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1 Introduction
Let $N\geq 3$ , $\Omega\subset \mathbb{R}^{N}$ be a smooth bounded domain, $\lambda\in \mathbb{R}$ , $q\in(2, 2^{*})$

($2^{*}:=2N/(N-2)$ denotes the critical exponent of the Sobolev embedding
$H_{0}^{1}\mathrm{c}arrow L^{r})$ and $u_{0}\in L^{\infty}$ . In this paper, we are concerned with the existence
of an $L^{\infty}$-global bounds of global-in-time solutions of the following parabolic
problems:

(P) $\{$

$\partial u/\partial t$ $=$ $\Delta u+\lambda u+u|u|^{q-2}$ in $\Omega \mathrm{x}(0, T_{m})$ ,
$u=0$ on an $\mathrm{x}$ $(0, T_{m})$ ,
$u=u_{0}$ in $\Omega \mathrm{x}\{0\}$

where $T_{m}$ denotes the maximal existence time of the classical solution of (P).
It is well-known that (P) appears as a model which describes various kinds

of nonlinear phenomena. Therefore it is important to analyze the asymptotic
behavior of solutions of (P). As for global solutions, to establish the existence
of an $L$“-global bounds is a first step. Concerning this problem, there still
seem to exist some mysteries in the critical case while the subcritical problem
is well-understood so far

数理解析研究所講究録 1464巻 2006年 20-28



$2\uparrow$

We here briefly review some known results. For the sake of simplicity, we
assume that $\lambda=0$ in the rest of this section. Here we recall that a global-
in-time solution $u$ of (P) is said to have an $L^{\infty}$-global bounds if there exists
$C>0$ such that $\sup_{t\geq 0}||u(t)||_{\infty}<C$ .

Proposition 1.1 (Subcritical case) [2]
Suppose that $q\in$ $(2, 2^{*})$ . Then any global-in-time solution $u$ of (P) has

an $L^{\infty}$ global bounds.

On the other hand, the existence of a priori bounds as in the subcritical
case does not hold in the critical case:

Proposition 1,2 (Critical case) [3]
Suppose that $q=2^{*}$ . Let 0 be a ball Then there exists a radially sym-

metric function $u_{0}\in L^{\infty}$ which gives a global-in-time solution $u$ of (P) with

$||u(t)||_{\infty}arrow\infty$ as $tarrow\infty$ .

Observe that, by Proposition 1.2, we cannot expect the existence of a pri-
ori $L^{\infty}$-global bounds for global-in-time solutions in the critical case. There-
fore it is important to seek the condition which assures the existence of such
a global bounds.

The main purpose of this note is to shed some new light on and to give
an answer for this problem from the variational analytical point of view.

2 Main Result
Hereafter we always assume that $u$ denotes a global-in-time solution of (P).

Multiplying (P) by $\partial u(t)/\partial t$ and integrating it over $\Omega$ , we have

$|| \frac{\partial u(t)}{\partial t}||_{2}^{2}=-\frac{d}{dt}J_{\lambda}(u(t))$ , (2.1)

where $J_{\lambda}$ denotes the energy (or Lyapunov) functional associated to (P)
defined by

$J_{\lambda}(u)= \frac{1}{2}||\nabla u||_{2}^{2}-\frac{\lambda}{2}||u||_{2}^{2}-\frac{1}{q}||u||_{q}^{q}$ .
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Hence $J_{\lambda}(u(t))$ is nonincreasing in $t$ . Moreover, it is well known that

if $T_{m}<$ $\mathrm{o}\mathrm{o}$ , then $J_{\lambda}(u(t))\geq 0$ for $t\in[\mathrm{O}, \infty)$ , (2.2)

see e.g. [11].
By (2.1) and by (2.2), for any (global) solution $u$ of (P), there exists $d\geq 0$

such that

$\lim_{larrow\infty}J_{\lambda}(u(t))=d$ . (2.3)

In order to state our main result, we have to recall some notion from
variational analysis.

Definition 2.1 $((\mathrm{P}\mathrm{S})-\mathrm{c}\mathrm{o}\mathrm{n}\mathrm{d}\mathrm{i}\mathrm{t}\mathrm{i}\mathrm{o}\mathrm{n})$

Let $S\subset H_{0}^{1}$ .
(a) $(u_{n})$ is said to be a Palais-Smale sequence of $J_{\lambda}$ at level $d$ in $S((\mathrm{P}\mathrm{S})_{d^{-}}$

sequence in $S$) if
$(u_{n})\subset S$, $J_{\lambda}(u_{n})arrow d$, $(dJ_{\lambda})_{u_{n}}arrow 0$ in $(H_{0}^{1})^{*}$

where $(dJ_{\lambda})_{u_{n}}$ denotes the Frechet derivative of $J_{\lambda}$ at $u_{n}$ in $H_{0}^{1}$ .
(b) $J_{\lambda}$ is said to satisfy the Palais-Smale condition at level $d$ in $S((\mathrm{P}\mathrm{S})_{d^{-}}$

condition in $S$) if any (PS)$)_{d}$ -sequence in $S$ contains a strongly convergent
subsequence in $H_{0}^{1}$ .

Let $u$ be a (global) solution of (P). We introduce the $(\mathrm{P}\mathrm{S})_{d}$ condition
along the orbit $u$ .

Definition 2.1 ((PS)-condition along the orbit)
$J_{\lambda}$ is said to satisfy the Palais-Sm $ale$ condition along $u$ ((PS) condition

along $u$ ) when $J_{\lambda}$ satisfies the $(\mathrm{P}\mathrm{S})_{d}$ condition in $S=\{u(t);t\in(0, \infty)\}$

where $d$ is given by (2.3).

Remark 2,1

It is easy to see that $J_{\lambda}$ satisfies the (PS)-condition along $u$ if there exists
$U$ such that $J_{\lambda}$ satisfies the $(\mathrm{P}\mathrm{S})_{d}$ -condition in $U$ and $\{u(t);t\in(0, \infty)\}\subset U$ .

Our main theorem gives a sufficient and necessary condition (on $u_{0}$ or $u$

and $J_{\lambda}$ ) for the existence of an $L$“-global bounds of $u$ in terms of the (PS)-
condition. Observe that our main theorem does not require the subcriticality
of $q$ .
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Theorem 2.1 (Main Theorem)
Let $q\in(2,2^{*}]$ and $d= \lim_{t\prec\infty}J_{\lambda}(u(t))$ . Then the following assertion (a)

and (b) are equivalent
(a) $J_{\lambda}$ satisfies the $(\mathrm{P}\mathrm{S})_{d}$ -condition along $u$ .
(b) $u$ has an $L^{\infty}$ -global bounds.

Now we shall see some corollaries which follow easily from the main the-
orem.

For $q<2^{*}$ , it is well known that $J_{\lambda}$ satisfies the $($PS $)_{d}$-condition for any
$d\in \mathbb{R}$ and for any A 6 $\mathbb{R}$ , see e.g. [12, Chapter $\mathrm{I}\mathrm{I}$ , Proposition 2.2]. Hence
by Remark 2.1 and by Theorem 2.1, we again obtain Proposition 1.1.

Corollary 2.1 (Subcritical case, Proposition 1.1)
Let $q\in(2,2^{*})$ and let A $\in$ R. Then $u$ has an $L^{\infty}$ -global bounds.

Let $q=2^{*}$ and $d<S^{N/2}/N$ . Then it is well known that $J_{\lambda}$ satisfies
the $(\mathrm{P}\mathrm{S})_{d}$-condition, see [8]. Hence Remark 2.1 and Theorem 2.1 yield the
following.

Corollary 2.2 (Critical case, Brezis-Nirenberg type)
Let $q=2^{*}$ , A $\in \mathbb{R}$ and $d<S^{N/2}/N$ . Then $u$ has an $L^{\infty}$ -global bounds.

Let $\Omega_{a}:=\{x\in \mathbb{R}^{m};1<|x|_{\mathbb{R}^{m}}<2\}$ be an annulus, $k\in \mathrm{N}$ and $\Omega:=$

$\Omega_{a}\mathrm{x}$ $\cdots \mathrm{x}$ $\Omega_{a}$ ( $k$ times). Also let $G:=SO(m)$ $\oplus\cdots\oplus SO(m)$ ( $k$ fold). Here
we recall that $J_{\lambda}$ satisfies the $(\mathrm{P}\mathrm{S})_{d}$-condition in the $G$-invariant subspace
of $H_{0}^{1}$ . It is also obvious that if $u_{0}$ is $G$-invariant, then the corresponding
solution of (P) is also $G$-invariant. Hence by Remark 2.1 and Theorem 2.1,
we have:

Corollary 2,3 (Critical, $G$-invariant case)
Let $q=2^{*}$ and A $\in$ R. Let $\Omega$ and $G$ be as above and $u_{0}$ be a G-invariant

function. Then $u$ has an $L^{\infty}$ -global bounds.

As for the solution which blows up in infintie time (see e.g, Proposition
1.2), Theorem 2.1 yields:

Corollary 2.4 (Infinite time blow up solution)
Let $q\in(2,2^{*}]$ . Assume that $u$ blows up in infinite time in the $L^{\infty}$ -sense.

Then $J_{\lambda}$ does not satisfy the (PS) $)_{d}$ -condition along $u$ .
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3 Proof of Theorem 2.1
Now let us give the sketch of the proof of Theorem 2.1. In the following,
$q_{0}:=N(q-2)/2$ (which is the critical exponent of (P) as a parabolic problem,
see [6] $)$ .

The proof of $(\mathrm{a})\Rightarrow(\mathrm{b})$ consists of two steps. The first step, Proposition
3.1, involves the compactness propertiy of the orbit in $L^{q0}$ . In the latter
step, we establish the relation between the existence of an $L^{\infty}$-global bounds
and the compactness of the orbit in $L^{q0}$ (Proposition 3.2). The proof of
Theorem 2.1 is in the last of this section. In this section, $u$ always denotes a
global-in-time solution of (P).

Proposition 3.1
Let $q\in(2,2^{*}]$ . Assume that $J_{\lambda}$ satisfies $(\mathrm{P}\mathrm{S})_{d}$ -condition along $u$ . Then

for any $t_{n}arrow\infty$ , there exists a subsequence of $(t_{n})$ (still denoted by the same
symbol) and $u\in L^{q0}$ such that $u(t_{n})arrow u$ strongly in $L^{q0}$ .

Proof.
Take any $t_{n}arrow$ oo and let $u_{n}(s):=u(t_{n}-1/2+s)$ for $s\in[0, 1]$ . Then it is

easy to see that there exists a subsequence of $(t_{n})$ (still denoted by the same
symbol) and $L\subset[0, 1]$ with measure zero such that, for all $s\in[0, 1]\backslash L$ ,

$(u_{n}(s))$ is a $(\mathrm{P}\mathrm{S})_{d}$-sequence, (3.1)
$||u_{n}(s)||_{q}^{q}arrow d/(1/2-1/q)$ as $narrow\infty$ . (3.2)

By the assumption of the Proposition and (3.1), $(u_{n}(s))$ is relatively compact
in $H_{0}^{1}$ for $s\in[0,1]$ $\backslash L$ . Hence by the continuity of $H_{0}^{1}\mathrm{c}arrow L^{q}$ , $K(s):=$
$\overline{\{u_{n}(s)\}}^{L^{q}}$ is a compact set in Lq. Then by Theorem 1 of [6], for any $\epsilon$ $>0$

and for any $s\in[0, 1]\backslash L$ , there exists C5(g, $s$ ) $:=\delta(\epsilon, K(s))>0$ such that

$||u_{n}(s+\sigma)||_{q}^{q}\leq||u_{n}(s)||_{q}^{q}+\epsilon/2$ , $\forall n$ , $\forall\sigma\in[0, \delta(\epsilon, s)]$ . (3.3)

Consequently, we find that

$||u_{n}(s)||_{q}^{q}\leq d/(1/2-1/q)+\epsilon$, $\forall s\in[1/4,3/4]$ , $\forall n>N$ (3.4)

for some $N$ . Hence, the decreasing property of $J_{\lambda}(u(t))$ in $t$ together with
(3.4) yields

$||\nabla u_{n}(s)||_{2}\leq C$, $\forall s\in[1/4,3/4]$ , $\forall n>N$ (3.5)
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for some $C>0$ .

Case 1. Assume that $q<2^{*}$ . Then $q_{0}(:=N(q-2)/2)<2^{*}$ . Hence by the
compactness of $H_{0}^{1}\mathrm{c}arrow L^{q0}$ and by (3.5) with $s=1/2$ , we have the conclusion
(recall that $u_{n}(1/2)=u(t_{n})$ ).

Case 2. Assume that $q=2^{*}$ . Note that, in this case, $q_{0}=q=2^{*}$ . Hereafter
we denote both of $q$ and $q_{0}$ by 2*. By (3.5), by the continuity of $H_{0}^{1}\prec$ $L^{2^{*}}$

and by the compactness of $H_{0}^{1}\mapsto L^{2}$ , we can find $u(1/2)$ such that

$u_{n}(1/2)arrow u(1/2)$ weakly $:\mathrm{n}$ $L^{2^{*}}$ , (3.6)
$u_{n}(1/2)arrow u(1/2)$ strongly in $L^{2}$ (3.7)

as $narrow\infty$ , taking subsequence if necessary (recall that $u_{n}(1/2)=u(t_{n})$ ).
Especially by (3.6) and (3.4),

$||u(1/2)||_{2^{*}}^{2^{*}}\leq||u_{n}(1/2)||_{2^{*}}^{2^{*}}+o(1)\leq d/(1/2-1/q)+o(1)$ (3.8)

as $narrow\infty$ .
Take any $\sigma\in[1/4,3/4]\backslash L$ . Then by (3.1) and by the assumption of the

Proposition, $(u_{n}(\sigma))$ has a strongly convergent subsequence in $H_{0}^{1}$ . Hence,
there exists $u(\sigma)\in H_{0}^{1}$ such that

$u_{n}(\sigma)arrow u(\sigma)$ strongly in $L^{2^{*}}$ and in $L^{2}$ (3.8)

taking further subsequence if necessary. Especially by (3.2) and by (3.9), we
have

$d/(1/2-1/q)=||u_{n}(\sigma)||_{2}^{2}:+o(1)=||u(\sigma)||_{2^{*}}^{2^{*}}$ (3.10)

as $narrow\infty$ .
Moreover, by (3.7) and (3.9),

$||u(\sigma)-u(1/2)||_{2}$ $\leq$ $||u( \sigma)-u_{n}(\sigma)||_{2}+||\frac{\partial u_{n}}{\partial s}||_{L^{2}(0,\mathrm{I};L^{2})}$

$+||u(1/2)-u_{n}(1/2)||_{2}$

$=o(1)$ , (3.11)

thus we have

$u(1/2)=u(\sigma)$ . (3.1)
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Hence by (3.10), (3.12) and (3.8),

$d/(1/2-1/q)$ $=$ $||u(\sigma)||_{2^{*}}^{2^{*}}=||u(1/2)||_{2^{*}}^{2^{*}}\leq||u_{n}(1/2)||_{2^{*}}^{2^{*}}+o(1)$

$\leq$ $d/(1/2-1/q)$

as $narrow\infty$ . Therefore combining this relation with (3.6), we have $u(t_{n})=$

$u_{n}(1/2)arrow u(1/2)$ strongly in $L^{2^{*}}=L^{q0}$ , thus the conclusion. 1

Proposition 3.2
Assume that for any $t_{n}arrow\infty$ , there exists a subsequence of $(t_{n})$ (still

denoted by the same symbol) and $u$ such that $u(t_{n})arrow u$ in $L^{q0}$ . Then $u$ has
an $L^{\infty}$ -global bounds.

Proof
Assume that the conclusion is false. Then there exist $(x_{n})\subset$ St and

$t_{n}arrow$ oo such that

$||u(t_{n})||_{\infty} arrow\infty,\sup_{\mathrm{t}\in(0,t_{n}]}||u_{n}(t)||_{\infty}=||u(t_{n})||_{\infty}$, $||u(t_{n})||_{\infty}/2\leq|u(x_{n}, t_{n})(3.13)$

Let $y$ , $s$ , $v_{n}$ be

$y=\lambda_{n}(x-x_{n})_{7}s=\lambda_{n}^{2}(t-t_{n})$ , $\lambda_{n}^{2/(q-2)}v_{n}(y, s)=u(x, t)$

for $\lambda_{n}$ with $\lambda_{n}^{2/(q-2_{\grave{j}}}=||u(t_{n})||_{\infty}$ . Note that by virtue of the choice of $\lambda_{n}$ and
(3.13), we have $\lambda_{n}arrow$ oo and

$\sup_{s\in[-1,0]}||v_{n}(s)||_{\infty}\leq||v_{n}(0_{s})||_{\infty}=1$ , (3.14)

$|v_{n}(0_{y}, 0_{s})|\geq 1/2$ . (3.15)

By the boundedness of $\Omega$ and the homogeneous Dirichlet condition, we
can assume that $x_{n}arrow x\in$ int $\Omega$ taking subsequence if necessary, see e.g.
[5] or [9]. By (3.14), $||v_{n}||_{L}\infty(-1,\delta:L\infty)<2$ holds for some $\delta>0$ which is
independent of $n$ . Then, by the standard parabolic estimate, we see that

$v_{n}arrow v$ in $C_{1\mathrm{o}\mathrm{c}}(\mathbb{R}^{N}\mathrm{x}(-1, \delta))$ (3.16)

holds for $v\in C_{1\mathrm{o}\mathrm{c}}(\mathbb{R}^{N}\mathrm{x} (-1, \delta))$ .
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Also by the straightforward calculation using (2.3),

$|| \frac{\partial v_{n}}{\partial s}||\begin{array}{ll}2 L^{2}(-1,\delta..L^{2}) =\end{array}|| \frac{\partial u}{\partial t}||_{L^{2}(t_{n}-1/\lambda_{n}^{2},t_{n}+\delta/\lambda_{n}^{2};L^{2})}^{2}$

$=$ $J_{\lambda}(u(t_{n}-1/\lambda_{n}^{2}))-J_{\lambda}(u(t_{n}+\delta/\lambda_{n}^{2}))$

$arrow$ $d-d=0$

folows. Hence the same argument as in (3.11) implies that $v$ is independent
of $s$ . Moreover by (3.15) and by (3.16), $|v(0_{y})|\geq 1/2$ . Therefore there exists
$R>0$ sufficientlly small such that

$||v||_{q_{0},B(0_{j}R)}=:\eta>0$ . (3.17)

Since $x\in$ int $\Omega$ , $B(x;\epsilon)\subset\Omega$ holds for small 6. Observe that for large $n$ ,
$B(x_{n};R/\lambda_{n})\subset B(x, \epsilon)$ . Then by (3.17) and (3.16),

0 $<$ $\eta=||v||_{q_{0},B(0;R)}=||v_{n}(0_{s})||_{q0,B(0_{j}R)}+o(1)$

$=$ $||u(t_{n})||_{q_{0},B(x_{n};R/\lambda_{n})}+o(1)\leq||u(t_{n})||_{q_{0},B(x_{j\in)}}+o(1)$ (3.18)

for small $\in$ $>0$ .
On the other hand, the assumption of the Proposition yields

$||u(t_{n})||_{q_{0},B(x_{j\mathcal{E})}}narrowarrow|\infty|u||_{q_{0},B(x\cdot\epsilon)},\epsilonarrowarrow 00$

along an appropriate subsequence, which is absurd in view of (3.18). 1

Proof of Theorem 2.1 The assertion (a) $\Rightarrow(\mathrm{b})$ immediately follows from
Proposition 3.1 and 3.2.

The assertion (b) $\Rightarrow(\mathrm{a})$ follows from a typical argument for the verifica-
tion of (PS)-condition in the variational analysis. 1
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