ldots$ , $n$ , are the optimal grids for

each $X_{k}$ . We estimate the probability $\hat{\mu}$ of $\hat{X}0=\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}_{x}*(X_{0})$ , and we only have to estimate
one single transition matrix :

$\hat{p}_{k}^{ij}=\hat{p}_{0}^{ij}$ $=$ $\mathrm{P}[\hat{X}_{0}=x^{j}|\hat{X}_{0}=x^{i}]$ , $0\leq \mathrm{i},j$
$\leq\overline{N}$ , $k=1\}\ldots$ , $n$ .

From a computational viewpoint, the size of the parameters to be stored is divided by a
factor $n$ (or the available quantization size for the distribution of $X_{0}$ and the transition
matrix is multiplied by $n$).

Phase 2. On-line computations :given an observation vector $y$ $=$ $(y0, \ldots, y_{n})$ , we com-
pute the quantized prediction-updating transition matrix $(\hat{H}k)$ , $k=1$ , $\ldots$ , $n$ . Finally, we
compute the quantized filter $(\hat{\Pi}k)$ , $k=1$ , $\ldots$ , $n$ , by the approximate forward equation, and

for every (needed) test function $\phi$ :

$\hat{\Pi}_{n}\varphi$ $=$ $\sum_{i=1}^{N_{n}}\varphi(x_{n}^{i})\Pi_{n}^{i}\wedge$

This phase is almost instantaneous
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3.3 Error and convergence analysis

We denote

$BL_{1}(\mathbb{R}^{d})$ $=$ $\{\phi$ : $\mathbb{R}^{d}arrow \mathbb{R}$ , $\phi$ bounded by 1

and $\phi$ Lipschitz with $[ \phi]_{Lip}:=\sup_{x\neq x}$,
$\frac{|\phi(x)-\phi(x’)|}{|x-x|},\leq 1\}$ .

For any $\Pi\in \mathcal{P}(\mathbb{R}^{d})$ , we denote

$\Pi\phi$ $=$ $\int\phi(x)\Pi(dx)$ , $\forall\phi\in BL_{1}(\mathbb{R}^{d})$

We make essentially two conditions on the signal-observation model. We assum $\mathrm{e}$ a
Lipschitz condition on the probability transitions of the signal :

(A1) The probability transitions $Pkj$ $k=1$ , $\ldots$ , $n_{7}$ are Lipschitz with ratio $[Pk]_{Lx\mathrm{p}7}$ i.e.
for any Lipschitz function $\phi$ on $\mathbb{R}^{d}$ , with ratio $[\phi]_{Lip}$ , we have:

$|P_{k}\phi(x)-Pk\phi(\hat{x})|$ $\leq$ $[Pk]_{Lip}[\Phi]_{L\mathrm{z}p}|x-\hat{x}|$ , $\forall x,\hat{x}\in \mathbb{R}^{d}$ .

We then set $[P]_{Lip}:= \max_{k=1,\ldots,n}[Pk]_{Li\mathrm{p}}$ .
We also assume a Lipschitz condition on the updating observation functions :

(A2)

$-(i)$ The functions $gk$ ) $k=1$ , $\ldots$ , $n$ , are bounded.

$||g||_{\infty}:= \max_{k=1,\ldots,n}||g_{k}||_{\infty}$

(ii) There exists $[g_{k}]_{Lip}$ , $k=1$ , $\ldots$ , $n$ , $\mathrm{s}.\mathrm{t}$ . $\forall x$ , $x’,\hat{x},$ $x\wedge;\in \mathbb{R}_{1}^{d}y$ , $y’\in \mathbb{R}^{q}$

$|gk(x, y, x’, y’)-gk(\hat{x}, y,\hat{x}’, y’)|\leq[g_{k}]_{L\mathrm{i}p}(|x-\hat{x}|+|x’-\hat{x}’|)$ .

$\backslash$

$[g]_{L\mathrm{p}}:= \max_{k=1},$ . ’
$n[g_{k}]_{Lip}$ .

We then have the following error bound for the approximation of the filter by quanti-
zation.

Theorem 3.2 Under (A1) and (A2), given a fixed observation $(Y_{0}, \ldots , Y_{n})=(y_{0}, . . " y_{n})$ ,
we have :

$\emptyset(\mathbb{R}^{d})\sup_{\in BL_{1}}|\Pi_{n}\phi-\hat{\Pi}_{n}\emptyset|$
$\leq$ $\frac{||g||_{\infty}^{n}}{\gamma_{n}(y)}\sum_{k=0}^{n}A_{n,k}||X_{k}-\hat{X}_{k}||_{2}$ , (3.4)

There $\gamma_{n}(y)$ is the density of $(Y_{1}, \ldots, Y_{n})$ at $y=(y_{1}, \ldots, y_{n})$ :

$\gamma_{n}(y)$ $=$ $\mathrm{E}$

$\ovalbox{\tt\small REJECT}\prod_{k=1}^{n}g_{k}(X_{k-1,yk-1}, X_{k}, y_{k})]$

and

$A_{n,k}$ $=$ $[P]_{L\dot{\tau}p}^{n-k+1}+ \frac{2[g]_{L\mathrm{s}\mathrm{p}}}{||g||_{\infty}}(\frac{[P]_{Lip}+1}{[P]_{Lip}-1}([P]_{Lip}^{n-k+1}-1)+2)$ .
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Elements of proof. We give a sketch of the proof of this theorem.
Step 1. Backward representation of the filter : We consider the unnormalized filter $(\pi k)$

given by the unnormalized forward linear equation :

$\pi_{0}=\mu$ , $\pi_{k}$ $=$ $\pi_{k-1}H_{k}$ , $k=1$ , $\ldots$ , $n$ ,

so that

$\Pi_{n}=\frac{\pi_{n}}{\pi_{n}(E)}$ and $\pi_{n}=\mu H_{1}$ , . . $H_{n}$

Rom this symmetric expression, we introduce the transition kernels given by the backward

equation :

$K_{n}=Id$ , $K_{k}$ $=$ $H_{k+1}K_{k+1\prime}$ $k=0$ , $\ldots$ , $n-1$ ,

so that

$\pi_{n}$ $=$ $\mu K_{0}$

Similarly, the quantized filter is expressed in a backward induction :

$\hat{[}\mathrm{h}=\frac{\hat{\pi}_{n}}{\hat{\pi}_{n}(E)}$ ,

where

$\hat{\pi}_{n}$ $=$ $\hat{\mu}\hat{K}_{0}$

and

$\hat{K}_{n}=Id$ , $\hat{K}_{k}$ $=$ $\hat{H}_{k+1}\hat{K}_{k+1}$ , $k=0$ , $\ldots$ , $n-1$ .

Step 2. Error approximation of the unnormalized filter : We write

$|_{J}\tau_{n}\phi-\hat{\pi}_{n}\phi|=|\mu K_{0}\phi-\hat{\mu}\hat{K}_{0}\phi|$ $=$ $|\mathrm{E}$ $[K_{0}\phi(X_{0})]-\mathrm{E}$ $[\hat{K}_{0}\phi(\hat{X}_{0})]|$

$\leq$ $||K_{0}\phi(X_{0})-\hat{K}_{0}\phi(\hat{X}_{0})||_{2}$

From the backward formula on $K_{k}$ and $\hat{K}_{k}$ , we derive an estimation of

$||K_{k}\phi(X_{k})-\hat{K}_{k}\phi(\hat{X}_{k})||_{2}$

in terms of the quantization error $||Xk-\hat{X}_{k}.||_{2}$ by a backward induction :this uses

$arrow$ Lipschitz condition (A1), (A2)
-

$L^{2}$-contraction property of conditional expectation and the fact that $\hat{X}_{h}$ is $\sigma(Xk)-$

measurable
- Gronwall’s lemma.
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Step 3. Error approximation of the (normalized) filter : We write

$\phi(\mathrm{R}^{d})\sup_{\in BL_{1}}|\Pi_{n}\phi-\hat{\Pi}_{n}\phi|$
$=$ $\emptyset(\mathbb{R}^{d})\sup_{\in BL_{1}}|\frac{\pi_{n}\phi}{\pi_{n}(E)}-\frac{\hat{\pi}_{n}\phi}{\hat{\pi}_{\mathcal{T}l}(E)}|$

$\leq$
$\frac{2\sup_{\phi\in BL_{1}(\mathrm{R}^{d})}|\pi_{n}\phi-\hat{\pi}_{n}\phi|}{\pi_{n}(E)\vee\hat{\pi}_{n}(E)}$ ,

and we notice that $\pi_{n}(E)=\gamma_{n}(y)$ is the density of $(Y_{1}, \ldots, Y_{n})$ . $\square$

Remark 3.2 Convergence of the quantized filter. If the grids are chosen optimally at

each time $k=0$, $\ldots$ )
$n$ , then in view of Zador’s theorem, we get a bound for the rate of

convergence of the quantized filter :

$\emptyset(\mathbb{R}^{d})\sup_{\in BL_{1}}|<\Pi_{n2}\phi>-<\hat{\Pi}_{n}$ , $\phi>|$ $\leq$
$\frac{||g||_{\infty}^{n}}{\gamma_{n}(y)}\sum_{k=0}^{n}A_{n},{}_{k}C(\mathrm{P}_{X_{k}}, d)\frac{1}{N^{\frac{1}{k^{d}}}}$ . (3.5)

Consequently :
- Given a total number of points $N$ , we may optimally dispatch the number of points

for each time grid, i.e. find (No, . . . ’
$N_{k}$ ) $\mathrm{s}.\mathrm{t}$ . $N0+\cdots+N_{n}=N$ and minimizing the r.h.s.

of (3.5).
- For a fixed horizon $n$ , we have the convergence of the quantized filter, $\mathrm{i}.\mathrm{e}.\hat{\Pi}_{\eta}$ converges

to $\Pi_{n}$ as $\mathrm{m}\mathrm{i}\mathrm{n}0\leq k\leq nkN$ goes to infinity.
- When $n$ goes to infinity, the convergence of the filter is satisfied typically in the case

of discretized diffusion on [Os $T$] with Euler scheme of step $T/n$ :

$X_{k+1}$ $=$
$X_{k}+b(X_{k}) \frac{T}{n}+\sigma(X_{k})\sqrt{\frac{T}{n}}\epsilon_{k+1}$ .

Under Lipschitz condition on $b$ and $\sigma$ , we have :

$[P]_{Lip}$ $=$ $1+ \frac{c}{n}$

for some constant $c$ . Then if we simply assign $N_{k}=\overline{N}=N/(n+1)$ points at each grid,
(3.5) provides a rate of convergence of order

$\frac{||g||_{\infty}^{n}}{\gamma_{n}(y)}\frac{n+1}{\overline{N}^{1/d}}$

This is to be compared with the rate of convergence obtained by Monte-Carlo methods
using $\overline{N}$ interacting particles :

$( \frac{||g||_{\infty}^{n}}{\gamma_{n}(y)})^{n}\frac{1}{\overline{N}^{1/2}}$

Remark 3.3 Extensions :first-order schemes. In the method described in paragraph 3.2,
we approximated the probability transition $P_{k}$ as follows:for any Borel function $\phi$

$P_{k}\phi(Xk)=\mathrm{E}$ $[\phi(Xk+1)|Xk]$ $\simeq$ $\hat{P}_{k}\phi(\hat{X}k)$ $:=\mathrm{E}[\phi(\hat{X}k+1)|\hat{X}k]$
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This is a piecewise constant approximation of the conditional expectation at the centers
$x_{k+1}^{j}$ and $x_{k}^{i}$ of the tesselations of $\hat{X}_{k+1}$ and $\hat{X}_{k}$ , and is called zero-order scheme. This

suggests to consider linear interpolation based on Taylor expansion around the centers of

the tesselations, which leads to correction terms in the transition weights $\hat{P}_{k}$ , and to so-
called first order scheme for quantization. The main interest is that thanks to stationary

property of optimal grids : $\mathrm{E}[Xk|\hat{X}k]=\hat{X}k$ , we expect to get an estimation error with terms

$||X_{k}-\hat{X}_{k}||_{2}^{2}$

instead of $||X_{k}-\hat{X}_{k}||_{2}$ for zero order scheme as in (3.4). Consequently, we should get an
improved rate of convergence. These first-order schemes are developed in [11].

3.4 Application :Pricing of European options under partial inform option

We give a direct application of the above quantization procedure for the calculation of

European options under partial observation. Namely, let us consider $(Xk)_{2}k=0$ , $\ldots$ , $n$ ,

the return $\mathrm{a}\mathrm{n}\mathrm{d}/\mathrm{o}\mathrm{r}$ volatility process of the stock price. (Yk), $k=0$ , $\ldots$ , $n$ , is the (Logarithm)

of the stock price process. We denote $F_{k}=\sigma\langle Xj$ , $Yj$ , $0\leq j\leq k$ ), $k=0$ , . . ., $n$ , the complete

information and $F_{k-}^{Y}=\sigma(Yj, 0\leq j\leq k)$ , $k=0$ , . . , , $n$ the partial information, $\mathrm{i}.\mathrm{e}$ , when one
does not observe $\mathrm{r}\mathrm{e}\mathrm{t}\mathrm{u}\mathrm{r}\mathrm{n}/\mathrm{v}\mathrm{o}\mathrm{l}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{l}\mathrm{i}\mathrm{t}\mathrm{y}$ but only price process. In this model, we are given an

European option of payoff $h(Y_{n})$ and more generally $h(X_{n}, Y_{n})$ . Its price under complete

information is given at time $k$ by :

$U_{k}$ $=$ $\mathrm{E}$ $[h(X_{n}, Y_{n})|F_{k}]=vkj(X_{k}, Y_{k})$ ,

for some Borel function $vk$ by the Markov property of $(X, Y)$ . (Here, we supposed that $\mathrm{P}$

is already a risk-neutral probability measure). The function $v$ may be easily computed by

different methods, e.g. quantization or Monte-Carlo. On the other hand, the price of the

European option under partial information at time $k$ is given by :

$U_{k}^{Y}$ $=$ $\mathrm{E}[h(X_{n}, Y_{n})|F_{k}^{Y}]$ .

By the law of iterated condition expectation, it is written as :

$U_{k}^{Y}=\mathrm{E}$ $[h(X_{n}, Y_{n})|F_{k}^{Y}]$ $=$ $\mathrm{E}$ $[v_{k}(\mathrm{x}_{k_{\rangle}}Y_{k})|F_{k}^{Y}]$

$=$ $\int$ $v_{k}(x, Y_{k})\Pi_{k}$ (Jr) $=:\Pi_{k}v_{k}($ ., $Y_{k})$

Given an observation $(Y_{0}, \ldots, Y_{k})=(y0, \ldots, yk)$ , this is approximated by the explicit for-

mula :

$\hat{\Omega}_{k}v_{k}($ ., $y_{k})$ $:=$ $\sum_{i=1}^{N_{k}}v_{k}(x_{k}^{i},y_{k})\hat{\Pi}_{k}^{\mathrm{t}}.$ ,

where $\hat{\mathrm{n}}_{k}$ is the quantized filter
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4 Numerical experiments (Fixed observation)

4.1 Kalman-Bucy model

We first illustrate the filtering quantization method in paragraph 3.2 with the Kalman Bucy
model. This linear Gaussian model for the signal-observation process is described by

$X_{k+1}$ $=$ $pX_{k}+\theta\epsilon_{k}$ , $X_{0}\sim’\Lambda’(0, \Sigma_{0})$

$Y_{k}$ $=$ $X_{k}+\gamma\eta_{k}$ ,

where $\rho$ and $\theta$ are constant matrices of appropriate dimensions, and $(\epsilon_{k})_{\mathrm{J}}(\eta_{k})$ are indepen-
dent Gaussian noises : $\epsilon_{k}\sim \mathrm{N}(\mathrm{Q}, Id)_{2}\eta k\sim$ $N(0, Id)$ . In this case, the filter is explicit :

$\Pi_{n}$ $\wedge A$ $N(m_{n}, \Sigma_{n})$ ,

where $m_{n}$ and $\Sigma_{n}$ are computed by forward induction, see e.g. [2].
We perform numerical tests with param eters chosen so that the signal $X_{k}$ is stationary,

$\mathrm{i}\mathrm{e}$ . $X_{k}\sim N$(0, So) for all $k$ . In that case, we can work with a single grid at each time $k$ .

Actually, we start with the optimal (prestored) grid for $N(0, I_{d})$ and make an homothety
of $\Sigma_{0}$ . We put the same number $\overline{N}$ of points at each time grid.

4.1.1 Test 1 : convergence of the filter at a fixed instant n when the number
of points $\overline{N}$ of each grid goes to infinity

The approximate filter $\hat{\Pi}_{n}$ is computed on the test functions $\phi_{i}$ , i.e. $\Pi_{n}\phi:$ , for

$\phi_{1}(x)$ $=$ $x_{d}$ , $x=(x_{1}, \ldots, x_{d})$

$\phi_{2}(x)$ $=$ $|x|^{2}$ , $\phi_{3}$ ($ ) $=$ $\exp(-|x_{d}|)$ ,

in signal dimension $d=1$ and 3. The following figures show the convergence and the rate
of convergence of the approxim ated filter by quantization, when $\overline{N}$ goes to infinity. The
theoretical convergence rate $\overline{N}^{\frac{1}{d}}$ (see Remark 3.2) is then in In-scale 1 in dimension 1 and
1/3 in dimension 3, and is consistent to what we found by numerical experiments. Actually,
we even get better rate of convergence with the numerical tests.

Figure la: diml -:Convergence and Convergence Rate (in a $\ln$-scale) of $\hat{\Pi}_{n}\phi_{1}$ as $\mathrm{N}$ grows,
for $n$ $=15$ and $\phi_{1}(x)=x$ .
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Figure lb : diml -: Convergence and Convergence Rate (in a $\ln$-scale) of $\hat{\Pi}_{n}\phi_{2}$
$\mathrm{f}\mathrm{f}\mathrm{i}$ $\mathrm{N}$ grows,

for $n=15$ and $\phi_{2}(x)=x^{2}$ .

Figure lc : diml -: Convergence and Convergence Rate (in a $\ln$-scale) of $\dot{\Pi}_{n}\phi_{3}$ as $\mathrm{N}$ grows,
for $n=15$ and $\phi_{3}(x)$ $=\exp(-|x|)$ .
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Figure $2\mathrm{a}$ : dim3 - : Convergence and Convergence Rate (in a $\ln$-scale) of $\hat{\Pi}_{7l}\phi_{1}$ as $\mathrm{N}$ grows,
for $n=15$ and $\phi_{1}(x)=x_{3}$ .
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Figure $2\mathrm{c}$ : dim3 -: Convergence and Convergence Rate (in a In-scale) of $\hat{\Pi}_{n}\phi_{3}$ as $\mathrm{N}$ grows,
for $n=15$ and $\phi_{3}(x)=\exp(-|x_{3}|)$ .

4.1.2 Test 2 : Stability of the filter for a fixed grid size $\overline{N}$ as n goes to infinity.

We perform numerical tests for a signal in dimension 2. The following figures show the
stability of the quantized filter when the horizon $n$ goes to infinity.

Figure 3. $\dim 2-$ : Error dependence of $\hat{\Pi}_{n}\emptyset$ as $n$ grows,
for $\overline{N}=600$ , $\phi(x)=x_{1}$ and $\phi(x)=x_{2}$ .
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4.2 A stochastic volatility model

We now consider the ARCH model :

$X_{k+1}$ $=$ $pX_{k}+\epsilon_{k}$ , $X_{0}\sim\nu N(0, \Sigma_{0})$

$Y_{k}$ $=$ $\sigma(X_{k})\eta_{k}$ , $\sigma(x)=\gamma+|x|$ ,

where $(\epsilon k)$ are $(\eta_{k})$ independent Gaussian noises. This model is popular in finance, as

a discretization of stochastic volatility model, where $X$ is the volatility and $Y$ the price

process. Unlike Kalman-Bucy model, there is no explicit reference formula for the filter.
The following figures show the convergence of the quantized filter when $\overline{N}$ goes to infinity.
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Figure 4:SV model:filter values of $\hat{\Pi}_{n}\emptyset$ at fixed n as $\overline{N}$ grows,
for $\phi(x)=x$ , $|x|^{2}$ , and $\exp(-|x|)$ .

More numerical illustrations are investigated in Sellami’s thesis [12] with in particular

comparison to Monte-Carlo particle methods.

5Approximation of the filter process by quantization

In the quantization algorithm described in the previous section, we need for each new
set of observations, to compute again the quantized transition matrices $(\hat{H}_{k})$ via the loca
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likelihood observation function $gk$ . This on-line phase may be rem oved by an off-line prepro-
cessing of the observations, as suggested in [6] , One can then store in addition to the signal

quantizers, the local likelihood functions precomputed on the signal-observation grids. This

observation quantization approach is developed in [11], where error estimation are provided
and numerically illustrated. If we stress the dependence of the filter on the observation :
$\Pi_{n}(Y_{0}, \ldots , Y_{n})$ , then it is approximated by $\Pi\wedge n(\hat{Y}0$ , . . . , $\hat{Y}_{n})$ , where $\hat{Y}_{k}$ is a quantizer of Yk.
However, we notice that the size of the look-up tables for the filter may be very large. For
instance, if $\hat{Y}_{k}$ takes $M$ values, then at time $n$ , the random filter $\hat{\Pi}_{n}(\hat{Y}_{0}, . . , ,\hat{Y},)$ would take
$M^{n}$ values in $\mathcal{P}(E)$ , which may explode for a long horizon $n$ . This makes computations
untractable when solving dynamic optimization problems under partial information, even
if $E$ is already a finite state space

In order to overcome this numerical difficulty, we present a quantization approach in-
troduced in [9] and based on the Markov property of the pair filter-observation $(\Pi k, Y_{k})$

with respect to the observation filtration $(F_{k}^{Y})$ . Indeed, by denoting $(\mathcal{F}_{k})$ the filtration
generated by $(X_{k}, Y_{k})$ , and using the law of iterated conditional expectations, we have for
any $k$ an$\mathrm{n}\mathrm{d}$ bounded Borelian function $\varphi$ on $\mathcal{P}(E)\mathrm{x}$

$\mathbb{R}^{q}$ :

$\mathrm{E}[\varphi(\Pi_{k+1}, Y_{k+1})|F_{k}^{Y}]$

$=$ $\mathrm{E}[\mathrm{E}[\varphi(\overline{G}_{k+1}(\Pi k, Yk_{t}.Yk+1), Yk+1)|\mathcal{F}k]|F_{k}^{Y}]$

$=$ $\mathrm{E}$ $[ \int\varphi(\overline{G}_{k+1}(\Pi_{k}, Y_{k},y’), y’)P_{k+1}(X_{k}, dx’)qk+1(X_{k}, Y_{k}, x’, dy’)|F_{k}^{Y}]$

$=$ $\oint\varphi(\overline{G}_{k+1}(\Pi_{k}, Y_{k}, y’), y’)P_{k+1}(x, dx’)qk+1(x, Y_{k}, x’, dy’)\Pi_{k}(dx)$. (5.6)

This shows the Markov property of (Zk) with probability transition $R_{k}$ (from time $k-1$

to $k$ ) given by :

$R_{k}\varphi(\pi, y)$ $=$ $\int\varphi(\overline{G}_{k}(\pi, y, y^{\mathit{1}}), y’)Q_{k}(\pi,y, dy’)$ , (5.7)

where $Qk(\pi, y, dy’)$ is the law of $Yk$ conditional on $(\Pi k-1_{7}Yk-1)=(\pi, y)$ with density :

$y’$ $arrow$ $\int gk(x, y, x’, y’)Pk(x, dx’)\pi(dx)$ .

We consider a framework with finite state space : $E=\{x^{1}, \ldots, x^{m}\}$ , so that the filter $\Pi_{k}$

is a random discrete probability measure identified with a random vector $\Pi_{k}=(\Pi_{k}^{\tau})_{1\leq\not\in\leq m}$

in the simplex $K_{m}$ of $\mathbb{R}^{m}$ :

$K_{m}$ $=$ $\{\Pi\in \mathbb{R}_{+}^{m}$ : $\sum_{i=1}^{m}\Pi^{i}=1\}\simeq \mathcal{P}(E)$ .

The idea is to apply a marginal quantization of the Markov chain $(z_{k})=(\Pi k, Yk)$ valued
in $K_{m}\mathrm{x}$ $\mathbb{R}^{q}$ . Hence, for each $k=0$ , $\ldots$ , $n$ , we denote

$\hat{Z}_{k}$ $=$ $\mathrm{P}\mathrm{r}\mathrm{o}\mathrm{j}_{z_{k}}(Z_{k}):=\sum_{i=1}^{N_{k}}z_{k}^{i}1_{C_{i}(z_{k})}(Z_{k})$,
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the associated quantizer on the optimal grid $zk=$ $(z_{k-}^{1}$ , . . . , $z_{k}^{N_{k}})$ of size $N_{k}$ points in $K_{m}\mathrm{x}\mathbb{R}^{q}$ .
The probability transition $R_{k}$ of the Markov chain (Zk) is approximated by the transition
matrix $\hat{R}_{k}=(\hat{r}_{k}^{\mathrm{z}j})$ :

$\hat{r}_{k}^{ij}$ $=$ $\mathrm{P}$ $[\hat{Z}_{k}=z_{k}^{j}|\hat{Z}_{k-1}=z_{k-1}^{i}]$ .

The optimal grids $zk$ and the associated transition weights $\hat{r}_{k}^{ij}$ are processed and estimated
by the Kohonen algorithm. This is based on the Monte-Carlo simulations of $(Z_{k})$ , which rely
themselves, from (5.7), on the following simulation procedure of the probability transition
$R_{k}$ :. simulate $X_{k-1}$ with probability law $\Pi_{k-1}$ , and then $X_{k}$ according to the probability
transition $P_{k}$. simulate $Y_{k}$ according to the probability transition $\mathit{9}k(Xk-l, Yk-1, Xk)dy’$. compute $\Pi_{k}$ by the forward filtering (finite-dim ensional) equation

$\Pi_{k}$ $=$ $\overline{G}_{k}(\mathrm{I}\mathrm{I}_{k-1}Y_{k-1}, Y_{k})=\frac{\Pi_{k-}{}_{1}H_{k}}{\Pi_{k-}{}_{1}H_{k}(E)}$.

6 Application :pricing of American options under partial
observation

6.1 Optimal stopping problem under partial observation

Given a bounded measurable function $h$ on $E\mathrm{x}$ $\mathbb{R}^{q}$ , and a horizon $n$ , we denote for any $k$

$=0$ , $\ldots$ , $n$ , $T_{k,n}^{Y}$ as the set of $(F_{k}^{Y})$-stopping times valued in $\{k, \ldots, n\}$ , and we consider the
following optimal stopping problem under partial observation :

$U_{k}$ $=$
$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\tau\in T_{\mathrm{t}^{Y}n}}.,\mathrm{E}[h(X_{\tau}, Y_{\tau})|F_{k}^{Y}]$

. (6.8)

By using the law of iterated conditional expectation and the definition of the filter, we notice

that problem (6.8) may be reduced to a complete observation model with state variable the
$(F_{k}^{Y})$-adapted process (Zk) :

$U_{k}$ $=$
$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\tau\in \mathcal{T}_{k,n}^{Y}}\mathrm{E}$

$\ovalbox{\tt\small REJECT}\sum_{j=k}^{n}1_{\tau=j}\mathrm{E}[h(X_{j_{2}j}Y)|F_{j}^{Y}]|\mathcal{F}_{k}^{Y}\ovalbox{\tt\small REJECT}$

$=$ $\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\tau\in \mathcal{T}_{k,n}^{Y}}\mathrm{E}\ovalbox{\tt\small REJECT}\sum_{\mathrm{i}=k}^{n}1_{\tau=j}\Pi_{\mathrm{J}}h(., Yj)|F_{k}^{Y}\ovalbox{\tt\small REJECT}$

$=$
$\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\tau\in T_{k,n}^{Y}}\mathrm{E}$

$[ \Pi_{\tau}h(., Y_{j})|F_{k}^{Y}]=\mathrm{e}\mathrm{s}\mathrm{s}\sup_{\tau\in \mathcal{T}_{k_{J}n}^{Y}}\mathrm{E}[\tilde{h}(Z_{\tau})|F_{k}^{Y}]$
,

with the notation :

$\tilde{h}(z)$ $=$ $\pi h(., y)=\sum_{i=1}^{m}h(x^{i}, y)\pi^{\mathrm{i}}$ , $\forall z=(\pi, y)$ , $\pi=(\pi^{i})_{i}\in K_{m}$ , $y\in \mathbb{R}^{q}$ .
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By the $(F_{k}^{Y})$-Markov property of (Zk) and the dynamic progra mming principle, we have
$U_{k}=u_{k}(Zk)$ where functions $uk$ are calculated in backward induction by :

$u_{n}(z)$ $=$ $\tilde{h}(z)$

$u_{k}(z)$ $=$ $\max\{\tilde{h}(z)$ , $\mathrm{E}[u_{k+1}(Z_{k+1})|Z_{k}=z]\}$ .

Following [1], we provide a quantization approximation of $U_{k}=uk(Zk)$ by $\hat{U}_{k}$ =\^u $k(\hat{Z}k)$ ,
where $(\hat{Z}k)$ is a marginal quantization of $(Z_{k})$ on grid $zk$ , as described in the previous
section, and functions $\text{\^{u}}_{k}$ are explicitly computed in recursive form by :

$\hat{u}_{n}(z)$ $=$ $\overline{h}(z)$

$\hat{u}_{k}(z)$ $=$ $\max\{\overline{h}(z))\mathrm{E}[\hat{u}_{k+1}(\hat{Z}k+1)|\hat{Z}_{k}=z]\}$ .

Prom an algorithmic viewpoint, this reads as :

$\hat{u}_{n}(z_{n}^{i})$ $=$ $\overline{h}(z_{n}^{i})$ , $\mathrm{i}=1$ , . . . , $N_{n}$

$\text{\^{u}}_{k}(z_{k}^{i})$ $=$ $\max\{\overline{h}(z_{k}^{i}),$ $N \sum_{j=1}^{k+1}\hat{r}_{k+1}^{i\gamma}\hat{u}_{k+1}(z_{k+1}^{j})\}$ , $\mathrm{i}=1$ , $\ldots$ , $N_{k}$ .

$L^{1}$ -error estimation ||Uk--\^U$k||_{1}$ in terms of quantization error $||Z_{k}-\hat{Z}\iota.||_{2}$ is stated in [9],

6.2 Numerical illustration : Bermudean options in a partially observed
stochastic volatility model

We consider an observable stock (logarithm) price $Y_{k}=$ in $s_{k}$ , with dynamics given by :

$Y_{k+1}$ $=$ $Y_{k}+(r- \frac{1}{2}X_{k}^{2})\delta$ $+X_{k}\sqrt{\delta}\epsilon_{k+1}$

where $(\epsilon_{k})$ is a sequence of Gaussian white noise, and (Xk) is the unobservable volatility
process. $\delta=\frac{T}{n}$ is the time step from an Euler scheme. We assume that $(X_{k})$ is a Markov
chain approximation a la Kushner [5] with spatial step A and with $m=3$ states of a
mean-reverting process :

$dX_{t}$ $=$ $\lambda(x_{0}-X_{t})dt+\eta dW_{t}$ .
In this context of a partially observed stochastic volatility model, we consider a Bermudean
put option with payoff $h(y)=(\kappa-e^{y})_{+}$ , and with price :

$u_{0}$ $=$ $\sup \mathrm{E}[e^{-r\tau \mathit{5}}h(Y_{\tau})]$ . (6.9)
$\tau\in \mathcal{T}_{0,n}^{Y}$

We perform numerical tests with :
-Price and put option parameters : $r=0.05$ , $S_{0}=110$ , ts $=100$ ,
-Volatility param eters : A $=1$ , y7 $=0,1_{7}X_{0}=0.15$ ,
- Spatial step : $\Delta=0,05$ .
- Quantization :Grids are of same size $\overline{N}$ fixed for each time Period with step $\delta=\frac{1}{n}$ .
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$E[\Pi_{n}^{1}]$ $E^{\lceil}.\Pi_{n}^{2}]$ $E[\Pi_{n}^{3}]$ Relative error (%)
Monte Carlo 0.287608 0.422833 0.289558

Quant. with $\overline{N}=300$ 0.301651 0.421725 0.276624 $0.89\mathrm{S}$

Quant. with $\overline{N}=600$ 0.301604 0.421458 0.276938 0.886
Quant. with $\overline{N}=900$ 0.301598 0.421316 0.277086 0.881
Quant. with $\check{N}=1200$ 0.301618 0.42122 0.277162 0.879
Quant. with $\overline{N}=1500$ 0.301605 0.421205 0.27719 0.878

Table 1: Comparison of quantized filter value to its Monte Carlo estimation

We first compare in Table 1 the filter expectation at the final date computed with a
time step size $\delta$ $=1/5$ and by using the optim al quantization method with increasing grid
size $\overline{N}$ , and with 10 Monte Carlo iterations,

We observe that besides the very low error level, the absolute error (plotted in Figure
5) and the relative error are decreasing as the grid size grows.

Figure 5: Filter error convergence as $\mathrm{N}$ grows

Secondly, in order to illustrate the effect of the time step, we compute the Anerican
option price under partial observation when the time step $\delta$ decreases to zero (i.e. $n$

increases) and compare it with the American option price with complete observation of
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(Xk, $Y_{k}$ ). Indeed, in the limit for $\deltaarrow 0$ we fully observe the volatility, and so the partial
observation price should converge to the complete observation price.

Moreover, when we have more and more observations, the difference between the two

prices should decrease and converge to zero. This is shown in figure 6, where we performed
option pricing over grids of size $\overline{N}_{\Pi,Y}=1500$ in case of partial observation. The total
observation price is given by the same pricing algorithm carried out on $\overline{N}_{X_{\rangle}Y}=45$ points
for the product grid of $(Xk, Yk)$ . For fixed $n$ , the rate of convergence for the approximation
of the value function under partial observation is of order $\tilde{N}_{\Pi,Y}^{1/(m-1+d)}$ where $\overline{N}_{\Pi_{\mathrm{z}}Y}$ is the
number of points used at each time $k$ for the grid of $(\Pi k, Yk)$ valued in $K^{m}\mathrm{x}\mathbb{R}^{d}$ . Prom
results of [1], we also know that the rate of convergence for the approximation of the value
function under full observation is of order $m\mathrm{x}\overline{N}_{Y}$ where $\overline{N}_{X,Y}=m\mathrm{x}\overline{N}_{Y}$ is the number of
points at each time $k$ , used for the grid of $(Xk, Yk)$ valued in $E\mathrm{x}\mathbb{R}^{d}$ . This explains why, in
order to have comparable results, and with $m=3$ and $d=1$ , we have chosen $\overline{N}_{Y}\sim\overline{N}_{\Pi_{\mathrm{z}}Y}^{1/3}$

Figure 6: Partial and total observation option prices as $3arrow 0$

In addition, it is possible to observe the effect of information enrichment as the time
step decreases. In fact, if we consider multiples of $n$ as the time step parameter, we notice
that the American option price increases for both total and partial observation models (see
tables 2 and 3)
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$n$ 4 8 16
Tot. Obs. $(\overline{N}_{X}‘ Y=30)$ 1.45863 1.75689 1.77642

Part. Obs. $(\overline{N}_{\mathrm{I}\mathrm{I},Y}=1000)$ 0.921729 1.13898 1.47089
Variation 0.53 0.61 0.30

Table 2: Am erican option price for embedded filtrations - First Example

Table 3: American option price for embedded filtrations - Second Example

References
[1] Bally V. and G. Pages (2003) . “A quantization algorithm for solving discrete time multi-

dimensional optimal stopping problems”, Bernoulli, 9, 1003-1049.

[2] Elliott R., Aggoun L. and J. Moore (1995) : Hidden Markov models, estimation and control,
Springer Verlag

[3] Genon Catalot V. (2003) : “A non linear explicit filter”, Stat Prob. Lett, 61, 145-154.

[4] Stat S and H Luschgy (2000) : :Foundations of quantization for random $uectors_{)}$ Lecture Notes
in Mathem atics $\mathrm{n}^{0}1730$ , Springer, Berlin, 230 pp.

[5] Kushner H.J. and P. Dupuis (1992) . Numerical Methods for Stochastic Control Problems $m$

Continuous Time, Springer, New York

[6] Newton N. (2001) : “Approximations for nonlinear filters based on quantization”, Monte Carlo
Methods and Appl, 7, 311-320.

[7] Pag\‘es G. and H. Pharn (2005) : “Optimal quantization methods for nonlinear filtering with
discrete-time $\mathrm{o}\mathrm{b}\mathrm{s}\mathrm{e}\mathrm{r}\mathrm{v}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n}\mathrm{s}^{y}’$ , Bernoulli, 11.

[8] Pages G,, Pham H. and J. Printems (2004) : “Optimal quantization methods and applications
to numerical problem s irr finance” , Handbook of computational and nu merical methods in finance,
ed S. Rachev, Birkhauser.

[9] Pham $\mathrm{H}_{2}$. Runggaldier W. and A. Sellami (2005) : “Approximation by quantization of the filter
process and applications to optimal stopping problems under partial observation”, Monte Carlo
Methods and Applications, 11, 57-82.

[10] Sellami A. (2004) : “Nonlinear filtering with observation quantization”, Preprint, Laboratoire
de Probabilit\’es et mod\‘eles aleatoires, $\mathrm{U}\mathrm{n}\mathrm{i}\mathrm{v}\mathrm{e}\mathrm{r}\mathrm{s}\mathrm{i}\mathrm{t}\mathrm{e}^{J}\mathrm{s}$ Paris 6 & 7 (France).

[11] Sellami A. (2005) : “Quantization based filtering method using first order approximation”,
Preprint PM A-1009.

[12] Sellami A. (2005) : Methodes de quantification optimale en filtrage et appl cations en finance,

Phd Thesis, University Paris Dauphine


