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概要

We are concerned with the Ostrovsky equation, which is (le-

rived from the theory of weakly nonlinear long surface and inter al
waves in shallow water under the presence of rotation. Based on
a variational method, we show the existence of periodic traveling
wave solutions.

1 Introduction
Waves in shallow water have been the subject for intensive studies. Well
known examples include the famous Korteweg-de Vries $(\mathrm{K}\mathrm{d}\mathrm{V})$ equation,
which is derived as a model for weakly nonlinear long waves. If the fluid
is rotating and the wave frequency is greater than the Coriolis frequency,
then the evolution is described by the so called Ostrovsky equation [9]

$(u_{t} -\beta u$
エエエ

$+(u^{2})_{x})_{x}=\epsilon^{2}u_{7}$ $u=u(x, t)$ , $x\in R$ , $t>0$ , (1)

where $\epsilon>0$ , $\beta\in R$ are constant coefficients. The equation (1) is also
referred to as the rotation-modified $\mathrm{K}\mathrm{d}\mathrm{V}$ equation [1].

In a recent nice paper [8], Y. Liu and V. Varlamov investigated the
existence and stability of solitary waves for (1). Here a solitary wave
solution of (1) means a traveling wave solution; namely, by abuse of
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notation, the solution has the form $u(x, t)=u(x-ct)$ with a parameter
$c\in R$ which represents the velocity and $u=u(x)$ verifies

$(-cu-\beta u_{xx}+u^{2})_{xx}=\epsilon^{2}u$ , $x\in R$ . (2)

Part of main accomplishments in [8] states that if $\beta<0$ and $c<$

$\sqrt{140|\beta|}|\epsilon|$ then (2) has no nontrivial solitary wave, while $\beta>0$ and
$c$ $<2\sqrt{\beta}|\epsilon|$ then (2) admits a nontrivial one.

This note, on the other hand, is focused on the existence of periodic

traveling waves for the Ostrovsky equation. To be specific, we deal with
the existence of periodic solutions to (2). Although a family of periodic

traveling waves for the Ostrovsky equation is numerically indicated to

exist $[3][7]$ , there seems little analytical attempt so far; we make up for

such lack of issues. For related nonlinear, dispersive wave equations, we
refer to [2] for instance.

Before formulating our main achievements, we transform (2) in order

to clarify the point of the problem. In (2) we make a change $uarrow-u$ ,

$carrow-c$ so that (2) becomes

$(-cu+\beta u_{xx}+u^{2})_{xx}=-\epsilon^{2}u$ .

Therefore the sign of $\beta$ corresponds to the sign of the coefficient $\epsilon^{2}$ , and

it is legitimate to assume $\beta>0$ without loss of generality. Finally the

change of variables $xarrow\sqrt{\beta}x$ and $\epsilon^{2}arrow$ $\epsilon^{2}/\beta$ brings us to the equation

$(-cu+u^{2}+u_{xx})_{xx}=\pm\epsilon^{2}u$ , $u=u(x)$ , $x\in R$ . (3)

We intend to prove the existence of periodic solutions, whose period will

be denoted by $L$ . We recall once again that $\epsilon^{2}$ is a fixed constant and $c$

is a parameter representing the velocity.

Now our main results of this article reads as follows.

Theorem 1 In the $+$ sign case, there exists a periodic solution to (3)

for every period $L>0$ . Furthe rmore if $L>2\sqrt{6(1+\epsilon^{-2})}$ , the velocity $c$

does not vanish. While in the - sign case, there exists a periodic traveling

wave solution for every period $L>0$ . Furthermore if $L< \min\{1, |\epsilon|/2\}_{7}$

then there holds $c<-(L^{-2}-L)/2<0$ .
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The principal tool of our proof is a variational technique; we present two
methods. One is to increase the number of unknown variable and to seek
for a critical point of a certain functional of two unknown variables. The
strategy is then akin to the one developed in other higher-order equation
$[4][5][6]$ . The other is to utilize an integral term, which is somewhat
familiar in this field of researches. In our case, however, each step is
elementary and much transparent.

2 Proof of the Theorem
Our aim is to show the existence of periodic solutions for the fourth-
order equation (3). First we deal with the $+$ sign case and introduce an
auxiliary variable

$v=-cu+u^{2}+u_{xx}$ , (4)

which makes it possible that transforms the single equation (3) into the
system of second-order equation

$\{$

$u_{xx}+u^{2}-cu=v$

$v_{xx}=\epsilon^{2}u$ .
(5)

We remark that to recover (3) from (5), auxiliary variable $v$ in (4) is
allowed to be up to additive constants; namely, with regard to $u$ variable,
in place of (4), $v=-cu+u^{2}+u_{xx}-\mathrm{A}$ (A $\in R$) works as well.

To proceed further, we fix an interval $(0, l)$ $(l>0)$ for simplicity, which
turns out to be without loss of generality. Define functional

$J(u, v):= \int_{0}^{l}(\frac{1}{2}u_{x}^{2}+\frac{1}{2\epsilon^{2}}v_{x}^{2}+uv)dx-\frac{1}{3}\oint_{0}^{l}u^{3}dx$. (6)

The functional$\mathrm{s}$ $J$ is handled on a function space

$A:= \{(u, v)\in(H^{1}(0, l))^{2}|\int_{0}^{l}udx=0$ , $\int_{0}^{l}u^{2}dx=1\}$ . (7)

It can be seen that the critical point $(u, v)$ of $J$ among $A$ verifies

$\{$

$u_{xx}=v-u^{2}+cu+$ A in $0<x<l$
$v_{xx}=\epsilon^{2}u$ in $0<x<l$
$u_{x}=v_{x}=0$ at $x=0$ , $l$ ,

(8)
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where constants $c$ and A originate in the Lagrange multiplier of the con-
straints $\int_{0}^{l}u^{2}dx=1$ and $\int_{0}^{l}udx=0$ , respectively, In particular, $u$ real-
izes a solution to (3) with $u_{x}=u_{xxx}=0$ at $x=0$, $l$ .

If we extend $u$ over the interval $(0, 2l)$ by the reflection

$u(x):=\{$
$u(x)$ for $0\leq x\leq l$

$u(2l-x)$ for $l\leq x\leq 2l$ ,

then we obtain a desired periodic solution with period $L:=2l$ . Here)

with abuse of notation, the extended $u$ has been denoted by the same.
Now the following proposition will be settled.

Proposition 2 There exists a global minimizer $(u,\overline{v})$ of $J$ on A. More-
over if $l>\sqrt{6(1+\epsilon^{-2})}$, then the Lagrange multiplier $c$ in (8) does not
vanish.

Proof. First we ascertain that $J$ is bounded below on $A$. To do so, we
compute

$| \int_{0}^{l}u^{3}dx|\leq|u|_{L^{\infty}(0,l)}\int_{0}^{l}u^{2}$ ax $\leq\sqrt{l}|u_{x}|_{L^{2}(0,l)}$

$| \int_{0}^{l}uvdx|=|\int_{0}^{l}u(x)(v(0)+\int_{0}^{x}v_{x}(y)dy)dx|$

$\leq\int_{0}^{l}|u(s)|\sqrt{l}|v_{x}|_{L^{2}(0,l)}dx\leq l|v_{x}|_{L^{2}(0,l)}$ ,

by virtue that $\int_{0}^{l}udx=0$ , $\int_{0}^{l}u^{2}dx=1$ for $(u, v)\in A$ . We thus infer that

$J(u, v) \geq\frac{1}{2}|u_{x}|_{L^{2}(0,l)}^{2}-\sqrt{l}|u_{x}|_{L^{2}(0,l)}+\frac{1}{2\epsilon^{2}}|v_{x}|_{L^{2}(0,l\}}^{2}-l|v_{x}|_{L^{2}(0,l)}$. (9)

This proves that $J$ is bounded below on $A$ .
Next we take a minimizing sequence $\{(u_{n}, v_{n})\}_{n\in N}\subset A$ for $J$ . We may

assume that $\int_{0}^{f}v_{n}dx=0$ with replacing $v_{n}$ by $v_{n}-l^{-1} \int_{0}^{l}v_{n}dx$ if necessary

since $J(u_{n}, v_{n})=J(u_{n}, v_{n}-l^{-1} \int_{0}^{l}v_{n}dx)$ . Invoking (9) and $\int_{0}^{l}u_{n}dx=0$ ,

we conclude that there exists a subsequence $(u_{n_{m}}, v_{n_{m}})$ such that

$u_{n_{m}}arrow\overline{u}$ , $v_{n_{m}}arrow\overline{v}$ as $n_{m}arrow$ oo
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weakly in $H^{1}(0, l)$ as well as strongly in $L^{2}(0, l)$ . The lower semicontinuity

of $J$ yields
$\lim_{n_{m}arrow}\inf_{\infty}J(u_{n_{m}}, v_{n_{m}})\geq J(\overline{u},\overline{v})$ ,

which implies that $(\overline{u},\overline{v})$ gives a global minimizer.
Finally we establish that $c\neq 0$ if $l>\sqrt{6(1+\epsilon^{-2})}$ . For this purpose,

multiplying $\overline{u}$ and $\overline{v}$ equation of (8) by $\overline{u}$ and $\overline{v}$ , respectively, we deduce,

after integration,

$\int_{0}^{l}\overline{u}\overline{v}dx=\int_{0}^{l}(-\overline{u}_{x}^{2}-c\overline{u}^{2}+\overline{u}^{3})dx=\int_{0}^{l}(-\overline{u}_{x}^{2}+\overline{u}^{3})$ dx-c

$=- \frac{1}{\epsilon^{2}}\int_{0}^{l}\overline{v}_{x}^{2}dx$ ,

from which we find that

$J( \overline{u},\overline{v})=\int_{0}^{l}\frac{1}{2}(\overline{u}_{x}^{2}+\overline{u}\overline{v})+\frac{1}{2}(.\frac{1}{\prime 2}\overline{v}_{x}^{2}+\overline{u}\overline{v})dx-\frac{1}{3}\int_{0}^{l}\overline{u}^{3}dx=\frac{1}{6}\int_{0}^{l}\overline{u}^{3}dx-\frac{c}{2}$ .

On the other hand, $\mathrm{J}(-\mathrm{w}, -\overline{v})\geq J(\overline{u},\overline{v})$ leads to $\int_{0}^{l}\overline{u}^{3}dx\geq 0$ . Therefore
it follows that $J(\overline{u}_{2}v)\geq 0$ so long as $c=0$ .

A simple test function, however, reveals the absurdity. If we put
$u^{0}(x)$ $:=\alpha(x-2^{-1}l)$ and $v^{0}(x):=-u^{0}(x)$ with $\alpha^{2}=12l^{-3}$ , then we
discover

$J(u^{0}, v^{0})=-1+6(1+\epsilon^{-2})l^{-2}<0$

if $l^{2}>6(1+\epsilon^{-2})$ . This contradicts with the fact that $(\overline{u},\overline{v})$ is a global
minimizer. Conseq uently $c>0$ and the proof is completed. $\square$

Remark The reason why we introduce the two-component functional $J$

is that it facilitates for us to choose a test function.

Next we turn our attention to the - sign case. This time we minimize

$J(u):= \int_{0}^{l}(\frac{1}{2}u_{x}^{2}-\frac{\epsilon^{2}}{2}(\partial_{x}^{-1}u)^{2})dx-\frac{1}{3}\int_{0}^{l}u^{3}dx$, (10)

over $A_{u}$ , where $\partial_{x}^{-1}u:=\int_{0}^{x}u(y)dy$ and

$A_{u}:= \{u\in H^{1}(0, l)|\int_{0}^{l}udx=0_{7}\int_{0}^{l}u^{2}dx=1\}$ .
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Proposition 3 There exists a critical point $\overline{u}$ ofJ on $A_{u}$ for every l $>0$ .

Moreover if l $< \min\{1/2, |\epsilon|/4\}$ then it follows that c $<-8^{-1}l^{-2}+l<0$ .

Proof. First we treat the existence of a critical point. Consider the
minimization problem $\min_{u\in A_{u}}J(u)$ . Since $(\partial_{x}^{-1}u)(0)=(\partial_{x}^{-1}u)(l)=0$,

we have
$| \partial_{x}^{-1}u|_{L^{2}(0,l)}\leq\frac{l}{\pi}|u|_{L^{2}(0,l)}\leq\frac{l}{\pi}$.

So a functional $J(u)$ is coercive and there exists a $u_{0}\in A_{u}$ satisfying
$J(u_{0})= \min_{u\in A_{u}}J(u)$ . The critical point $\overline{u}$ satisfies

$\int_{0}^{l}(\overline{u}_{x}\eta_{x}+\epsilon^{2}\partial_{x}^{-1}\overline{u}\partial_{x}^{-1}\eta-\overline{u}^{2}\eta)dx=c\int_{0}^{l}\overline{u}\eta dx$ (11)

for every $\eta\in H^{1}(0, l)$ with $\int_{0}^{l}\eta dx=0$ , where $c$ is a Lagrange multiplier.

Integrating by part, we have

$\{$

$\partial_{x}^{2}\overline{u}-\epsilon^{2}\int_{l}^{x}\int_{\zeta \mathrm{J}}^{y}\overline{u}(s)dsdy-c\overline{u}+\overline{u}^{2}=0$ ,

$\partial_{x}\overline{u}(0)=\partial_{x}\overline{u}(l)=0$ .
(12)

Differentiating (12), we obtain $\overline{u}_{xxx}(0)=\overline{u}_{xxx}(l)=0$ and (3),

Next we show an estimate for the Lagrange multiplier $c$ . We recall that

the period of $\overline{u}$ is $L:=2l$ and hence it is better to consider the equation

satisfied by $\overline{u}$ on the interval $[0, L]$ .

$(-c\overline{u}+\overline{u}^{2}+\overline{u}_{xx})_{xx}=-\epsilon^{2}\overline{u}$ on $0<x<L=2l$ . (13)

Multiplying (13) by $u-$ and noting that $\int_{0}^{L}\overline{u}^{2}dx=2$ , we have

$| \overline{u}_{xx}|_{L^{2}(0,L)}^{2}-2\int_{0}^{L}\overline{u}\overline{u}_{x}^{2}dx+c|\overline{u}_{x}|_{L^{2}\langle 0,L)}^{2}+2\epsilon^{2}=0$ . (14)

Here the sign of $c$ takes effects and we divide our reasoning according to

it.
If $c>0$ , then we derive

$2\epsilon^{2}+c|\overline{u}_{x}|_{L^{2}(0,L)}^{2}+|\overline{u}_{xx}|_{L^{2}(0,L)}^{2}\leq\sqrt{L}|\overline{u}_{x}|_{L^{2}(0,L)}^{3}$

in light of $|\overline{u}|_{L^{\infty}(0,L)}=|\overline{u}|_{L^{\infty}(0,l)}\leq\sqrt{l}|\overline{u}_{x}|_{L^{2}(0,l)}\leq\sqrt{L}|\overline{u}_{x}|_{L^{2}(0,L)}/2$. Taking

account that

$|\overline{u}_{x}|_{L^{2}(0,L)}^{2}\leq|\overline{u}|_{L^{2}(0,L)}|\overline{u}_{xx}|_{L^{2}\langle 0,L)}=\sqrt{2}|\overline{u}_{xx}|_{L^{2}(0,L)}$ ,
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we infer that $|\overline{u}_{x}|_{L^{2}(0,L)}\leq 2\sqrt{L}$ and as a by-product $c<2L$ and $\epsilon^{2}\leq 4L^{2}$

must be fulfilled.
If $c<0$ in (14), we find that

$2\epsilon^{2}+|\overline{u}_{xx}|_{L^{2}(0,L)}^{2}\leq\sqrt{L}|\overline{u}_{x}|_{L^{2}(0,L)}^{3}+|c||\overline{u}_{x}|_{L^{2}(0,L)}^{2}$ .

A similar procedure as above leads to

$|\overline{u}_{x}|_{L^{2}(0,L)}^{4}\leq 2\sqrt{L}|\overline{u}_{x}|_{L^{2}(0,L\rangle}^{3}+2|c||\overline{u}_{x}|_{L^{2}(0,L)}^{2}$

and therefore

$|\overline{u}_{x}|_{L^{2}\langle 0,L)}\leq\sqrt{L}+\sqrt{L+2|c|}\leq 2\sqrt{L+2|c|}$

$2=|u|_{L^{2}(0,L)}^{2}\leq L^{2}|u_{x}|_{L^{2}\{0,L)}^{2}\leq 2L^{2}(L+2|c|)$ .

To summarize, if there holds $l=L/2< \min\{1/2, |\in|/4\},\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{n}$ we can
clude that $c<-(L^{-2}-L)/2<0$ . This completes the proof. $\square$

Remark A straight modification of the functional $J$ can be applied to
prove the existence of solutions as well in the $+$ sign case.
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