
ee

Stability of steady-state solutions
with transition layers for a bistable

reaction-diffusion equation 1

Michio URANO (浦野 道雄) 2

Department of Mathematical Science,
School of Science and Engineering, Waseda University
3-4-1 Ohkubo, Shinjuku-ku, Tokyo 169-8555, JAPAN

(早稲田大学大学院理工学研究科数理科学専攻)

1 Introduction
In this paper we will consider the following reaction-diffusion problem :

$\{$

$u_{t}=\epsilon^{2}u_{xx}+f(x, u)$ , $0<x$ $<1$ , $t>0$ ,
$u_{x}(\mathrm{O}, t)$ $=u_{x}(1, t)=0$ , $t$ $>0$ ,
$u(x, 0)=u_{0}(x))$ $0<x<1$ .

(1.1)

Here $\epsilon$ is a positive parameter and

$f(x, u)=u(1-u)(u-a(x))\dot,$

where $a$ is a $C^{2}[0,1]$ -function with the following properties :
(A1) $0<a(x)<1$ in $[0, 1]$ ,
(A2) if $\Sigma$ is defined by

$\Sigma:=\{x\in (0, 1); a(x)=1/2\}$ , (A2)

then I is a finite set and $a’(x)\neq 0$ at any $x\in\Sigma$ ,
(A3) $a’(0)=a’(1)=0$ .
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It is well known that (1.1) describes phase transition phenomena in vari-
ous fields such as physics, chemistry and mathematical biology. This problem
is a gradient system with the following energy functional :

$E(u)$ $:= \int_{0}^{1}\{\frac{1}{2}\epsilon^{2}|u_{x}|^{2}+W(x, u)\}dx$ ,

where
$\mathrm{T}/V(x, u).---\int_{0}^{\mathrm{u}}f(x, s)ds$ .

For every solution of (1.1), $E(u(\cdot, t))$ is decreasing with respect to $t$ and it
is well known that $u(x, t)$ is convergent to a solution of the corresponding
steady-state problem as $tarrow\infty \mathrm{J}$ . The graph of $W$ has two local minimums
at $u=0$ and $u=1$ ; so that we can regard both $u=0$ and $u=1$ as stable
states when $\epsilon$ is sufficiently small. Furthermore, the minimal energy state
changes according as $a(x)$ is greater than 1/2 or not). if $a(x)<1/2$ , then
$W$ attains its minimum at $u=1$ , while if $a(x)>1/2$ , then the minimum of
$W$ is attained at $u=0$ . The interaction of the bistability and the spatial

inhomogeneity yields a complicated structure of solutions to (1.1).

In this point of view, one of the most important problems for (1.1) is to

know the structure of steady state solutions. So we will mainly consider the

following steady state problem associated with (1.1) :

$\{$

$\epsilon^{2}u’+f(x, u)=0$ in $(0, 1)$ , (1.1)
$u’(0)=u’(1)=0$ ,

where ‘” denotes the derivative with respect to $x$ .

Among all solutions of (1.3), we are interested in a solution with transition
layers. We have complete information about the locations of transition layers.

Here transition layer is a part of a solution $u$ where $u(x)$ drastically changes

from 0 to 1 or 1 to 0 when $x$ varies in a very small interval. For (1.3), we can
observe a cluster of transition layers. This is called a multi-layer, while a

single transition layer is called a single-layer. It is known that any single- or
multi-layer appears only in a vicinity of a point in I. These results are proved

by Ai, Chen and Hastings [1] (see also $\mathrm{U}\mathrm{r}\mathrm{a}\mathrm{n}\mathrm{o}_{7}$ Nakashima and Yamada [7],

whose method of proof is different from the method in [1] $)$ , and they are
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given in Theorems 2.6 and 2.7. It should be noted that the existence of such
solutions is also discussed in [1] by shooting method. Furthermore, they have
also discussed the stability problem of such solutions with use of Sturm’s
comparison theorem (Proposition 3.1). The study of stability properties of
such solutions is also a great important problem.

For (1.3), Angenent, Mallet-Paret and Peletier [3] proved that there exist
solutions with single-layers in the form of transitions from minimal energy
state to minimal energy state when $\epsilon$ is sufficiently small. They also showed
that all solutions with such transition layers are stable. See also Hale and
Sakamoto [4], who discussed solutions with single-layers connecting from non-
minimal energy state to nonminimal energy state; all of their solutions are
unstable. In a special case that $\int_{0}^{1}f(x, u)du=0$ , which is called a balanced
case, Nakashima $[5, 6]$ has shown the existence of solutions with transition
layers. Especially, in [6] she has proved the existence of a solution with
multi-layers and obtained its stability property.

The main purpose of this paper is to study stability properties of a solu-
tion $u_{\epsilon}$ of (1.3) which possesses transition layers by using different approach
from Ai, Chen and Hastings [1]. Consider the following linearized problem :

$\{$

$-\epsilon^{2}\phi’-f_{u}(x, u_{\epsilon})\phi=\lambda\phi$ in $(0, 1)$ ,
$\phi’(0)$ $=\phi’(1)=0$ .

(14)

We will show that all solutions with transition layers are non-degenerate. We
also study the stability property of $u_{\epsilon}$ in terms of Morse index. The notion
of non-degeneracy and Morse index is defined as follows :

Definition 1.1 (Non-degeneracy). Let $u_{\epsilon \mathrm{i}}$ be a solution of (1.3). If (1.4)
does not admit zero eigenvalue, then $u_{\epsilon}$ is said to be non-degenerate.

Definition 1.2 (Morse index). Let $u_{\epsilon}$ be a solution of (13). The Morse
index of $u_{\epsilon}$ is defined by the number of negative eigenvalues of (1.4).

In general, the stability property of $u_{\xi j}$ has a close relationship to its
profile. In particular, the results of Angenent, Mallet-Paret and Peletier [3],
and Hale and Sakamoto [4] (Proposition 4.1) tell us that the stability of
solutions with single-layers is determined by the direction of each transition
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layer. Therefore we can expect that such facts remain valid for solutions
with multi-layers. Indeed, we can show that the Morse index of a solution
with multi-layers is equal to the number of transition layers from nonminimal
energy state to nonminimal energy state (Theorem 4.2). Our method of proof
is based on the Courant $\min-\max$ principle and is different from that of Ai,
Chen and Hastings [1].

The content of this paper is as follows : In Section 2 we will collect some
information on profiles of solutions with transition layers . In Section 3 we
will recall the theory of Sturm-Liouville for the eigenvalue problem. Finally,
Section 4 is devoted to the stability an alysis for solutions with transition
layers.

2 Profiles of steady-state solutions with tran-
sition layers

In this section, we will give some important properties concerning to the
profiles of solutions with transition layers. Such oscillating solutions have
at most a finite number of intersecting points with $a$ in $(0, 1)$ . So, we take
account of the nllKnber of these points. Let $u_{\epsilon}$ be a solution of (1.3) and set

—–.{x\in (0, 1); $u_{\epsilon}(x)=a(x)$ }. (2.1)

We now introduce the notion of $n$-mode solutions.

Definition 2.1. Let $u_{\epsilon}$ be a solution of (1.3) and set—by(2.1). If $\neq_{-}^{-}-=n$ ,

then $u_{\epsilon}$ is called an $n$-mode solution.

In what follows, we denote the set of all of $n$-mode solutions by $S_{n,\epsilon}$ . We
collect some properties of solutions in $S_{n,\epsilon}$ . By the maximum principle, one
can easily see that any $u_{\xi j}\in S_{n,\epsilon}$ satisfies $0<u_{\epsilon}(x)$ $<1$ in $(0, 1)$ .

Lemma 2.2. For $u_{\epsilon}\in S_{n,\epsilon}$ , assume $\Xi=\{\xi_{k}\}_{k=1}^{n}$ with $0<\xi_{1}<\xi_{2}<\cdots<$

$\xi_{n}<1$ . Then there exist exactly $n-1$ critical points $\{(_{k}\}_{k=1}^{n-1}$ of $u_{\epsilon}$ satisfying

$0<\xi_{1}<\zeta_{1}<\xi_{2}<\cdots<\zeta_{n-1}<\xi_{n}<1$ ,

provided that $\epsilon$ is sufficiently small
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Lemma 2.3. For $u_{\epsilon}\in S_{n,\epsilon:}$ let 4’ be any point $\mathrm{i}n-\cup-$ and define $U_{\epsilon}$ by $U_{\xi j}(t)=$

$u_{\epsilon}(\xi^{\mathit{6}}+\epsilon t)$ . Then there exists a subsequence $\{\epsilon_{k}\}\downarrow 0$ such that $\xi_{k}=\xi^{\epsilon_{k}}$ and
$U_{k}=U_{\epsilon_{k}}$ satisfy

$\lim_{karrow\infty}\xi_{k}=\xi^{*}$ ant $\lim_{karrow\infty}U_{k}=U$ in $C_{loc}^{2}(\mathbb{R})$ ,

with some $\xi’\in[0,1]$ and $U\in C^{2}(\mathbb{R})$ . Furthermore, if $\xi^{*}\in\Sigma$ and $\dot{U}(\xi^{*})>0$

(resp. $\dot{U}$ $(\xi^{*})<0$), then $U$ is a unique solution of the following problem:

$\{$

$\ddot{U}+U(1-U)(U-1/2)=0$ in $\mathbb{R}$ ,
$\dot{U}$ $>0$ (resp. $\dot{U}<0$ ) in $\mathbb{R}$ ,

$U(-\infty)=0$ , $U(\infty)=1$ (resp. $U(-\infty)=1$ , $U(\infty)=0$),

$U(0)=1/2$ ,

where ‘ $\cdot$ , denotes the derivative with respect to $t$ .

Theorem 2.4. For $u_{\epsilon}\in S_{n,\epsilon}$ , let $\xi_{1}[perp]’\xi_{2}$ be successive points in $\overline{\overline{\mathrm{u}}}$ satisfying
$\xi_{1}<\xi_{2}$ and $(\xi_{2}-\xi_{1})/\epsilonarrow\infty$ as $\epsilon$ $arrow 0$ and let $(;\in(\xi_{1}, \xi_{2})$ be a critical point

of $u_{\epsilon}$ . Furthermore, set

$d(x)=\{$
$x-\xi_{1}$ if $\xi_{1}\leq x\leq\zeta$ ,
$\xi_{2}-x$ if $\zeta\leq x\leq\xi_{2}$ .

Then one of the following assertions holds true:
(i) If $u_{\epsilon}$ attains its local maximum at $\langle$ , then there exist positive constants
$C_{1}$ , $C_{2}$ , $r$ , $R$ with $C_{1}<C_{2}$ and $r<R$ such that

$C_{1} \exp(-\frac{Rd(\zeta)}{\epsilon})<1-u_{\mathit{6}}(x)$ $<C_{2} \exp(-\frac{rd(x)}{\epsilon})$ in $[\xi_{1}, \xi_{2}]$ . (2.2)

(it) If $u_{\epsilon}$ attains its local rninimum at $\zeta$

} then there exist positive constants
$C_{1}’$ , $C_{2}’$ , $r’$ , $R’$ with $C_{1}’<C_{2}’$ and $r’<R’$ such that

$C_{1}^{f} \exp(-\frac{R’d(\zeta)}{\epsilon})<u_{\epsilon}(x)$ $<C_{2}’ \exp(-\frac{r’d(x)}{\epsilon})$ in $[\xi_{1_{i}}\xi_{2}]$ . (2.3)

Remark 2.5. Theorem 2.4 tells us that $u_{\Xi}(x)$ and $1-u_{\epsilon}(x)$ are very small
when $x$ does not lie in an $O(\epsilon)$-neighborhood of a point $\mathrm{i}\mathrm{n}--\cup\cdot$ On the contrary,
one can see that $u_{\epsilon}$ has a sharp transition in a small neighborhood of a point
1n $\Xi$ .



71

Theorem 2.6. For $u_{\mathit{6}}\in S_{n,\epsilon f}$ define $\cup--$ by (2.1) and assume that $u_{\xi \mathrm{j}}$ forms
a transition layer near $\xi\in\overline{\cup-}$ . Then there exists a positive number $\epsilon_{0}$ such
that, for any $\llcorner c$ $\in(0, \epsilon_{0})$ , $\xi-z$ $=O(\epsilon|\log\epsilon|)$ with some $z\in\Sigma$ .

We also give a result on multi-layers. For this purpose, we decompose I
into the following subsets :

$\Sigma^{+}=\{x\in\Sigma;a’(x)>0\}$ , $\Sigma^{-}=\{x\in\Sigma;a’(x)<0\}$ .

Theorem 2.7. For $u_{\epsilon}\in S_{n,\epsilon}$ , assume that $u_{\epsilon}$ has a multi-layer near $z\in\Sigma$

when $\epsilon$ is sufficiently small Then there exists a positive number $K$ such
that $\#(_{-}^{-}-\cap (z-K\epsilon|\log\epsilon|, z+K\epsilon| \log\epsilon|))=2m-1$ with some $m\in$ N.
Furthermore, if the multi-layer is a multi-layer from 0 to 1 (resp. from 1 to
0), then $z\in\Sigma^{+}$ (resp. $z$ $\in$ $\Sigma^{-}$ ).

Remark 2.8. Theorem 2.7 gives us more precise information on the profile

of $u_{\epsilon}$ . Set $\cup--\cap$ $(z-K\in| \log\epsilon|, z+K\epsilon|\log\epsilon|)=\{\xi_{k}\}_{k=1}^{2m-1}$ with $\xi_{1}<\xi_{2}<$ . . . $<$

$\xi_{2m-1}$ and let $\{(_{k}\}_{k=0}^{2m-1}$ be a set of critical points of $u_{\epsilon}$ satisfying $\zeta 0<\xi_{1}<$

$\zeta_{1}<\cdots<\xi_{2m-1}<\zeta_{2m-1}$ . Then, by Theorem 2.7, there exists a positive

constant $M$ such that $\zeta_{k+1}-\zeta_{k}<M\epsilon|\log\epsilon|$ for each $k$. $=1,2$ , $\ldots$ , $2m-3$ .

The proofs of Lemmas and Theorems in this section can be found in [7].

3 Basic theory for Sturm-Liouville eigenvalue
problem

In this section, we recall the Sturm-Liouville theory for (1.4).

Proposition 3.1. There exist infinitely number of eigenvalues of (1.4) and

all of them are real and simple. Furthermore, if $\lambda_{j}$ denotes the $j$ -th eigenvalue

of (1.4); then it holds that

$-\infty<\lambda_{1}<\lambda_{2}<\cdots<\lambda_{j}<\cdotsarrow\infty$ as $jarrow\infty$

and the eigenfunction corresponding to $\lambda_{j}$ has exactly $j-1$ zeros in $(0, 1)$ .

The following results is well known as the Courant $\min-\max$ principle:
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Proposition 3.2. Let $\lambda_{j}$ be the j-th eigenvalue of (1.4). Then $\lambda_{j}$ is ehavac-
terized by

$\lambda_{1}=\inf_{\phi\in H^{1}(0,1)\backslash \{0\}}\frac{\mathscr{H}(\phi)}{||\phi||_{L^{2}(0,1)}^{2}}$ ,

$\lambda_{j}=\sup_{\psi_{1},\ldots,\psi_{j-1}\in L^{2}(0,1)\emptyset\in X[\psi_{1}}\inf_{\psi_{j-1}]},\frac{\mathscr{H}(\phi)}{||\phi||_{L^{2}(0,1)}^{2}}$ for $j=2,3$ , $\ldots$ , (3.1)

where
$\mathscr{H}(\phi).--\int_{0}^{1}\{\epsilon^{2}|\phi’(x)|^{2}-f_{u}(x, u_{\epsilon}(x))|\phi(x)|^{2}\}dx$

and

$X[\psi_{1}, \ldots, \psi_{j-1}]:=$ {A $\in H^{1}(0,1)\backslash \{0\};(\phi,$ $\psi_{i})_{L^{2}(0,1)}=0(\mathrm{i}=1$ , 2, $\cdots$ , $j-1)$ }.

Remark 3.3. If $\psi_{i}$ is the eigenfunction corresponding to the i-th eigenvalue
$\lambda_{i}$ of (1.4) for every $\mathrm{i}=1,2$ , $\ldots$ , $j-1$ in (3.1), then $\lambda_{j}$ is characterized by

$\lambda_{j}=\inf_{\phi\in X[\psi_{1},.\psi_{j-1}]}.,\frac{\mathscr{K}(\phi)}{||\phi||_{L^{2}(0,1)}^{2}}$ .

It is possible to prove the following result from Proposition 3.2 :

Proposition 3.4. Let $\lambda_{j}$ be the j-th eige nvalue of (1.4) and let $\overline{\lambda}_{j}$ be the j-th
eigenvalue of the following eigenvalue problem :

$\{$

$-\epsilon^{2}\phi^{\prime/}-f_{u}(x, u_{\epsilon})\phi+p(x)\phi=\lambda\phi$ in $(0, 1)$ ,

$\phi’(0)=\phi’(1)=0$ ,

where $p\in C([0,1])$ . If $p(x)\geq 0$ (resp. $p(x)\leq 0$ ) and $p(x)\not\equiv 0$ in $(0, 1)$ , then
$\overline{\lambda}_{j}>\lambda_{j}$ (resp. $\tilde{\lambda}_{j}<\lambda_{j}$ ).

4 Stability of solutions with transition layers
We will study stability properties of solutions with transition layers. In order
to study a solution with transition layers, assume that a solution $u_{\epsilon}$ of (1.4)
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does not have any oscilation in $(0, 1)$ . For such $u_{\epsilon}$ , we can choose a positive
constant $M$ and a subset $\{z_{i}\}_{i=1}^{l}$ of I satisfying

$—\cap(z_{i}-M\in|\log\in|, z_{i}+M\epsilon|\log\epsilon|)\neq\emptyset$ (4.1)

and
$\#(_{-}^{-}-\cap(z_{i}-M\epsilon|\log\epsilon|, z_{i}+M\epsilon|\log\epsilon|))=2m_{i}-1$ (4.2)

with some $m:\in \mathbb{N}$ for each $\mathrm{i}=1$ , 2, $\ldots$ , $l$ , and

$–=_{-}---\cap\cup^{l}(z_{i\vee}i=1-M\overline{\succ}|\log\epsilon|,$ $z_{i}+M\epsilon|\log\epsilon|\grave{)}$ , (4.3)

provided that $\epsilon$ is sufficiently small. We should note that, if $m_{i}=1$ , then
$u_{\epsilon}$ forms a single-layer near $z_{i}$ , while, if $m_{i}\geq 2$ , then $u_{\Xi}$ forms a multi-layer
near $z_{i}$ .

In the case that $m_{i}=1$ for each $i=1,2$ , $\ldots$ , $l$ , the stability or instability
of $u_{\epsilon}$ has been established by Angenent, Mallet-Paret and Peletier [3] and
Hale and Sakamoto [4].

Proposition 4.1 $([3], [4])-$ Let $u_{\epsilon}$ be a solution of (1.3) satisfying (4.1),
(4.2) and (4.3) with $m_{i}=1$ for every $\mathrm{i}=1,2$ , . . . $l$ . Then the following
statements hold true:
(i) if $u_{\epsilon}’(z_{i})a’(z_{i})<0$ for all $\mathrm{i}_{i}$ then $u_{\epsilon}$ is stable,

(ii) If $u_{\epsilon}’(z_{i})a’(z_{i})>0$ for all $\mathrm{i}$ , then $u$, is unstable. Furthermore,

the Morse index of $u_{\epsilon}=l$ .

We will discuss stability properties of a solution $u_{\xi j}$ in the case where
$m_{i}\geq 1$ . The stability property of such $u_{\epsilon}$ is described as follows:

Theorem 4.2. Let $u_{\epsilon}$ be a solution of (1.3). Assume that there exist $a$

positive constant $M$ and a subset $\{z_{i}\}_{i=1}^{l}$ of $\Sigma$ , which satisfy (4.1), (4.2) and
(4.3), Then the following assertions hold true :

(i) If $m_{i}=1$ cvnd $u_{\epsilon}’(z_{i})a’(z_{i})<0$ for all $\mathrm{i}=1,2$ , $\ldots$ , $l$ , then $u_{\epsilon}$ is stable,

$\acute{(}\mathrm{i}\mathrm{i})$ If there exists an $\mathrm{i}\in\{1,2, \ldots, l\}$ which satisfies either $m_{i}\geq 2$ or $m_{\mathrm{z}}=1$
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with $u_{\epsilon}’(z_{i})a’(z_{i})>0$ , then $u_{\epsilon}$ is unstable. Furthe rmore, $u_{\epsilon}$ is non-degenerated
and

the Morse index of $u_{\epsilon}= \sum_{i\in\{1,2\ldots.,l\}\backslash f}m_{i}$
,

where
$\mathscr{I}:=$ { $\mathrm{i}\in\{1,2$ , . . . , $l\}$ ; $m_{i}=1$ and $u_{\epsilon}’(z_{i})a^{i}(z_{i})<0$ }.

Remark 4.3. Proposition 4.1 is a special case of Theorem 4.2; so Theo-
rem 4.2 is generalization of Proposition 4.1.

Remark 4.4. The same result as Theorem 4.2 has been obtained by Ai, Chen
and Hastings [1] with use of Sturm’s comparison theorem (Proposition 3.1).
In this paPer, we will show a different approach based on the Courant min-
max principle (Proposition 3.2).

We will discuss the simplest case, $l=1$ , in Theorem 4.2. We should
note that $m_{1}=1$ implies that $u_{\epsilon}$ has only one single-layer, while $m_{1}\geq 2$

implies that $u$, has only one multi-iayer in $(0, 1)$ . We will prove the following
theorem in place of Theorem 4.2:

Theorem 4.5. Under the same assumptions as in Theorem $\mathit{4}\cdot \mathit{2}$ with $l=1$

and $m_{1}=m\geq 2$ , $u_{\epsilon}$ is non-degenerate and unstable. Furthermore, the Morse
indc $x$ of $u_{\epsilon}$ is exactly $m$ .

In what follows, we denote the j-th eigenvalue of (1.4) by $\lambda_{j}$ . By virtue
of Proposition 3.1, it is sufficient to show the following two lemmas to prove
Theorem 4.5:

Lemma 4.6. Under the same assumptions as in Theorem 4.5, it holds that

$\lambda_{m}<0$ .

Lemma 4.7. Under the same assumptions as in Theorem 4.5, it holas that

$\lambda_{m+1}>0$ .

We will give the essential idea of proofs of Lemmas 4.6 and 4.7. For
details, see [9]
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Proof of Lemma $\mathit{4}\cdot\theta$ . We will consider the case that $a’(z_{1})>0$ . It follows
from Theorem 2.7 that $u_{\epsilon}$ forms a multi-layer from 0 to 1 near $z_{1}$ . Since $u_{\epsilon}$

and $a$ have $2m-1$ intersecting points in $(z_{1}-M\epsilon|\log\epsilon|, z_{1}+lt/I\epsilon|\log\epsilon|))$ we
can denote these points by $\{\xi_{k}\}_{k=1}^{2m-1}$ with $0<\xi_{1}<\xi_{2}<\cdots<\xi_{2m-1}<1$ . In
this case, there exist critical points $\{\zeta_{k^{\wedge}}\}_{k=0}^{2m-1}$ of $u_{\epsilon}$ satisfying

$0=\zeta_{0}<\xi_{[perp]}<\zeta_{1}<\cdots<\xi_{2m-1}<\zeta_{2m-1}=1$ .

Define $\{w_{k}\}_{k=1}^{m}$ by

$w_{k}(x):=\{$
$u_{\epsilon}’(x)$ in $(\zeta_{2k-2}, \zeta_{2k-1})$ ,

0in $(0_{2}1)\backslash (\zeta_{2k-2}, \zeta_{2k-1})$ .

Then $\{w_{k}\}_{k=1}^{m}$ is a family of linearly independent functions in $H^{1}(0,1)$ and
$(w_{j}, w_{k})_{L^{2}(0,1)}=0$ for $j\neq k$ . Note that $w_{k}$ satisfy

$\epsilon^{2}w_{k}’+f_{u}(x, u_{\mathcal{E}})w_{k}+f_{x}(x, u_{\epsilon})=0$ in $(\zeta_{2k-2}, \zeta_{2k-1})$ . (4.4)

Taking $L^{2}(\zeta_{2k-2}, \zeta_{2k-1})$-inner product of (4.4) with $w_{k}$ , we get

$\mathscr{H}(w_{k})=-\oint_{\zeta_{2k2}}^{\zeta_{2k1}}.\cdot-a’(x)u_{\epsilon}(x)(1-u_{\epsilon}(x))u_{\epsilon}’(x)dx-\cdot$

Since $a$ is monotone increasing in $(z_{1}-M\epsilon|\log\epsilon|, z_{1}+M\epsilon|\log\epsilon|)$ , it is easy

to see
$\mathscr{K}(w_{k})<0$ (4.5)

for $k=2$ , $\ldots$ , $m-1$ .
It should be noted that $a’(x)$ is not necessarily positive in $(\zeta_{0}, \zeta_{1})$ and

$(\zeta_{2m-2}, \zeta_{2rn-1})$ . However, we can show that both $\mathscr{F}(w_{1})$ and $\mathscr{K}(w_{m})$ are
negative without the monotonicity condition of $a$ . For the proofs, $\mathrm{s}\mathrm{c}\mathrm{e}[9]$ .

Thus $\mathscr{S}P(w_{k})<0$ for every $k=1,2$ , $\ldots$ , $m$ . This fact together with

Proposition 3.2 implies $\lambda_{m}<0$ . $\square$

We now show Lemma 4.7. For this purpose, we will introduce auxiliar$\mathrm{y}$
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eigenvalue problems as follows :

$\{$

$-\epsilon^{2}\phi^{\prime i}-f_{u}(x, u_{\epsilon})\phi=\lambda\phi$ in $J_{k}^{+}:=(\zeta_{2k-2}, \zeta_{2k-1})$ ,

$\phi’(\zeta_{2k-1})=\phi’((_{2k})=0,$ $k=1,2$ , $\ldots$ , $m$ ,
(4.6)

$\{$

$-\epsilon^{2}\phi’-f_{?4}(x, u_{\epsilon})\phi=\lambda\phi$ in $J_{k}^{-}:=(\zeta_{2k-1}, \zeta_{2k})$ ,
$\phi’(\zeta_{2k-1})=\phi’(\zeta_{2k})=0$ $k=1,2$ , $\ldots$ , $m-1$ .

(4.7)

It should be noted that $u_{\epsilon}’$ is positive in $J_{k}^{+}$ , while $u_{\epsilon}’$ is negative in $J_{k}^{-}$ . We
denote the j-th eigenvalue of (4.6) (resp. (4.7)) by $\lambda_{j}(J_{k}^{+})$ for $k=1,2$ , $\ldots$ , $m$

(resp. $\lambda_{j}(J_{k}^{-})$ for $k=1,2$ , $\ldots$ ? $m-1$ ).
For (4.6) and (4.7), we can show the following two lemmas :

Lemma 4.8. For each k $=1,$ 2, \ldots , m, it holds thai

$\lambda_{1}(J_{k}^{+})<0<\lambda_{2}(J_{k}^{\tau-})$ .

Lemma 4.9. For each k $=1_{\dagger}2$ , \ldots , m-1, it holds thai

$\lambda_{1}(J_{k}^{-})>0$ .

Before giving proofs of Lemmas 4.8 and 4,9, we will prove Lemma 4.7,
which is essential in our analysis.

Proof of Lemma 4.7. Let $\phi_{1,k}^{+}$ be the firs $\mathrm{t}$ eigenfunction of (4.6) and set

$\mathscr{K}_{k}^{\pm}(\phi):=\int_{J_{k}^{\pm}}\{\xi \mathrm{i}^{2}|\phi’(x)|^{2}-f_{u}(x, u_{\epsilon}(x))|\phi(x)|^{2}\}dx$.

For each $k=1,2$ , $\ldots$ , $m$ , take any $w_{k}\in H^{1}(J_{k}^{+})\backslash \{0\}$ satisfying

$\oint_{J_{k}^{+}}w_{k}(x)\phi_{1,k}^{+}(x)dx=0$ .

Then, it follows from Lemma 4.8 that

$\lambda_{2}(J_{k}^{+})\oint_{J_{k}^{+}}|w_{k}(x)|^{2}dx\leq \mathscr{H}_{k}^{+}(w_{k})$ .
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We extend $\phi_{1,k}^{+}$ to $\psi_{k}\in L^{2}(0,1)$ by

$\psi_{k}(x):=\{$
$\phi_{1,k}^{+}$ in $J_{k}^{+}$ ,

0 in $(0_{7}1)\backslash J_{k}^{+}$ .
(4.8)

For any $w\in$ A $[\psi_{1}, \psi_{2}, \ldots, \psi_{m}]$ , it follows from (4.8) that

$(w, \psi_{k})_{L^{2}(0_{\rangle}1)}=\int_{J_{k}^{+}}w(x)\phi_{1,k}^{+}(x)dx=0$ .

Hence we have

$\mathscr{F}_{k}^{+}(w)\geq\lambda_{2}(J_{k}^{+})\oint_{J_{k}^{+}}$

.
$|w_{k}(x)|^{2}dx>0$ .

On the other hand, Lemma 4.9 yields

$0< \lambda_{1}(J_{k}^{-})\int_{J_{k}^{-}}|w(x)|^{2}dx\leq \mathscr{H}_{k}^{-}(w)$ ,

for $k=1,2$ , $\ldots$ , $m-1$ . Therefore, one can see that

$\mathscr{H}(w)=\sum_{k=1}^{m}\mathscr{K}_{k}^{+}(w)+\sum_{k=1}^{m-1}\mathscr{K}_{k}^{-}(w)$

$\geq\sum_{k=1}^{m}\lambda_{2}(J_{k}^{+})\int_{J_{k}^{+}}.|w(x)|^{2}dx+\sum_{k=1}^{m-1}\lambda_{1}(J_{k}^{-})\int_{J_{k}^{-}}|w(x)|^{2}dx$

$\geq\lambda^{*}\oint_{0}^{1}|w(x)|^{2}dx$ ,

where
$\lambda^{*}:=\min\{\min_{k=1,2,.,m}.\lambda_{2}(J_{k}^{+}),\min_{k=1,2.,m-\}1}\lambda_{1}(J_{k}^{-})\}>0$.

Thus we can conclude by Proposition 3.2 that

$\lambda_{m+1}=\sup_{\psi_{1},..,\psi_{m}^{w\in}}\inf_{X[\psi_{1},.\psi_{m}]}..,\frac{\mathscr{F}(w)}{||w||_{L^{2}(0,1)}}\geq\lambda^{*}>0$ .

$\square$
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We next discuss Lemmas 4.8 and 4.9. However, their proofs req uire quite
lengthly argument. So we will only give the outline of proofs. For the com-
plete proofs, see [9].

Outline of the proof of Lemma $\mathit{4}\cdot \mathit{8}$. By virtue of Propositions 3.1, 3.2 and
3.4, it suffices to show the existence of a pair of functions $A\in C(J_{k}^{+})$ and
$w\in C^{2}(J_{k}^{+})$ with the following properties :
(i) $A$ and $w$ satisfy the following equation :

$\{$

$-\epsilon^{2}w^{\prime/}+A(x)w=0$ in $(\zeta_{2k-2}, \zeta_{2k-1})$ ,
$w’(\zeta_{2k-2})=w’(\zeta_{2k-1})=0$ ,
$-f_{u}(x, u_{\epsilon})\geq$ A(x) in $(\zeta_{2k-2}, \zeta_{2k-1})$ ,

(4.9)

(ii) $w$ has only one zero point in $(\zeta_{2k-2}, \zeta_{2k-1})$ .

Take a small number $\delta$ $>0$ and let $g$ be a smooth function satisfying

$g(x)=\{$
1 for $|x|\leq \mathit{5}$,

0for $|x|\geq 2\delta$ ,

and $|g(x)|\leq 1$ for any $x\in$ R. We introduce a cut-off function $\rho$ by

$\rho(x):=g(\frac{x-z_{2k-1}}{\epsilon})$ in $J_{k}^{+}$ .

Furthermore, let $\varphi$ be a $C^{2}$-function which satisfying

$\{$

$-\epsilon^{3}\varphi^{i\prime}-$ $(1/2-a(x)+2a(x)u_{\mathit{6}}-u_{\zeta}^{2})\varphi$

$+(u_{\epsilon}^{2}-u_{\epsilon}+1/2)$ (1/2- A $(\mathrm{x})\mathrm{w}$ $=0$ in $(z_{2k-1}-25, z_{2k-1}+2\epsilon\delta)$ ,
$\varphi(z_{2k-1}-2\in\delta)=\varphi(z_{2k-1}+2\epsilon\delta)=0$ ,

$\sup\{|\varphi(x)|;x\in(z_{2k-1}-2\epsilon\delta, z_{2k-1}+2\epsilon\delta)\}=O(|\log\epsilon|)$ .
(4.10)

We should note that such $\varphi$ can be constructed by super and subsolution
method.

We are ready to define $w$ and $A$ by

$w(x):=u_{\epsilon}(x)- \frac{1}{2}+\epsilon\rho(x)\varphi(x)$



79

and
$A(x):=- \frac{\epsilon^{2}w’(x)}{w(x)}$ .

Then one can prove by direct calculations that $A$ and $w$ fulfill properties (i)
and (ii). $\square$

Outline of the proof of Lemma 4. 9. For each $k=1,2$ , $\ldots$ , $m-1$ , we consider
the following eigenvalue problem.

$\{$

$- \epsilon^{2}\phi^{\prime/}-f_{u}(x, u_{\epsilon})\phi+\frac{e^{-1/\epsilon}}{\psi}\phi=\mu\phi$ in $J_{k}^{-}$ ,

$\phi’(\zeta_{2k-1})=\phi’(\zeta_{2k})=0$ ,
(4.11)

where $\psi$ is a $C^{2}$-function satisfying

$\{$

$\epsilon^{2}\psi’+fi_{l}(x, u_{\epsilon})\psi-e^{-1/\epsilon}=0$ in $J_{k}^{-}$ ,
$\psi’(\zeta_{2k-1})=\psi’(\zeta_{2k})=0$ ,

$\psi<0$ in $J_{k}^{-}$ .

(4.12)

The existence of such $\psi$ is not trivial. However, if (4.12) has a solution $\psi$ ,

then $\psi$ is an eigenfunction corresponding to zero eigenvalue of (4.11). Clearly,
0 is the first eigenvalue of (4.11) because $\psi$ does not change its sign in $J_{k}^{-}$ .

Furthermore, the third term of the first equation of (4.12) is negative. Hence,

Proposition 3.4 enables us to derive $\lambda_{1}(J_{k}^{-})>0$ . Therefore, we have only to

show the existence of a solution of (4.12).
We will take a super and subsolution method to solve (4.12). Set

$\overline{\psi}(x):=0$ in $J_{k}^{-};$

clearly $\overline{\psi}$ is a supersolution of (4.12).
We will construct a subsolution of (4.12). We only discuss for $x\geq\xi_{2k}$

because the argument for $x\leq\xi_{2k}$ is essentially the same. It should be noted

that there exists a positive constants $\kappa$ and $P$ such that

$f_{u}(x, u_{\epsilon}(x))\leq-P$ in $(\xi_{2k}+\kappa\epsilon, \zeta_{2k})$ (4.13)
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when $\epsilon$ is sufficiently small We set $\theta(z)=q(z)e^{z}$ with $q(z)=z^{2}/(z^{2}+1)$

and introduce

$\eta(x)=\{$

0 in $(\xi_{2k}, \xi_{2k}+\kappa\epsilon)$ ,

$\epsilon^{K_{1}}\theta(\frac{K_{2}(x-\xi_{2k}-\kappa\epsilon)}{\epsilon})$ in $(\xi_{2k}+\kappa\epsilon, \zeta_{2k}]$ .
(4.14)

Here, $K_{1}$ is a sufficiently large positive number and $K_{2}$ is a positive constant
satisfying $(1+\gamma)K_{2}^{2}<P$ with small $\gamma>0$ . We define

$\underline{\psi}(x):=u_{\epsilon}’(x)-\eta(x)$ in $[\xi_{2k}, \zeta_{2k}]$

and
$z^{*}:= \inf\{x\in[\xi_{2k}, \zeta_{2k}]1^{\cdot}\underline{\psi}’(x)=0\}$ .

If $z^{*}\leq\zeta_{2k}$ , then it is easy to show that $\underline{\psi}$ is a subsolution of (4.12) by
direct calculation. On the other hand, if $z^{*}>\zeta_{2k}$ , the argument is somewhat
complicated. For details, see [7]

Finally, it is obvious that

$\underline{\psi}<\overline{\psi}$ in $J_{k}^{-}$ .

Thus there exists a solution $\psi$ of (4.12) satisfying $\underline{\psi}<\psi<\overline{\psi}$ in $J_{k}^{-}$ . $\square$

We are ready to show Theorem 4.2.

Proof of Theorem 4.2. From the proof of Theorem 4.5, it is sufficient to sum
up the number of layers at each multi-layer. Thus the proof is complete. $\square$
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