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Abstract

In 1976, Paul Erdds conjectured that there is an integer $v_{0}(r)$ such that for
every $v$ $>v_{0}(r)$ and $v\equiv 1,3$ (mod 6), there exists a Steiner triple system of
order $v$ containing no $\mathrm{i}$ blocks on $i+2$ points for every $1<\mathrm{i}\leq r$ . Such an
STS is said to be $r$-sparse. This article surveys recent developments on the
existence of $r$-sparse trile systems and related designs.

1 Introduction
A Steiner triple system $S$ of order $v$ , briefly STS(v) , is an order pair $(V,B)$ ,

where $V$ is a finite set of $v$ elements called points, and $B$ is a set of 3-element
subsets of $V$ called blocks, such that each unordered pair of distinct elements of $V$

is contained in exactly one block of S. It is well-known that an STS (v) exists if
and only if $v\equiv 1,3$ (mod 6); such orders are called admissible.

Let $\mathrm{G}^{(3)}(n;m)$ denote a 3-uniform hypergraph of $n$ vertices and $m$ edges, that
is, 3-tuples. Since an STS(v) contains exactly $v(v-1)/6$ triples, it can be con-
sidered to be a special $\mathrm{G}^{(3)}$ $(v;v(v -1)/6)$ . In 1976, $\mathrm{B}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}\mathrm{s}$ $[10]$ conjectured that
for $r\geq 4$ , there is an integer $vo(r)$ such that for every $v>v\mathrm{o}(r)$ , $v\equiv 1,3$ (mod

6), there exists a Steiner triple system on $v$ elements containing no $\mathrm{G}^{(3)}(k+2;k)$

for every $1<k\leq r$ . Such an STS is said to be $r$-sparse. Since the same pair of
points appear twice in every $\mathrm{G}^{(3)}(k+2;k)$ for $1<k\leq 3$ , every STS (v) is 3-sparse.
Obviously, every $r$-sparse STS (v), $r>2$ , is also $(r-1)$ -sparse.
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The Erdos $r$-sparse conjecture, and especially the problem of characterizing
those $v$ for which there exists an $r$-sparse STS(v) have been studied for a long
time. One direction is regarding the $r$-sparse conjecture as an extremal problem on
hypergraphs. In fact, $\mathrm{E}\mathrm{r}\mathrm{d}6\mathrm{s}$ posed the conjecture as a problem related to extremal
set theory on hypergraphs. Brown, Erdos and So’$\mathrm{s}[2]$ proved:

Theorem 1.1 (Brown, $\mathrm{E}\mathrm{r}\mathrm{d}\acute{\acute{\mathrm{o}}}s$ and S\’os) [2] Let $\mathcal{L}(k,l)$ be the family ofall noniso-
morphic 3-uniform hypergraphs with $l$ edges on $k$ vertices and let $ex(n, \mathcal{L}(k, l))$ be
the largest positive integer $m$ such that there exists a triple system with $m$ triples
on $n$ vertices containing no member of $\mathcal{L}(k, \mathit{1})$ . Then,

$ex(n, \mathcal{L}(k+2,k))\leq\frac{1}{3}\cdot(n\cdot\lfloor\frac{k}{k+1}\cdot(n-1)\rfloor+1)$ .

Let $\mathcal{V}(k+2,k)=\bigcup_{j=2}^{k}\mathcal{L}(j+2,j)$ . By probabili $\mathrm{s}\mathrm{t}\mathrm{i}\mathrm{c}$ methods , Lefmann, Phelps
and Rodl [22] showed that for every positive integer $k$ , $k\geq 2$ , there exists $ck$ such
that $ex(n,\mathcal{V}(k+2,k))\geq ck.n^{2}$ . They also gave the following theorem.

Theorem 1.2 (Lefmann, Phelps and R\"odl) [22] There exists a positive constant
$c>0$ , such that every Steiner triple system oforder $v$ contains $a$

$\mathrm{G}^{(3)}$ (A $+2jk$) for
some $k \leq c\cdot\frac{\log v}{\log\log v}$ .

On the other hand, a lot of construction techniques for $r$-sparse STSs of partic-
ular small $r$ and related triple systems have been developed. A $\mathrm{G}^{(3)}(k;l)$ appearing
in a triple system is often called a “configuration” in recent related papers and so
we shall use the same term here.

A $(k, l)$ -configuration in an STS is a set of $l$ blocks whose union contains
precisely $k$ points. An STS is $r$-sparse if and only it contains no $(k+2, k)-$

configuration for every $1<k\leq r$ . Most of constructions for $r$-sparse triple systems
and related designs mainly concern with two particular configurations, Pasches
and mitres. The unique $(6,4)$ -configuration, called the Pasch configuration, is
described by six distinct points on four blocks $\{a,b, c\}$ , $\{a,d, e\}$ , $\{\mathrm{g},\mathrm{c},d\}$ and
$\{f, c,e\}$ . One of two $(7,5)$ -configurations is called the mitre, described by seven
distinct points on five blocks $\{a,b, e\}$ , $\{a,c,f\}$ , $\{a,d,g\}$ , $\{b, c_{\dot{\mathit{1}}}d\}$ and $\{e,f,g\}$ :
$a$ is referred to as the centre or central element of the mitre and the unique pair
of blocks with no common point, that is, $\{b,c, d\}$ and $\{e,f,g\}$ , is referred to as
the parallel blocks. The other $(7,5)$ -configuration the mia9 is obtained by join-
ing two noncoilinear points in a Pasch configuration: $\{a,b, c\}$ , $\{a,d,e\}$ , $\{f,b,d\}$ ,
$\{f,c, e\}$ and $\{g, c,d\}$ . An STS is said to be anti-Pasch or anti-mitre if it contains
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no Pasch configuration or mitre configuration, respectively. In particular, an anti-
Pasch STS does not contain a mia configuration. Hence, an STS is 5-sparse if it is
both anti-Pasch and anti-mitre.

As well as in combinatorial design theory, 4 and 5-sparse triple systems are
al so important in some applications to informati on theory (see, for example Chee,
Colbourn and Ling [5], Johnson and Weller [21], Vasic, Kurtas and Kuznetsov
[29] and Vasic and Milenkovic [30] $)$ , and hence constructions for an $r$-sparse STS
are studied extensively from both sides.

This article briefly surveys recent developments on the existence of r-sparse
trile systems and related designs. In section 2, we briefly give a histrical survey on
4-sparse STSs and related designs. Anti-mitre and 5-sparse STSs are considered
in section 3. In section 4 we list recent results on an STS with higher sparseness.
Mentioned are existence of a 6-spasrse STS a triple system with highest sparse-
ness at the time of writing, and nonexistence of an STS with high sparseness
having particular automorphisms. Proofs for some unpublished theorems shall be
provided in future papers.

2 4-sparse systems
In this section, we give a brief survey on the developments on the Erdos r-sparse
conjecture for $r=4$. We also remark about 4-sparse STS with additional proper-
ties.

It is known that the unique STS (7) , and both nonisomorphic STS (13), contain
Pasch configurations, while the unique STS(9) is anti-Pasch. Also, it is known
that a class of the Netto system is 4-sparse (see Netto [25] and Robinson [26]).

Lemma 2.1 (Robinson [26]) There exists a 4-sparse STS $(p’)$ for prime $p\equiv 19$

(mod 24), and $\alpha$ a nonnegative integer.

It is well-known that the points and lines of $AG(n,3)$ , the $n$-demensional affine
space, forms the elements and triples of a 4-sparse STS $(3^{n})$ .

Brouwer [1] gave a more general construction for prime powers and proved
the following theorem:

Theorem 2.2 (Brouwer [1]) For $q\equiv 1$ (mod 6), $q=p^{\alpha}$ , $p\not\in\{7, 13\}$ a prime,
there is a 4-sparse STS (q) whenever $p\equiv 1$ , 3 (mod 8) or $\alpha$ $\equiv 0$ (mod 2).
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The first results on 4-sparse systems for non-prime powers are due to Brouwer
[1] and Doyen [9]. They observed that the Bose construction for triple systems
over the additive group of $Z_{v}$ can generate 4-sparse STS (v) under a certain restric-
tion. Brouwer [1] and Griggs, Murphy and Phelan [19] extended this result and
constructed a 4-sparse STS (v) for all $v\equiv 3$ (mod 6).

Theorem 2,3 (Brouwer [1] and Griggs, Murphy and Phelan 091) For all $v$ $\equiv 3$

(mod 6), there exists a 4-sparse STS (v)

Also, Brouwer [1] refined the Erdos $r$-sparse conjecture for the case $r=4$ to
assert that a 4-sparse STS(v) exists for all $v\equiv 1$ or 3 (mod 6) except $v=7$ and
13. Many partial results had been developed for this conjecture (see Colbourn and
Rosa [7] $)$ . In particular, by developing several new constructions, Ling, Colbourn,
Grannell and Griggs [24] extended substantially the spectrum of 4-sparse triple
systems:

Theorem 2.4 (Ling, Colbourn, Grannell and Griggs [24]) Suppose that $v\equiv 1,3$

(mod 6) and $v\not\equiv 13,31,67$ (mod 72). Then there exists a 4-sparse STS (v) provided
that $v\not\in 7,13$ .

To complete the remaining orders stated in the theorem avobe, Grannell , Griggs
and Whitehead [18] developed a construction employing auxiliary designs.

An STS(w, $-m$) is a triple $(U,M, B)$ , where $U$ is a set of points having car-
dinality $u$ , $M\underline{\subseteq}U$ has cardinality $m$ , and 6 is a collection of triples of points
with the property that every pair of points $\{\alpha,\beta\}$ , with $\alpha\in U$ , $\beta\in U\backslash M$ ap-
pears in precisely one triple from $B$ , and no pairs $\{\alpha,\beta\}$ with $\alpha,\beta\in M$ appears
in any triple from $B$ . An STS(w, $-m$ ) is said to be $m$ -bipartite if the points
of $U\backslash M$ can be partitioned into two classes $A$ and $B$ , each of cardinality $n$ ,
in such a way that no triple of the design are labelled $(M,A,A)$ or $(M, B,B)$ .
While a quadrilateral-free STS(v), that is, an anti-Pasch STS(v) is referred to
as a QFSTS (v) , an $m$-bipartite STS(u,-m) containing no Pasch configuration is
denoted briefly by BQFSTS(w, $-m$).

Theorem 2.5 (Grannell, Griggs and Whitehead [18]) Suppose that there exist
a 4-sparse STS $(2n+m)$ and $a$ BQFSTS $(2n+m, -m)$ , where $n=3$ or $n\geq 5$ .
Suppose also that there exists a 4-sparse STS (u). Then there exists a 4-sparse
STS $(n(u-1\}+m)$ .
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For example, to cover the class $v\equiv 31$ (mod 72), write $v=n(u-1)+m$ and
consider $u=6t+3$ , $n=12$ , $m=7$ . Then, by constructing BQFSTS(31, -7)
directly and aPPlying Theorem 2.5 we can construct a 4-sparse STS of the class.

Grannell ,Griggs and Whitehead [18] constructed BQFSTS , which finally com-
plete the remaining classes that were left open in Theorem 2.4 and established the
Brouwer’s conjecture.

Theorem 2.6 (Grannell, Griggs and Whitehead) [18] There exists a 4-sparse
STS (v) ifand only if $v$ $\equiv 1,3$ (mod 6) and $v\neq 7,13$ .

This implies that Erd\’os’ conjecture is true for $r=4$ and $v_{0}(4)=13$ . In the rest
of this section, we briefly mention the existence of 4-sparse STSs with additonal
properties.

An STS $(V, B)$ is said to be resolvable if there exists a partition $P=\{P_{1},P_{2}, \ldots,P_{r}\}$

of $B$ such that each part $P_{i}$ (called parallel class) is a partition of $V$ . A resolvable
STS is also refered to as a Kirkman triple system and is denoted briefly KTS. A
KTS is known to exist for all $v\equiv 3$ (mod 6).

Chee Coibourn and Ling [5] showed that 4-sparse KTSs are useful for the
disk storage system called Redundant Ararrys of Independent Disks (RAID) and
constructed such triple systems.

Theorem 2.7 (Chee, Coibourn and Ling) [5] For all $v\equiv 9$ (mod 18), there ex-
ists a 4-sparse KTS (v).

Johnson and Weller [21] point outed the usefulness of 4- and 5-sparse KTSs
in low-density parity-check (LDPC) codes. Construction methods for 4 and 5-
sparse STSs with simple automorphisms, espesiaily cyclic automorphisms, are
also important in LDPC codes. Such an STS shall be considered in section 4.

3 anti-mitre and 5-sparse systems

In this section, we consider the existence of anti-mitre and 5-sparse Steiner triple
systems. The first results on anti-mitre STSs were obtained by Coibourn, Mendel-
sohn, Rosa and Siran [6]. They gave a recursive construction called “doubling
construction” and a generalization of the Bose construction for anti-mitre systems.

Theorem 3.1 Coibourn, Mendelsohn, Rosa and $\check{\mathrm{S}}\mathrm{i}\mathrm{r}\acute{\mathrm{a}}\check{\mathrm{n}}$) $[6]$ If there exists an
anti-mitre STS (v) then there exists an anti-mitre STS $(2v +1)$ .
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Theorem 3.2 (Colbourn, Mendelsohn, Rosa and Sirafi) [6] There exists an
anti-mitre STS (v) for $v\equiv 3,9$ (mod 18) and $v\neq 9$ .

They also showed that each Netto system is anti-mitre and conjectured as fol-
lows:

Conjecture 33 (Colbourn, Mendelsohn, Rosa and $\check{\mathrm{S}}\mathrm{i}\mathrm{r}\acute{\mathrm{a}}\check{\mathrm{n}}$) $[6]$ There exists an
anti-mitre STS (v) ifand only if $v\equiv 1,3$ (mod 6) and $v\neq 9$ .

Ling [23] and the author $[12, 13]$ presented further results on the existence of
an anti-mitre STS and eventually Wolfe [31] settled the conjecture.

Theorem 3.4 (Wolfe) [31] There exists an anti-mitre STS (v) ifand only if$v\equiv 1$ , 3
(mod 6) and $v\neq 9$ .

Also, much progress had been made on 5-sparse STSs. Let $G$ be an abelian
group. An STS $(V,B)$ is said to be transitive on $G$ if $V=G$ and for every $\alpha\in G$

and $\{a,b, c\}\in B$ , $\{a+\alpha,b+\alpha,c+\alpha\}\in B$ . If $G$ is the cyclic group, the STS is
said to be cyclic.

For small orders $v$ , Colbourn, Mendelsohn, Rosa and Siran [6] examined
cyclic STS (v), checking whether each system is anti-Pasch, anti-mitre or both.

Theorem 3.5 (Colbourn, Mendelsohn, Rosa and $\check{\mathrm{S}}\mathrm{i}\mathrm{r}\acute{\mathrm{a}}\check{\mathrm{n}}$) $[6]$ For $19\leq v\leq 97$

and $v\equiv 1$ , 3 (mod 6), there is a cyclic 5-sparse STS(v) except possibly when
$v\in\{21,25,27,31\}$ . In these cases, there is a cyclic STS (v) which is anti-Pasch
but not anti-mitre, and a cyclic STS (v) which is anti-mitre but not anti-Pasch.

Ling [23] gave a recursive constructions for 5-sparse STSs.
Theorem 3.6 (Ling) [23] Ifthere exists a transitive 5-sparse STS (v), $v\equiv 1$ (mod
6) and a 5-sparse STS (w), then there exists a 5-sparse STS (vw).

The author [13] generalized the BQSTS construction, that is, Theorem 2.5 and
showed that there exists a 5-sparse STS (v) for all $v\equiv 1$ , 19 (mod 54) except for
$v=109$ . Recently, Wolfe [32] constructed a 5-sparse STS for all $v\equiv 3$ (mod 6)
and $v\geq 21$ . He also proved that there exists a 5-sparse STS for, in some sense,
almost all admissible orders.

Let $S$ and $T$ be two subsets of $Z^{+}=\{1,2,3, \ldots\}$ . Define the arithmetic density
of $S$ as compared to $T$ as:

$d(S;T)= \lim_{narrow\infty}\frac{|\{x\in S\cap T.x\leq n\}|}{|\{x\in T.x\leq n\}|}.\cdot$ .

Theorem 3.7 (Wolfe) [32] The arithmetic density of the spectrum of 5-sparse
Steiner triple systems as compared to the set ofall admissible orders is 1.
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4 Higher sparseness and automorphisms
In this section, we list very recent results on the existence of an STS with higher
sparseness. As far as the author know $\mathrm{s}$ , these are all knowledge on $r$-sparse STSs
for $r\geq 6$ at the time of writing this article.

In the previous two sections, we saw that the Brd\’os $r$-sparse conjecture is true
for $r=4$ and that a 5-sparse STS exists for almost all admissible orders. However,
little is known about the existence of an STS with higher sparseness. In fact, no
example of $r$-sparse systems is realized for $r\geq 7$ (and $v>3$), and no affirmative
answer to the $r$-sparse conjecture is known in this range. In what follows, we
ignore the two trivial systems, that is, STS(I) and STS(3), unless they play a
significant role.

Our primary focus in this section is on relations between group actions on an
STS and its sparseness. An automorphism of an STS$(v)=(V,B)$ is a permutation
on $V$ that maps each block in $B$ to a block of $B$ , and the full automorphism group
is the group of all automorphisms of the STS, A flag of an STS $(V,B)$ is a pair
$(x, B)$ with $x\in V$ and $B\in B$ .

An STS is said to be point-transitive if its full automorphism group contains
a subgroup which acts transitively on the point set. Similarly, we say that an
STS is block-transitive,fiag-transitive, 2-transitive or 2-homogeneous if its full
automorphism group contains a subgroup which acts transitively on the blocks,
flags, ordered pairs of points, or unordered pairs of points, respectively.

Some classical constructions for STSs involving regular actions of $GF(q)$ on
the point set generate 4- and 5-sparse STSs (see Colbourn and Rosa [7]). The
direct product construction for 5-sparse triple systems developed by Ling [23],

that is, Theorem 3.6 employed an abelian group which acts regularly on the point
set. Forbes , Grannell and Griggs [11] discovered a construction method for block-
transitive STSs and found twenty-nine examples of 6-sparse STSs in the residue
class 7 modulo 12, with orders ranging from 139 to 4447. They also developed a
recursive construction similar to Theorem 3.6 for block-transitive 6-sparse STSs
and constructed infinitely many examples of such STSs. No 6-sparse STS other
than these block-transitive systems is known and these have the highest sparseness
at the time of writing.

Frequently, actions of a finite group on a triple system have helped us discover
an $r$-sparse STS and develop a construction method. In fact, by checking for
$r$-sparseness the block-transitive STSs arising from one of known constructions,
Forbes, Grannell and Griggs [11] found the first examples of 6-sparse STSs. By
limiting the search to point-transitive STS(v) over cyclic groups, that is, cydic
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STS (v) , Colbourn, Mendelsohn, Rosa and Siran [6] found a 5-sparse STS(v) for
nearly all admissible $v<1\mathrm{O}\mathrm{O}$ . Most of the known recursive constructions of r-
sparse STSs for $r\geq 5$ employs transitive actions of automorphism groups.

However, the author showed that such an STS can not have high sparseness.
While the Erdos $r$-sparse conjecture says that for any $r\geq 4$ an $r$-sparse STS(v)
exists for all sufficiently large admissible $v$ , every point-transitive STS over an
abelian group is at most 12-sparse.

Theorem 4.1 (Fujiwara) [15] For every $r\geq 13$ , there exists no point-transitive
STS over an abelian group.

A point-transitive STS $(V,B)$ over a group $G$ has a short orbit if there exist
a block $B\in I\mathit{3}$ and an element $x\in G$ such that $B^{x}=B$ and $x\neq 1$ , the identity
element. $(V,B)$ has a $\mathrm{z}_{3}$ -orbit if $B$ contains a block having the form $\{a,?,a^{x^{2}}\}$ ,
where $x^{3}=1$ . $\mathrm{z}_{3}$ -orbit privent an STS from being high-sparse.

Theorem 4.2 (Fujiwara) [15] Assume that there exists apoint-transitive r-sparse
STS over an abelian group G. Further, if the STS has a $Z_{3}$ orbit then $r\leq 9$ .

A cyclic STS (v) can be considered as a point-transitive STS whose full auto-
morphism group contains a cyclic group of order $v$ as a subgroup acting regularly
on the point set. A cyclic STS(v) exists for all admissible $v$ except for 9. Theorem
3.5 provides many examples of cyclic 5-sparse STSs. The author [14] developed
some general recursive constructions for cyclic 4 and 5-sparse STSs, and con-
structed such an STS for infinitely many orders.

Theorem 43 (Fujiwara) [14] There exists a cyclic 4-sparse STS(v) for $v\equiv 3$

(mod 6) satisfying one of the condition (i) $(v,27)\neq 9$ , (ii) $v\equiv 0$ (mod 7), or (Hi)
$v\equiv 0$ (mod 5).

Theorem 4.4 (Fujiwara) [141 there exist a cyclic 5-sparse STS (v) and a cyclic
5-sparse STS(w), where $v,w\equiv 1$ (mod 6), then there exists a cyclic 5-sparse
STS (vw).

Theorem 4.5 (Fujiwara) [14] Ifthere exist a cyclic 5-sparse STS (v) , $v\equiv 1$ (mod
6) and a cyclic 5-sparse STS(w), where $v$ and $w$ are relatively prime, then there
exists a cyclic 5-sparse STS (vw).

However, by Theorems 4.1 and 4.2, we have
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Corolary 4.6 (Fujiwara) [15] For every $r\geq 13$ , there exists no cyclic r-sparse
STS (v). In particular, when $v\equiv 3$ (mod 6), no cyclic $r$ -sparse STS (v) exists for
every $r\geq 10$ .

The classification of STSs admitting other types of transitive actions and The-
orem 4,1 gives further nonexistence results on an STS with higer sparseness. The
details shall be presented in a future paper so we only mention the consequence.

Corollary 4.7 (Fujiwara) [15] For every $r\geq 5$ , there exists no 2-transitive r-
sparse STS.

Corollary 4.8 (Fujiwara) [15] For every $r\geq 6$ , there exists no 2-homogeneous
$r$-sparse STS.

Corollary4.9(Fujiwara)[15] For every $r\geq 6$ , there exists no fiag-transitive r-
sparse STS.

Corollary 4.10 (Fujiwara) [15] For every $r\geq 13$ , there exists no block-transitive
$r$-sparse STS.

It is notable that the construction developed by Grannell, Griggs and Murphy
[17] can generate finitely many examples of 6-sparse STSs but none of them is
7-sparse (see Forbes, Grannell and Griggs [11]).

We next consider Steiner triple systems admitting a nontrivial automorphism
with fixed points.

An STS (v) is said to be 1-rotational over a group $G$ if it admits $G$ as a subgroup
of the full automorphism group and $G$ fixes exactly one point and acts regularly on
the other points. A1-rotational automorphism is closely related to an involution.

An STS is said to be reverse if it admits an involutory automorphism fixing
exactly one point. Any 1-rotational STS is reverse. Indeed, for every l-rotational
STS (v) over a group $G$ , the order of $G$ is v-l and even. Hence, $G$ has at least one
involution.

Buratti [3] showed that there exists a1-rotational STS (v) over an abelian group
if and only if $v\equiv 3,9$ (mod 24) or $v\equiv 1$ , 19 (mod 72). He also gave partial
answers for an arbitrary group. The combined work of Doyen [8], Rosa [27]

and Teirlinck [28] established the fact that the spectrum for reverse STS is the
set of all $v\equiv 1,3,9$ or 19 (mod 24). An STS admitting an automorphism with
more than one fixed point is known to exist (see Hartman and Hoffman [20]) and
may also be considered. However, the fixed points must induce a smaller STS as a
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subsystem, and hence sparseness of the original Steiner system can not exceed that
of the small sub-STS. Most interesting is the case when the induced subsystem is
a trivial STS that is, one point and no block, or three points and one block. The
following theorem shows that such an STS is at most 4-sparse.

Theorem 4.11 (Fujiwara) [15] For every $r\geq 5$ , there exists no $r$-sparse STS
admitting an involutory automorphismfixing exactly one or three points.

The following is an immediate corollary of the theorem above.

Corollary 4.12 (Fujiwara) [15] For every $r\geq 5$ . there exists no reverse r-sparse
STS.

Since a 1-rotational STS is also reverse, we have:

Corollary 4.13 (Fujiwara) [15] For every $r\geq 5$ , there exists no 1-rotaional r-
sparse STS.

It is well known that the points and lines of $AG(n,3)$ forms the elements and
triples of a 1-rotaional, and thus reverse, 4-sparse $\mathrm{S}\mathrm{T}\mathrm{S}(3^{n})$ . In this sense, the
bounds of Theorem 4.11 Corollary 4.12 and 4.13 are best possible.

Corollary 4. 13 limits the sparseness of a1-rotational STS over any finite group
even if it is nonabelian. The same bound for a rotational group action fixing three
points inducing the other trivial subsystem follows from the same argument. How-
ever, if groups are restricted to abelian ones, we can easily obtain much stronger
theorem. In fact, sparseness is limited to the lowest.

Theorem 4.14 (Fujiwara) [15] Ifthe full automorphism group ofan STS $S$ con-
tains an abelian subgroup which fixes more than one point and acts transitively
on the other points, then $S$ is not 4-sparse.

In the remainder of this paper, we list two sporadic results on automorphisms,
similar to those we have discussed.

An STS is said to be bicyclic if it admits a permutation on points consisting of
a pair of cycles of length $k$ and $v-k$ as an automorphism. Calahan and Gardner
[4] proved that there exists a bicyclic STS (v) for $k>1$ if and only if $v\equiv 1,3$ (mod
6), $k|v$ , and either $k\equiv 1$ (mod 6) and $3k|v$ ; or $k\equiv 3$ (mod 6) and $k\neq 9$ .



183

Theorem 4.15 (Fujiwara) [15] Let $S$ be a bicyclic $r$-sparse STS and $l$ be length
of the smaller cycle of its bicyclic automorphism. Then,

$r\leq\{$

4 when $\mathit{1}=1,3$ ,
9 when $\mathit{1}\equiv 3$ $(\mathrm{m}\mathrm{o}\mathrm{d} 6)$ ,
12 when $\mathit{1}\equiv 1$ $(\mathrm{m}\mathrm{o}\mathrm{d} 6)$ .

An STS is said to be 1-transrotational if it admits an automorphism consisting
one fixed point, a transposition and a cycle of length $(v-3)$ . Gardner [I6] showed
that a 1-transrotational STS (v) exists if and only if $v\equiv 1,7,9$ , 15 (mod 24).

Theorem 4.16 (Fujiwara) [15] For every r $\geq 5$ , there exists no $1$ -transrotational
$r$-sparse STS .
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